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Nonhomogeneity of the density of states of tunneling two-level systems at low energies
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Amorphous solids, and many disordered lattices, exhibit a remarkable qualitative and quantitative universality
in their acoustic properties at temperature �3 K. This phenomenon is attributed to the existence of tunneling
two-level systems (TTLSs), characterized by a homogeneous density of states (DOS) at energies much lower
than the disorder energy (≈0.1 eV). Here we calculate numerically, from first principles, the DOS of KBr:CN
glass, the archetypal disordered lattice showing universality. In contrast to the standard tunneling model, we find
that the DOS diminishes abruptly at ≈3 K, and that tunneling states differ essentially by their symmetry under
inversion. This structure of the TTLSs dictates the low temperature below which universality is observed, and
the quantitative universality of the acoustic properties in glasses. Consequences to the properties of glasses at
intermediate temperatures, as well as to the microscopic structure of amorphous solids, are discussed.
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I. INTRODUCTION

The existence of two-level tunneling defects as a generic
property in amorphous systems was postulated four decades
ago [1,2] in an attempt to explain the remarkable universality
in the low-energy characteristics of amorphous solids as were
found earlier by Zeller and Pohl [3]. The exact nature of the
tunneling states is not known. Yet, their characteristics at low
energies has been thoroughly studied through measurements
of properties such as specific heat, thermal conductivity,
and internal friction (see Refs. [4,5] and references therein),
as well as their relaxation and dephasing times via echo
experiments (see, e.g., [6–8]). At very low temperatures
interactions between the tunneling two-level systems (TTLSs)
lead to glassy characteristics and slow relaxation [9,10].
Recently, in remarkable experiments the coupling between
superconducting qubits and TTLSs was used to study single
TTLSs, their relaxation times, and the dependence of their bias
energy on applied strain [11,12].

Many of the above-mentioned properties can be explained
using what is now referred to as the “standard tunneling model”
(STM) [1,2,13]. In the STM each TTLS is characterized
by the energy bias between its two states �, the tunneling
amplitude between the two states �o, and its coupling to
the phonon field denoted by γ . A central assumption of
the STM for the ensemble of TTLSs in a given system is
that the energy biases and the magnitudes of the barriers
are homogeneously distributed, resulting in the distribution
P (�,�o) = Po/�o. The STM further assumes that γ has
a narrow distribution. With regard to the energy biases, the
assumption of homogeneity at low energies rests on the
argument that the biases are dictated by the large energy related
to the disorder, ≈0.1 eV, and are therefore homogeneous at
much lower energies.

Although very successful in explaining many of the
universal properties at low temperature, the STM falls short in
describing the nature of the tunneling states, the quantitative
universality of phonon attenuation, and the energy scale of
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≈3 K, only below which universality is observed. As the STM
has no energy scale except that of the glass transition, it cannot
also explain the drastic change of behavior above ≈3 K, and
phenomena such as the universal plateau in thermal conduc-
tivity at 3–10 K, and the boson peak at higher energies [14,15].
Thus, the mechanism, generic to the disordered state, that leads
to the universality of phonon attenuation at low temperatures,
and its relation to the microscopic structure of the amorphous
state, remain long-standing open questions.

The low-energy phenomena dictated by the TTLSs are
observed equally in disordered lattices [16]. It was carefully
shown [17,18] that the phenomena are equivalent between the
two systems, strongly suggesting that it is the same mechanism
leading to the universal phenomena in all disordered systems.
It is therefore expected that the central characteristics of
the low-energy excitations, such as the distribution of their
coupling constants and the structure of their density of states
(DOS), will be similar between the different systems showing
universality. It was thus concluded [18,19] that the defects
in the crystal should be used to model the excitations in
amorphous solids, rather than the amorphous structure itself.

In this paper we present numerical results for the density
of tunneling states in KBr1−x(CN)x , where the system is
modeled by its bare interatomic potentials. KBr1−x(CN)x
is the archetypal disordered lattice showing universality at
concentrations 0.2 < x < 0.7, and the magnitude of its energy
disorder at the relevant concentration range is ≈0.05 eV,
similar to that of amorphous solids. Thus, we could expect
a homogeneous TTLS DOS for energies smaller than ≈500 K
also in KBr:CN.

Using a combined Monte Carlo (MC) and molecular
statics technique, we relax fragments of KBr:CN in both two
dimensions (2D) and three dimensions (3D) to a low-energy
state. We then calculate the energy of all states resulting from a
tunneling of a single CN defect. Remarkably, a sharp decrease
of the DOS of the tunneling states is found at energy ≈3 K
in both 2D and 3D. This energy is much smaller than the
energy scale of the disorder, as is reflected, e.g., in the glass
temperature. Yet, it is the same energy scale that dictates the
temperature below which universality is observed. We further
find that it is CN flips, which constitute two states related to
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each other by local inversion symmetry, that overwhelmingly
dominate the low-energy excitations. At the same time, CN
rotations (asymmetric with respect to local inversion) have a
much larger energy scale (≈500 K in 2D, ≈300 K in 3D), and
a diminishing (nonhomogenous) DOS at low energies.

Our results here add up to the bimodality of the coupling
strengths of TTLSs to the phonon field, as was obtained numer-
ically in [20]. Both these findings are in sharp contradiction to
the assumptions of the STM, but in agreement with a recent
“two-TTLS” theory [21] for the low-temperature universality.
Our results thus suggest that it is the inhomogeneity of the
DOS of TTLSs at low energies, and its dependence on the
symmetry of the TTLSs, that dictates quantitative universality
of the acoustic properties of glasses, and the energy scale
related to it.

II. NUMERICAL PROCEDURE

For a given realization of CN impurities, the low-energy
state of a KBr1−x(CN)x sample corresponds to a specific
orientation of each of the CN impurities in the sample, which
is dictated by the impurity-impurity interactions. At the same
time, the exact positions of all ions in the sample giving
energy minimization have to be calculated. We therefore
use a technique that hybridizes local energy minimization
(conjugate gradients) and MC simulation.

We start by creating a three-dimensional grid of volume
N × N × N (N × N in 2D, N is even) of K+ and Br−
ions, having distance 3.1974 Å (3.2735 Å in 2D) between
the ions. These distance values were calculated by the
energy minimization procedure of pure KBr grid. We replace
randomly some of the Br− ions by CN− ions, according to our
chosen concentration x = 0.25. The charges of K+ and Br−
ions are taken as +1 and −1, respectively, and the charge of
the CN− ion is represented by fractional charges qC = −1.28,
qN = −1.37, and qcenter = +1.65 placed respectively on the
carbon atom, nitrogen atom, and at the center of mass [22].
The distance of the carbon and nitrogen atoms from the center
of mass is taken as 0.63 Å and 0.54 Å, respectively [22].
Interatomic potential is calculated by the formula

Vαβ(R) = Aαβ exp(−aαβR) + Bαβ

R6
+ K

qαqβ

R
. (1)

The interatomic potential parameters Aαβ , aαβ , and Bαβ (see
Table I) are taken from Ref. [23], and K = 1389.35 Å kJ/mol.

For a single CN impurity in an otherwise pure KBr lattice
we find that its preferred orientation is along the eightfold
degenerate in-space diagonals, in agreement with Ref. [24].
In two dimensions the degeneracy is fourfold, along the

TABLE I. Interatomic potential parameters (taken from
Ref. [23]). Cross-interaction parameters were calculated by Aαβ =
(AααAββ )1/2, aαβ = (aααaββ )/2, Bαβ = −(BααBββ )1/2.

αα Aαα (kJ/mol) aαα (1/Å) Bαα (Å6 kJ/mol)

KK 1 58 100 2.985 − 1464
CC 2 59 000 3.600 − 2110
NN 2 05 020 3.600 − 1803
BrBr 4 29 600 2.985 − 12 410

plane diagonals. These degeneracies are lifted by tunneling.
However, in strongly disordered systems, of interest to us
here, the bias disorder is much larger than the tunneling
amplitudes [21]. Calculation of the bias energy can therefore
be carried out without consideration of the tunneling. The
tunneling amplitude, which for almost all TTLSs is much
smaller than the bias energy, can then be considered after
the distribution of biases, which is of interest for us here,
has been established. We thus start by orienting each CN−
ion in one of the in-space diagonals (plane diagonals in 2D)
randomly. We then relax the system for the given initial
orientation of the CN− impurities to the local energy minimum,
optimizing all ion locations as well as CN− orientations using
the nonlinear Fletcher-Reeves conjugate gradients method.
Periodic boundary conditions are used to simulate the infinite
crystal.

The conjugate gradient method, however, does not allow
the crossings of the high barriers separating different single
CN states. Such crossings are required, though, to find a
low-energy state of the full system, as is dictated by the
impurity-impurity interactions. We thus combine the conjugate
gradients method with intervening MC steps. After the initial
energy minimization, the orientation of one CN− ion is
changed randomly to another in space diagonal (in plane
diagonal in 2D), and the system’s energy is minimized again
using conjugate gradient method. The new configuration is
accepted or rejected according to the standard Metropolis
algorithm and the assigned temperature. These steps are
carried at 40 different temperatures from 300 to 0.02 K, with
256 MC steps for each temperature, where a single MC step
involves a single orientation change of each CN− ion in the
sample.

We then do 256 MC steps at 10−5 K, and reach a low-
energy metastable state. The final state of the system is not
necessarily the ground state. However, such metastable states
are expected to represent well the real low-temperature glassy
state of KBr:CN and its low-energy DOS. The latter is dictated
by the Efros-Shklovskii gap [25], which relies only on stability
to single and double CN− flips or rotations [26].

Once we reach the final state of the simulation we measure
all single-particle excitation energies. We also keep track of
the symmetry of the excitations. The symmetric excitations,
i.e., those where the final orientation of the CN− ions is
nearly inverse to its initial orientation (within 14◦) are denoted
τ -TTLSs, and the asymmetric excitations are denoted S-
TTLSs [21]. This procedure is then repeated for 3000 samples
in 3D and 5000 samples in 2D.

III. RESULTS

In Figs. 1(a) and 2(a) we plot the full DOS of single impurity
tunneling in 3D (4 × 4 × 4 unit cells) and 2D (8 × 8 unit cells),
respectively. The DOS has a maximum at low energies, but
reduces considerably at an energy ≈3 K.

We now plot separately the single-particle excitations of
CN flips (τ -TTLSs) and rotations (S-TTLSs) in Figs. 1(b)
and 1(c) for the three-dimensional samples and in Figs. 2(b)
and 2(c) for the two-dimensional samples. The difference
between the DOS of the two types of excitations is striking.
The inversion symmetric flip excitations are peaked at low
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FIG. 1. (Color online) The DOS of single impurity tunneling in
3D in 4 × 4 × 4 unit cell with CN concentration x = 0.25. (a) Full
DOS up to 1000 K. (b) DOS of CN flips (τ excitations). Solid
line denotes a one-parameter Gaussian fit, with standard deviation
Eo = 8.99. (c) DOS of CN rotations (S excitations). Solid line in the
inset denotes a fit to the function A/ln(B/E) (A = 1.56 × 10−3, B =
500).

energies, with typical energies of ≈7 K for both 3D and 2D.
The inversion nonsymmetric rotation excitations, however, are
broadly distributed, with typical energies of ≈300 K for 3D
and ≈500 K for 2D. The peak value of the τ -TTLS DOS is
∼14 and ∼40 times larger than the peak value of the S-TTLS
DOS in 3D and 2D, respectively. The difference between the
peak values of the S-TTLSs in 3D and in 2D is a consequence
of each CN impurity having two S excitations in 2D, but six S

excitations in 3D.
Focusing on the CN flips (τ -TTLSs), their DOS is quite

close to a Gaussian, except for a small dip in the DOS at

FIG. 2. (Color online) The DOS of single impurity tunneling in
2D in 8 × 8 unit cell with CN concentration x = 0.25. (a) Full DOS
up to 1000 K. (b) DOS of CN flips (τ excitations). Solid line denotes
a one-parameter Gaussian fit, with standard deviation Eo = 8.65.
(c) DOS of CN rotations (S excitations). Solid line in the inset denotes
a fit to the function A/ln(B/E) (A = 7.7 × 10−4, B = 1500).

very low energies [see inset of Figs. 1(b) and 2(b)], and some
structure at ∼10 K. The former is generic to the two-TTLS
model (see below) whereas the latter is a result of details of
the lattice structure and form of the interaction. With regard
to the S-TTLSs, their DOS is well fit to a log function at low
temperatures, except, below 10 K, the energy at which the
τ -TTLSs appear; see further discussion below.

A. Two-TTLS model

Our results for the DOS are intimately connected with the
fact that the coupling strength to the phonon field of inversion
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symmetric excitations γw is much smaller than that of the
asymmetric excitations γs. For KBr:CN γw ≈ 0.1 eV, whereas
γs ≈ 3 eV [20]. This bimodality in the coupling strengths
affects the phonon mediated acoustic interactions, which then
result in an effective TTLS-TTLS interaction Hamiltonian of
the form [21,27]

H eff
Sτ =

∑

ij

USS
ij Sz

i S
z
j +

∑

ij

USτ
ij Sz

i τ
z
j +

∑

ij

Uττ
ij τ z

i τ z
j , (2)

where in three dimensions (two dimensions) all interactions
decay as 1/r3 (1/r2) at distances r � a0, with a short-distance
cutoff ã ∼ a0, and their typical values at near-neighbor
distance are related by [21,27,28]

Uττ
0 ≈ gUSτ

0 ≈ g2USS
0 . (3)

Here g ≡ γw/γs ≈ 1/30 [20,21]. This effective Hamiltonian
was shown to lead to quantitative universality and to account
for the energy scale of ≈ 0.2USτ

0 ≈ 0.2gUSS
0 ≈ 3 K related

to it [21]. The DOS for the two types of TTLSs within the
Hamiltonian 2 was analyzed in detail in Ref. [29]. Indeed, it
was found that the weakly interacting (τ ) TTLSs DOS are well
fit by a Gaussian, except for a small dip, at very low energies, of
relative magnitude ∼g. The Gaussian width is dictated by the
strength of the S-τ interaction USτ

0 . The strongly interacting
S-TTLSs were found to have a typical energy dictated by
USS

0 , a logarithmic gap at intermediate energies [9,30], and
a power-law gap below ≈USτ

0 , the energy where the DOS of
the τ -TTLSs becomes appreciable. As a consequence of this
gapping of the S-TTLS DOS nS(E), one finds below ≈3 K that
nS(E)γ 2

S < nτ (E)γ 2
w [i.e., nS(E)/nτ (E) < g2]. This defines

the condition for the τ -TTLS to dominate phonon attenuation,
resulting in universality below this energy scale.

Our results here validate the applicability of the above
two-TTLS model to real systems, as we verify, in a calculation
relying only on the bare interatomic interactions of a real
glass, the central features predicted by the model: (i) The
width of the distributions (typical energies) of the S-TTLSs
and τ -TTLSs—both their relative magnitudes and the absolute
magnitude of each one. We further note that the value of g

inferred from the ratio between the typical energies is in good
agreement with that obtained from the ratio of the interaction
constants in Ref. [20]. (ii) The gapping of the S-TTLSs
but not the τ -TTLSs at low energies, and the small dip, of
relative magnitude ∼g, of the τ -TTLSs at the lowest energies.
(iii) The change in the functional form of the gap of the
S-TTLSs at the energy scale ∼10 K where the τ -TTLSs
appear: (iv) The relation nS(E)/nτ (E) < g2 is fulfilled at
energies smaller than ∼3 K. We note that the energy below
which the above condition is fulfilled in KBr:CN is slightly
larger than what is inferred by our results, because as a
consequence of finite-size effect our results overestimate the
S-TTLS DOS at the lowest energies.

IV. DISCUSSION

In contrast to the assumption of the STM, we find that in
KBr:CN TTLSs are divided into two distinct classes by their
local inversion symmetry, with a DOS distribution which is
particular to each class of TTLSs, and has a strong energy
dependence at low energies, of order 10 K. Many disordered

lattices, of which KBr:CN is a primary example, share the low-
temperature universal characteristics with amorphous solids.
Furthermore, experiments strongly support the notion that it
is the same mechanism, pertaining to the disordered state of
matter itself, that dictates universality in amorphous systems
and disordered lattices alike. The structure we find for the
DOS of the symmetric and asymmetric TTLSs is not only
very different from the flat DOS suggested by the STM, but it
is this very structure of DOS that provides an explanation of the
quantitative universality of phonon attenuation and the energy
scale of ≈3 K below which universality is observed [21].
As it is expected that the same model would be relevant
to both amorphous solids and disordered lattices showing
universality, our results suggest that also in amorphous solids
two types of TTLSs exist, with a similar structure of DOS
to the one found here. Verification of this idea could lead
not only to a resolution of the long-standing problem of the
low-temperature universality in disordered systems, but also
to an enhanced understanding of the microscopic structure of
amorphous solids, and its relation to the physical properties of
amorphous solids in general.

The standard tunneling model uses only one feature of the
complicated structure of the density of states found here—the
rather homogeneous DOS of the inversion symmetric TTLSs
below 3 K. It completely neglects not only the sharp reduction
of the DOS at higher energies, but also the existence of the
asymmetric TTLSs with their much larger interaction with
the phonon field. These characteristics of the DOS, however,
may lead to the explanation of further intriguing properties
of disordered lattices and amorphous solids at low and inter-
mediate temperatures. Some examples at intermediate tem-
peratures are the full temperature dependence of the thermal
conductivity including the rather universal plateau between 3
and 10 K [17,31], and the boson peak. At low temperatures,
the existence of the strongly interacting S-TTLSs, although
small in number, may be useful in explaining equilibrium and
nonequilibrium properties of phonon attenuation, as well as
the relaxation and decoherence of the prevalent τ -TTLSs.

In addition to the standard TTLSs responsible to the
universal phonon attenuation at low temperatures, a second
type of local excitation was introduced previously, phe-
nomenologically, by Black and Halperin [32] and by Yu and
Freeman [33]. Black and Halperin suggested the existence
of TTLSs with a much smaller interaction with the strain,
thus affecting the specific heat but not phonon attenuation.
Yu and Freeman suggested the existence of local phononic
modes with a similar interaction with the phonon field to that
of the TTLSs, but with a DOS which is gapped below 43 K, to
fit experimental data for thermal conductivity at intermediate
and high temperatures. Our results differ from the above two
approaches in that TTLSs of the second type have a much larger
interaction with the strain, and are softly gapped below ∼3 K.

Experimentally, TTLSs are observed via a plethora of
techniques, including echo [6–8], coupling to superconducting
qubits [11,12], specific heat [34] and dielectric response [35].
In general, our results suggest that care should be taken in
experiments to characterize the TTLSs according to their
interaction strength. Whereas most experiments are suscep-
tible to the weakly interacting TTLSs abundant at low ener-
gies, strongly interacting TTLSs can dominate experimental
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observations susceptible to their high bias energy or strong
interaction with the strain. Specifically, our results disagree
with previous estimates for typical energy biases of CN flips
in KBr:CN [36,37], and suggest that experimental values
of 300–400 K obtained for TTLS-TTLS interaction at short
distances, and for TTLS bias energies, in KBr:CN [34,35]
concern CN rotations rather than CN flips.

The use of the empirical potential of the (Buckingham-
Coulomb) form given in Eq. (1) rather than the more accurate
DFT or ab initio formalisms is dictated by the required
complexity of the problem: the need to consider a relatively
large system, to find its low-energy state using Monte Carlo,
and to repeat the calculation for many samples for good
statistics. This use of the empirical potential has been shown
to be useful in obtaining qualitative, and to some degree
also quantitative, predictions for ionic crystals (for details see
Refs. [22,23,38,39]). For the properties which are of interest
to us here, i.e., the DOS of the CN− flips (τ -TLSs) and
CN− rotations (S-TLSs), all qualitative features are dictated
by symmetry and are therefore robust. Comparison to results
for the model Hamiltonian in Eq. (2) [20,29] suggests that all
qualitative features of the DOS for both CN− flips and CN− ro-
tations are indeed retrieved by our calculation. Quantitatively,
the value of g inferred from our results for the typical energies
of CN− flips and CN− rotations is in very good agreement with
that found by the ratio of their corresponding couplings to the

phonon field using DFT and ab initio calculations [20]. We also
find good quantitative correspondence with the calculations for
the model Hamiltonian in Eq. (2) as obtained in Ref. [29]. This
suggests that our results provide also reasonable quantitative
accuracy, except for the overestimate of the DOS of the S-TLSs
at the very low energies, as mentioned above.

We are concerned here with the calculation of the bias
energies of the S-TLSs and the τ -TLSs, but not their tunneling
amplitudes. The latter are crucial for the discussion of dynamic
and nonequilibrium properties. A plausible assumption for the
distribution of the tunneling amplitudes �0 is that suggested in
Refs. [1,2], P (�0) ∝ 1/�0. For the τ -TLSs which dominate
the low-energy universal phenomena, this assumption has been
shown to be consistent with the various experimental findings.
However, its applicability for the S-TLSs needs to be checked.
Such a verification may become possible by using our results
for the bias energies here, and for the coupling constant of
the S-TLSs in Ref. [20] to calculate measurable quantities
dominated by S-TLSs and comparing to experimental results.
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