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Same universality class for the critical behavior in and out of equilibrium
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The random-field Ising model (RFIM) is one of the simplest statistical-mechanical models that captures the
anomalous irreversible collective response seen in a wide range of physical, biological, or socioeconomic
situations in the presence of interactions and intrinsic heterogeneity or disorder. When slowly driven at
zero temperature, it can display an out-of-equilibrium phase transition associated with critical scaling
(“crackling noise”), while it undergoes at equilibrium, under either temperature or disorder-strength changes,
a thermodynamic phase transition. We show that the out-of-equilibrium and equilibrium critical behaviors
are in the same universality class: they are controlled, in the renormalization-group (RG) sense, by the same
zero-temperature fixed point. We do so by combining a field-theoretical formalism that accounts for the multiple
metastable states and the exact (functional) RG. As a spin-off, we also demonstrate that critical fluids in disordered
porous media are in the same universality class as the RFIM, thereby unifying a broad spectrum of equilibrium
and out-of-equilibrium phenomena.
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I. INTRODUCTION

In the presence of both interactions and intrinsic hetero-
geneity or quenched disorder, a wide spectrum of systems
display, when slowly driven by an external solicitation, discrete
collective events, bursts, shocks, jerks, or avalanches that span
a broad range of sizes. The signature appears as a “crackling
noise” [1] and it can be found in quite different situations
[1–3], from Barkhausen noise in disordered magnets [4] to
a variety of social and economic phenomena [5] in passing
by capillary condensation in mesoporous materials [6,7] or
hysteresis and noise in disordered electron nematics in high-Tc

superconductors [8,9].
It has been shown that a simple system such as the

random-field Ising model (RFIM) already has all the required
ingredients to display crackling noise [10–12]. In this case,
the latter results from the presence of an out-of-equilibrium
critical point in the hysteretic response of the system to an
infinitely slowly changed external field at zero temperature.
The critical point separates a phase characterized by finite-size
avalanches and a continuous hysteresis curve from a phase with
a macroscopic avalanche and a discontinuous hysteresis curve.
It requires tuning two control parameters, namely the disorder
strength and the external magnetic field.

On the other hand, for decades the RFIM has been a model
for equilibrium phase behavior in the presence of quenched
disorder [13,14]. For dimensions greater than 2, the RFIM
shows a phase transition and a critical point at fixed disorder
strength when changing temperature or at fixed temperature
when changing disorder strength [14].

The puzzle we address and solve in the present work is
the following: despite the fact that one is at equilibrium and
the other is not, one is at zero external field and the other is
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not, and that they take place at different values of the disorder
strength, the two types of critical points are characterized by
critical exponents and scaling functions that have been found
to be very close in numerical simulations, within numerical
accuracy [15–17]. (A similar observation concerning the
critical exponents can be made from experiments, but the
uncertainties are much bigger.)

The theoretical tool for a proper resolution of this puzzle is
the renormalization group (RG). The critical behaviors in and
out of equilibrium are the same, and are therefore in the same
universality class, if and only if they are controlled by the same
RG “fixed point.” (A first piece of information is that the fixed
points associated with both types of criticality occur at zero
temperature where sample-to-sample fluctuations dominate
over thermal ones [18,19]; however, this is a necessary but
not sufficient condition [20].) A first attempt through an RG
formalism was proposed on the basis of perturbation theory
[12]. However, the latter is known to seriously fail in the RFIM
[14,21] and cannot provide a useful method. The route we
follow here is based on the exact RG and builds on our recent
work on the equilibrium behavior of the RFIM [22–26].

Our demonstration relies on a field-theoretical setting
and on the nonperturbative functional RG. The approach is
powerful, but it involves a somewhat abstract formalism.
However, most of it having been detailed in our previous
publications, we will try to maintain the exposition of formal
manipulations at a minimal level.

The demonstration proceeds in several steps. The first
one is to replace the a priori complex problem of following
a history-dependent evolution among configurations, which
results from the dynamics of the slowly driven RFIM, by
one that is more readily tackled by statistical mechanical
methods. The limit of interest is the adiabatic, or quasistatic,
one in which the driving rate is vanishingly slow so that
the system reaches a stationary state before being evolved
again [10]. The trick is that, due to the ferromagnetic nature
of the interactions in the RFIM and the properties of the
zero-temperature relaxational dynamics (and the associated
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FIG. 1. (Color online) RFIM at zero temperature: Schematic
illustration of the hysteresis loop (red) and of the equilibrium
curve (blue) in the magnetization (φ) vs applied magnetic field (J )
representation. For the chosen value of the disorder strength, the
system has two (symmetric) out-of-equilibrium critical points (red
dots), but a first-order transition in equilibrium.

“no-passing rule” [10,27]), the configurations visited along
the hysteresis loop correspond to extremal states [28,29]: for
a given value of the applied magnetic field (in the language
of magnetic systems), they correspond to the stationary states
that have the largest local magnetization at each point (for
the “descending” branch obtained by decreasing the magnetic
field from a fully positively magnetized configuration; see
Fig. 1) or the smallest one (for the “ascending branch” obtained
by increasing the field from a fully negatively magnetized
configuration). When the distribution of the random fields is
continuous, which we shall consider, these extremal states
are unique for a given realization of the disorder (with
exceptional degeneracies) [28]. One can then formulate a
statistical mechanical treatment of the extremal states with
no reference to dynamics and history.

II. MODEL AND FORMALISM

The model that we consider is the field-theoretical version
of the RFIM with short-ranged interactions. The associated
“bare action” (microscopic Hamiltonian) is

S[ϕ; h + J ] = SB[ϕ] −
∫

x

[h(x) + J (x)]ϕ(x) ,

(1)

SB[ϕ] =
∫

x

{
1

2
[∂ϕ(x)]2 + r

2
ϕ(x)2 + u

4!
ϕ(x)4

}
,

where
∫
x

≡ ∫
ddx, h(x) is a random “source” (a random

magnetic field), and J (x) is an external source (a magnetic
field); the quenched random field is taken with a Gaussian
distribution characterized by a zero mean and a variance
h(x)h(y) = �Bδ(d)(x − y).

At zero temperature, the driven dynamics associated with
the hysteresis curve is described by the following equation of
motion:

∂tϕt (x) = −δSB [ϕ]

δϕt (x)
+ h(x) + Jt . (2)

As discussed above, in the quasistatic limit where the external
source drives the system infinitely slowly, the stationary states

that are relevant for the hysteresis curve are the two extremal
solutions (Fig. 1) of the stochastic field equation,

δSB[ϕ]

δϕ(x)
= h(x) + J, (3)

which is obtained by setting ∂tϕt (x) = 0 and Jt = J in Eq. (2).
The general recipe to build a generating functional from

which one can derive all the needed correlation functions
describing the extremal states is (i) to introduce a weighting
factor with an auxiliary source linearly coupled to the ϕ field to
select the magnetization, and (ii) to consider copies or replicas
of the original disordered system, each being independently
coupled to distinct external sources [24,25]. The associated
generating functional is then

Zh[{Ĵa,Ja}] =
∫ ∏

a

Dϕa δ

[
δSB[ϕa]

δϕa

− h − Ja

]

× det

[
δ2SB[ϕa]

δϕaδϕa

]
exp

∫
x

Ĵa(x)ϕa(x), (4)

where the overline denotes an average over the Gaussian
random field h(x), and square brackets generically indicate
functionals.

Note that the above generating functional a priori includes
contributions from all solutions of the stochastic field equation
(for each copy a). However, in the limit where all auxiliary
sources Ĵa go to infinity, the dominant contribution is that
of the extremal states, with maximum magnetization when
Ĵa → +∞ and minimum one when Ĵa → −∞. The cor-
relation functions are then obtained by first differentiating

log(Zh[{Ĵa,Ja}]) with respect to the Ĵa’s and then taking the
latter to infinity while considering all Ja’s equal to J .

It is worth pointing out the difference with the equilibrium
situation at T = 0. There, the properties of the system are
obtained from the ground state, i.e., the solution with minimal
action (energy). The ground state can be selected through
the introduction of a Boltzmann-like weighting factor with
an auxiliary temperature in the limit where the latter is taken
to zero [24,25]. The selection of the extremal states is thus
quite different from that of the ground state.

To proceed further, as explained in detail in Ref. [24], the
above functional can be reexpressed with the help of auxiliary
fields through standard field-theoretical techniques [30,31]
(see also Appendix A). This leads to a “superfield theory”
with a large group of symmetries and supersymmetries [24].

The next step consists in applying an exact RG formalism
to this superfield theory. This can be done by progressively
including the contribution of the fluctuations of the superfield
on longer length scales, or alternatively with shorter momenta
[32]. Technically, this can be implemented through the addition
to the bare action of an “infrared (ir) regulator” depending on
a running ir scale k; its role is to suppress, in the generating
functional derived from Eq. (4), the integration over modes
with momentum |q| � k [22,33,34].

The central quantity of our RG approach is the k-dependent
“effective average action” [33,34], �k . This functional exactly
interpolates between the bare action at the microscopic (or
uv) scale k = �, which then corresponds to the mean-field
approximation where no fluctuations are accounted for, and
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the exact effective action (Gibbs free energy) when k = 0. The
latter is the generating functional of the so-called “one-particle
irreducible” (1PI) correlation functions [30], and its knowl-
edge entails a full description of the statistical properties of
the extremal states, hence of the out-of-equilibrium hysteresis
behavior of the RFIM. Expanding �k in increasing numbers
of unrestricted sums over copies (or replicas) generates a
cumulant expansion for the renormalized disorder at the scale
k [24].

The RG flow of �k is generated by continuously decreasing
the ir scale k. This leads to an exact functional RG equation
[33,34], from which one derives an exact hierarchy of coupled
functional RG equations for the cumulants of the renormalized
disorder (see Appendix A).

III. AN IDENTITY FROM THE EXACT RG

An important simplification occurs in the situation of
interest here. As already mentioned, the hysteresis loop

corresponds to the limit of infinite auxiliary source, Ĵ → ±∞,
or in the Legendre transformed setting, the limit of infinite
auxiliary field, φ̂ → ±∞ (φ̂a is the average of the auxiliary
field introduced as a conjugate of the source Ja to reexpress
Eq. (4) [24]). The main point is that the uniqueness of the
extremal states (for each branch separately) translates in the
present superfield framework into the formal property of
the random generating functional, which we called “Grass-
mannian ultralocality” [24] and which greatly simplifies the
formalism. A discussion of this property and technical details
are provided in Appendixes A, B, C, and D.

After some algebra, we end up with exact RG functional
equations for the cumulants of the renormalized disorder,
�k1[φa], �k2[φa,φb], etc., or more precisely for the cumulants
of the renormalized random field, �

(1)
k1;x1

[φa], �
(1,1)
k2;x1,x2

[φa,φb],
etc, with the physical fields φa only as arguments (super-
scripts denote functional differentiation with respect to the
arguments). More details are given in Appendix A. As an
illustration, the equations for the first two cumulants read

∂t�
(1)
k1;x1

[φ1] = −1

2
∂̃t

δ

δφ1(x1)

∫
x2x3

P̂k;x2x3 [φ1]
(
�

(11)
k2;x2,x3

[φ1,φ1] − R̃k;x2x3

)
(5)

and

∂t�
(11)
k2;x1,x2

[φ1,φ2] = 1

2
∂̃t

δ2

δφ1(x1)δφ2(x2)

∫
x3x4

{
− P̂k;x3x4 [φ1]�(101)

k3;x3,.,x4
[φ1,φ2,φ1]

+ P̃k;x3x4 [φ1,φ1]�(20)
k2;x3x4,.

[φ1,φ2] + 1

2
P̃k;x3x4 [φ1,φ2]

(
�

(11)
k2;x3,x4

[φ1,φ2] − R̃k;x3x4

) + perm(12)

}
, (6)

where t = log(k/�), and R̂k and R̃k are ir regulators: in Fourier
space, R̂k(q2) gives a mass ∼ k2 for modes with |q| � k

and is essentially zero for modes with |q| � k, while R̃k(q2)
suppresses fluctuations of the random field and is related
to R̂k(q2) in a way that is compatible with the underlying
supersymmetry of the theory [24,25]. The short-hand notation
∂̃t indicates a derivative with respect to t that acts on the
cutoff functions only (i.e., ∂̃t ≡ ∂t R̂k δ/δR̂k + ∂t R̃k δ/δR̃k),
and perm(12) denotes the expression obtained by permuting
φ1 and φ2. Finally, the propagators P̂k and P̃k are defined as

P̂k[φ] = (
�

(2)
k1 [φ] + R̂k

)−1
(7)

and

P̃k[φ1,φ2] = P̂k[φ1]
(
�

(11)
k2 [φ1,φ2] − R̃k

)
P̂k[φ2]. (8)

Note that the auxiliary fields have completely dropped out of
the equations.

One finds that Eq. (5) coincides with the derivative with
respect to φ1(x) of the exact RG flow equation followed by
�k1[φ1] for the RFIM at equilibrium [see Eq. (7) of Ref. [25]].
Similarly, Eq. (6) coincides with the derivative with respect
to φ1(x1) and φ2(x2) of the exact RG flow equation followed
by �k2[φ1,φ2] for the RFIM at equilibrium [see Eq. (8) of
Ref. [25]]. It is easily derived that this generalizes to all higher-
order cumulants, so that the exact hierarchies of RG flow
equations for the cumulants of the renormalized random field
�

(1···1)
kp;x1,...,xp

[φ1, . . . ,φp] for the RFIM in and out of equilibrium

are identical. This is the central result of the present work. The
key physical ingredients underlying this result are on the one
hand that out-of-equilibrium and equilibrium behaviors can
be studied as zero-temperature phenomena and therefore
involve exploration of specific stationary states, and on the
other hand that the selected stationary states, be they extremal
states for the hysteresis or ground states for the equilibrium
case, are unique [35].

IV. SYMMETRY CONSIDERATIONS

We have therefore shown that the out-of-equilibrium
hysteresis behavior and the ground-state physics are described
by the same exact RG equations. As a result, they share the
same set of fixed-point solutions. For the equilibrium case,
one knows that there exists a fixed point associated with
critical behavior. This fixed point has a Z2 symmetry, i.e.,
all functions are symmetric under the inversion of the fields
(local magnetizations). It has two relevant directions, one
corresponding to a Z2 symmetric perturbation and associated
with the disorder strength that must be fine-tuned to be exactly
at criticality, and the other being non-Z2 symmetric and
associated with the external source (which in some sense is
also tuned to be zero, which amounts to staying in the Z2

symmetric subspace).
The out-of-equilibrium critical points, on the other hand,

have no Z2 symmetry: they take place at nontrivial values
of the external source (magnetic field) and of the field
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(magnetization): Jc > 0, φc �= 0 for the ascending branch of
the hysteresis loop, and −Jc, −φc for the descending branch
(see Fig. 1). This implies that the initial condition of the
exact RG flow equations, i.e., the mean-field description at
the microscopic scale, has no Z2 symmetry around a given
critical point. (This is akin to the situation encountered when
relating the liquid-gas critical point of a genuine fluid that has
no particle-hole symmetry to that of the simple Ising model
with Z2 symmetry.)

To show that non-Z2-symmetric initial conditions appropri-
ate for describing out-of-equilibrium criticality can flow under
RG transformation to the already characterized Z2 symmetric
equilibrium fixed point, we consider the nonperturbative
approximation scheme for the effective average action that
we have already introduced in our previous work on the
RFIM at equilibrium [24,25]. It combines a truncation in the
“derivative expansion,” i.e., an expansion in the number of
spatial derivatives of the fundamental fields for approximating
the long-distance behavior of the 1PI correlation functions, and
a truncation in the expansion in cumulants of the renormalized
disorder. The scheme also ensures that the symmetries and
supersymmetries of the theory are not explicitly violated,
which turns out to be an important issue for a proper description
of “dimensional reduction” and its breakdown [24,25]. The
approximation scheme then leads to a closed set of coupled
nonperturbative functional RG equations that can be solved
numerically.

When formulated at the level of the cumulants of the
renormalized random field, the ansatz takes the form

�
(1)
k1;x1

[φ] = U ′
k[φ(x1)] + δ

δφ(x1)

{
1

2
Zk[φ(x1)][∂φ(x1)]2

}
(9)

�
(11)
k2;x1,x2

[φ1,φ2] = �k(φ1(x1),φ2(x2)),

with the higher-order cumulants set to zero. For concreteness,
we focus on the critical point along the ascending branch
of the hysteresis loop, with Jc > 0. After insertion in the
hierarchy of exact RG equations [Eqs. (5) and (6)], the
above ansatz provides three coupled flow equations for U ′

k(φ),
which describes the renormalized source as a function of
magnetization, the so-called “field-renormalization” function
Zk(φ), and the second cumulant of the renormalized random
field �k(φ1,φ2).

These flow equations are supplemented by an initial con-
dition at the microscopic (uv) scale k = �. It corresponds to
a mean-field approximation where only some coarse-graining
over short-ranged fluctuations has been carried out (see, e.g.,
[29]). The crucial point is that the bare action has no Z2

symmetry around the out-of-equilibrium critical point. The
initial condition can then be taken with the same form as in
Eq. (9) with

Z� = 1 ,�� = �B (10)

and U ′
�(φ) generically given by

U ′
�(φ) = J� + r�φ + λ�

2
φ2 + u�

3!
φ3 + v�

4!
φ4 . (11)

U ′′
�(φ) is then nonsymmetric and cannot be symmetrized by a

shift in φ.

To cast the RG flow equations in a dimensionless form
that allows one to investigate the critical physics at long
length scales, one must introduce scaling dimensions. This
is the second operation of any RG transformation. Near a
zero-temperature fixed point, the renormalized temperature is
irrelevant and is characterized by an exponent θ > 0 [18,19].
One then has the following scaling dimensions [22–25]:
Zk ∼ k−η, φ − φc ∼ k(d−4+η̄)/2, U ′

k − Jc ∼ k(d−2η+η̄)/2, �k ∼
k−(2η−η̄), where φc and Jc, respectively, denote the values of the
magnetization and the magnetic field at the out-of-equilibrium
critical point (see above), and the exponents θ , η, and η̄ are
related through θ = 2 + η − η̄.

Due to the lack of Z2 symmetry, two relevant parameters
must be fine-tuned to reach the critical point. In practice, we
account for the additional condition by defining a displaced
field variable φ̃ = φ − φr,k , where φr,k is fixed such that the
third derivative of the renormalized potential is zero all along
the flow: U ′′′

k (φr,k) = 0. If indeed the critical system flows to a
fixed point where Z2 symmetry is restored, then φr,k flows to
the critical value φc and U ′

k(φr,k) flows to Jc in the limit k → 0.
Using lower-case letters, u′′

k ,zk,δk,ϕ̃, to denote the dimen-
sionless counterparts of U ′′

k ,Zk,�k,φ̃, the dimensionless form
of the flow equations can be symbolically written as

∂tu
′′
k (ϕ̃) = βu′′,k(ϕ̃), ∂t zk(ϕ̃) = βz,k(ϕ̃),

(12)
∂tδk(ϕ̃1,ϕ̃2) = βδ,k(ϕ̃1,ϕ̃2),

where the beta functions on the right-hand sides themselves
depend on u′′

k , zk , δk and their derivatives. As already stressed
above, these flow equations are the same as for the RFIM at
equilibrium; they are given in Ref. [25] and not reproduced
here.

The nonperturbative RG equations can be solved for
any spatial dimension d and any initial condition (yet two
parameters must be fine-tuned to reach the critical fixed
point). In all cases, we find that the flow leads to the Z2

symmetric fixed point already derived for the equilibrium
critical point. We illustrate the outcome for two cases (see
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FIG. 2. (Color online) Nonperturbative RG evolution of the di-
mensionless “mass” function u′′

k (ϕ̃) for d = 5.5 > dDR � 5.1 (a) and
d = 4 < dDR (b). The initial condition (red) is asymmetric, but the
asymmetry gradually decreases along the flow and vanishes at the
fixed point (thick black curve). Furthermore, the fixed-point function
for u′′

k (ϕ̃) is identical to that for the equilibrium critical point.
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FIG. 3. (Color online) Same as Fig. 2 for the nonperturbative RG
evolution of the dimensionless second cumulant of the renormalized
random field δk(ϕ̃,ϕ̃) for d = 5.5 > dDR � 5.1 (a) and d = 4 < dDR

(b). The initial condition (red) is a constant and is therefore symmetric,
but the asymmetry first builds up along the flow before decreasing and
finally vanishing at the fixed point (thick black curve). The fixed-point
function is identical to that for the equilibrium critical point.

Figs. 2 and 3): one is above the critical dimension for
dimensional-reduction breakdown, dDR � 5.1 [24,25], and is
therefore exactly described by the d → d − 2 dimensional-
reduction property; the other is below dDR and does not follow
dimensional reduction. In both situations, one can clearly
see that the asymmetry of the functions u′′

k (ϕ̃) and δk(ϕ̃,ϕ̃)
eventually decreases and vanishes when reaching the fixed
point. [The same is observed for the other function zk(ϕ̃) but is
not displayed here.] The Z2 symmetry is thus asymptotically
restored and the fixed point exactly coincides with that found
for the equilibrium criticality.

V. CONCLUSION

We have shown that the critical behaviors of the RFIM in
and out of equilibrium are in the same universality class, with
the same critical exponents, the same scaling functions, and the
same avalanche-size distribution. This gives a solid theoretical
foundation to the empirical numerical findings.

Along the way, the above developments also help to prove
that the in- and out-of-equilibrium critical behaviors of fluids
in a disordered porous material, which are both described by
non-Z2 symmetric theories [38], are in this same universality
class [39]. Our present work, therefore, unifies a very large
class of collective phenomena in and out of equilibrium that
involve interactions and disorder.

APPENDIX A: GRASSMANNIAN ULTRALOCALITY
AND EXACT FUNCTIONAL RG EQUATIONS

As explained in detail in Ref. [24], the generating functional
in Eq. (4) of the main text can be reexpressed through
standard field-theoretical techniques [30,31] as that of a
“superfield theory” with a large group of symmetries and
supersymmetries. In a nutshell, one introduces auxiliary

(bosonic) fields ϕ̂a to “exponentiate” the δ functional, pairs
of auxiliary (fermionic) fields ψa,ψ̄a to “exponentiate” the
determinant, and one averages over the Gaussian random field
[31]. By a Legendre transform, one then obtains the “effective
action” (Gibbs free energy), �[{�a}], where the �a’s are
now “superfields” leaving in a “superspace” spanned by the
d-dimensional Euclidean coordinate x and two anticommuting
Grassmann coordinates θ,θ̄ [24,30,31]:

�a(x,θ,θ̄ ) = φa(x) + θ̄�a(x) + �̄a(x)θ + θ̄ θ φ̂a(x), (A1)

where φa(x),�a(x),�̄a(x),φ̂a(x) denote the averages of the
physical field and of the associated auxiliary fields in copy a.

After having introduced infrared (ir) regulators, one may
define an effective average action �k[{�a}] which is the
effective action of the system at the scale k [33,34]. Its
expansion in increasing numbers of unrestricted sums over
copies generates (modulo some inessential subtleties [24]) the
cumulant expansion for the renormalized disorder:

�k[{�a}] =
∑

a

Γk1[�a] − 1

2

∑
a,b

Γk2[�a,�b] + · · · ,

(A2)

where Γp is essentially the pth cumulant of the renormalized
disorder [24]. Such an expansion in increasing numbers of free
sums over copies led to systematic algebraic manipulations
that we have used repeatedly.

As recalled in the main text, the evolution of �k[{�a}] with
k is described by an exact functional renormalization-group
(RG) equation,

∂t�k[{�a}] = 1

2
Tr

{
∂tRk

(
�

(2)
k [{�a}] + Rk

)−1}
, (A3)

where t = log(k/�), the trace involves summing over copy
indices and integrating over superspace, and �

(2)
k [{�a}] is the

second functional derivative of the effective average action
with respect to the superfields; Rk denotes the infrared
regulator, which satisfies

Rk,a1a2 (x1θ1,x2θ2) = I(a,θ1,θ̄1)(b,θ2,θ̄2)R̂k(|x1 − x2|)
+ R̃k(|x1 − x2|), (A4)

with I(a,θ1,θ̄1)(b,θ2,θ̄2) = δabδθ̄1,θ̄2
δθ1,θ2 , where δab is the

Kronecker symbol and, due to the anticommuting properties of
the Grassmann variables [30], δθ̄1,θ̄2

δθ1,θ2 = (θ̄1 − θ̄2)(θ1 − θ2);
R̂k(q2) and R̃k(q2) are ir cutoff functions that are chosen such
that the integration over modes with momentum |q| 	 k is
suppressed [22,24,34].

From the above equation, one can derive a hierarchy of
exact functional RG equations for the cumulants. For the sake
of illustration, we give below the exact RG equation for the
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first two cumulants:

∂tΓk1[�1] = 1

2
∂̃tTr

{
log(Γk1[�1] + R̂kI ) + (

Γ(2)
k1 [�1] + R̂kI

)−1(
Γ(11)

k2 [�1,�1] − R̃kI
)}

, (A5)

∂tΓk2[�1,�2] = 1

2
∂̃tTr

{ − Γ(101)
k3 [�1,�2,�1]

(
Γ(2)

k1 [�1] + R̂kI
)−1 + Γ(20)

k2 [�1,�2]
(
Γ(2)

k1 [�1] + R̂kI
)−1(

Γ(11)
k2 [�1,�1] − R̃kI

)
+ 1

2

(
Γ(11)

k2 [�1,�2] − R̃kI
)(

Γ(2)
k1 [�2] + R̂kI

)−1(
Γ(11)

k2 [�2,�1] − R̃kI
)(

Γ(2)
k1 [�1] + R̂kI

)−1 + perm(12)
}
,

(A6)

where superscripts denote functional differentiation with
respect to the superfield arguments, I is the identity (defined
above), ∂̃t is a short-hand notation indicating a derivative with
respect to t that acts on the cutoff functions only (see also the
main text), and perm(12) denotes the expression obtained by
permuting �1 and �2.

The above RG equations, and the whole hierarchy for
higher-order cumulants, is exact but too formal to be useful
as such. A major simplification, however, occurs when the
generating functional is built from a unique stationary state
(in each replica), which is the case here in the limit of infinite
auxiliary source, Ĵ → ±∞, or in the Legendre transformed
setting, i.e., the limit of infinite auxiliary field, φ̂ → ±∞.
The uniqueness of the extremal states indeed translates in the
present superfield framework in the formal property of the
random generating functional that we called “Grassmannian
ultralocality” [24]. The cumulants are then “ultralocal,” i.e.,

Γk1[�1] =
∫

θ1

�k1[�1(θ1)],

(A7)

Γk2[�1,�2] =
∫

θ1

∫
θ2

�k2[�1(θ1),�2(θ2)] ,

etc. �k1,�k2, . . . on the right-hand sides only depends on
the superfields at the explicitly displayed “local” Grassmann
coordinates, hence the name “Grassmannian ultralocality.” (On
the other hand, the dependence on the Euclidean coordinates,
which is left implicit, is not purely local.)

The property of Grassmannian ultralocality is also true
for the equilibrium case, where the generating functional is
dominated by the ground state, which is also unique for
a given sample (except, again, for a set of conditions of
measure zero); it then greatly simplifies the exact functional
RG equations [24,25]. In the present case, however, one
must proceed differently. We first differentiate the exact
RG equations, such as Eqs. (A5) and (A6), in order to
obtain RG equations for the cumulants of the renormal-
ized random field, Γ(1)

k1;x1θ1
[�1], Γ(11)

k2;x1θ1;x2θ2
[�1,�2], etc. We

next evaluate the latter equations at the (external) Grass-
mann coordinates θa = θ̄a = 0, for a = 1,2, . . . . Then, e.g.,
�a(x,θa) = φa(x), ∂tΓ

(1)
k1;x1θ1

[�1]|θ1=θ̄1=0 = ∂t�
(1)
k1;x1

[φ1], and

∂tΓ
(11)
k2;x1θ1;x2θ2

[�1,�2]|θ1=θ̄1=θ2=θ̄2=0 = ∂t�
(11)
k2;x1,x2

[φ1,φ2]. After
some straightforward algebra, we end up with exact RG func-
tional equations for the cumulants �

(1···1)
kp;x1,...,xp

with the physical
fields φa only as arguments. For instance, the equation for the
first two cumulants is given in Eqs. (5) and (6) of the main

text. These equations coincide exactly with those obtained for
the same quantities, after using there the very same property
of Grassmannian ultralocality, in the equilibrium case [24].

APPENDIX B: CORRECTIONS TO “GRASSMANNIAN
ULTRALOCALITY” IN THE FUNCTIONAL

RENORMALIZATION GROUP

In the derivation outlined in the preceding appendix, we
actually used a shortcut that needs justification. Indeed, we
have taken the limit φ̂ → ∞ before a full account of the
fluctuations and the limit k → 0. The correct procedure is
instead to solve the exact RG flow down to k = 0 for φ̂ very
large but finite and then take φ̂ to infinity. For large but finite φ̂,
there are corrections to the Grassmannian ultralocality. It can,
however, be checked that these corrections become irrelevant
as one approaches the fixed point when k → 0 and therefore
give rise to only subdominant contributions. This is what we
discuss now.

We now illustrate the structure of the functional RG flow
in the presence of “non-ultralocal” components by looking
at the corrections in the first cumulant and assuming that all
other cumulants are purely “ultralocal” in both Grassmann and
Euclidean coordinates. More specifically, we consider

Γk1[�1] =
∫

θ1

(
�UL

k1 [�1(θ1)] + �NUL
k1 [�1(θ1),

∂θ1�1(θ1),∂θ̄1
�1(θ1),∂θ1∂θ̄1

�1(θ1)]
)
, (B1)

where �NUL
k1 is non-ultralocal in the Grassmann coordinates

(i.e., it depends on the derivatives) but ultralocal in the
Euclidean coordinates, and for p � 2,

Γkp[�1, . . . ,�p]

=
∫

θ1

· · ·
∫

θp

∫
x1

· · ·
∫

xp

�UL
kp [�1(x1,θ1), . . . ,�p(xp,θp)].

(B2)

By virtue of the supersymmetries of the theory, the non-
ultralocal part of the first cumulant can be rewritten in terms
of components in the following form:

ΓNUL
k1 [�1] =

∫
x

[
φ̂1(x) γk1(φ1(x),φ̂1(x))

+�1(x)�̄1(x) γ
(10)
k1 (φ1(x),φ̂1(x))

]
. (B3)

In principle, all manipulations should involve the fermionic
fields �1,�̄1, but it turns out that supersymmetries again lead
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to simplifications and that the same results are obtained by
setting these fields to zero, which we do here to simplify the
presentation.

The second functional derivative of the effective average
action �

(2)
k;(aθ1)(aθ2) that enters in the functional RG equations

can be decomposed as [24]

Γ(2)
k;(aθ1)(bθ2) = Γ̂(2)

k;aθ1θ2
δab + Γ̃(2)

k;(aθ1)(bθ2). (B4)

After adding the ir regulators, the “hat” and “tilde”
components have the following general structure:

Γ̂(2)
k;aθ1θ2

[{φa,φ̂a}] + R̂kδθ1θ2

= Âk;a + θ̄1θ1θ̄2θ2B̂k;a + (θ̄1θ1 + θ̄2θ2)Ĉk;a

− (θ̄1θ2 + θ̄2θ1)Êk;a, (B5)

Γ̃(2)
k;(aθ1)(bθ2)[{φa,φ̂a}] + R̃kδθ1θ2

= Ãk;ab + θ̄1θ1θ̄2θ2B̃k;ab + θ̄1θ1C̃k;ab + θ̄2θ2D̃k;ab, (B6)

and to the lowest order of the expansions in increasing number
of free sums over copies [24] (leaving implicit the dependence
on the Euclidean coordinates),

Âk;a[φa,φ̂a] = 2γ
(01)
k1 [φa,φ̂a] + φ̂aγ

(02)
k1 [φa,φ̂a],

B̂k;a[φa,φ̂a] = φ̂a�̂
UL(3)
k1 [φa],

Ĉk;a[φa,φ̂a] = �̂
UL(2)
k1 [φa] + R̂k + γ

(01)
k1 [φa,φ̂a] (B7)

+ φ̂aγ
(11)
k1 [φa,φ̂a],

Êk;a[φa,φ̂a] = �̂
UL(2)
k1 [φa] + R̂k + γ

(10)
k1 [φa,φ̂a],

and

Ãk;ab[φa,φ̂a,φb,φ̂b] = −�
UL(11)
k2 [φa,φb] + R̃k,

B̃k;ab[φa,φ̂a,φb,φ̂b] = −�
UL(22)
k2 [φa,φb],

(B8)
C̃k;ab[φa,φ̂a,φb,φ̂b] = −φ̂a�

UL(21)
k2 [φa,φb],

D̃k;ab[φa,φ̂a,φb,φ̂b] = −φ̂b�
UL(12)
k2 [φa,φb].

The full propagator Pk;(a1θ1)(a2θ2), which is the inverse

of Γ(2)
k + Rk (where Rk collects the two ir regulators), has

thesame structure as in Eqs. (B4)–(B6) with

P̂k;aθ1θ2
[{φa,φ̂a}] = Q̂k;a + θ̄1θ1θ̄2θ2Ŝk;a + (θ̄1θ1 + θ̄2θ2)P̂k;a

− (θ̄1θ2 + θ̄2θ1)T̂k;a (B9)

and an expression similar to Eq. (B6) for P̃k;(aθ1)(bθ2)[{φa,φ̂a}].

At the lowest order of the expansion in increasing free sums
over copies, the components of P̂k and Γ̂(2)

k are related by

Q̂k[φa,φ̂a] = −(ĈkĈk − ÂkB̂k)−1Âk,

Ŝk[φa,φ̂a] = −(ĈkĈk − ÂkB̂k)−1B̂k,
(B10)

P̂k[φa,φ̂a] = (ĈkĈk − ÂkB̂k)−1Ĉk,

T̂k[φa,φ̂a] = Ê−1
k ,

where one should keep in mind that the components are
operators in Euclidean space.

On the other hand, the “tilde” components of the propagator
are obtained at the lowest order of the expansion in free sums
over copies from

P̃k;(aθ1)(bθ2)[φa,φ̂a,φb,φ̂b]

= −
∫

θ3

∫
θ4

P̂k;θ1θ3
[φa,φ̂a]

(̃
Γ(2)

k;θ3θ4
[φa,φ̂a,φb,φ̂b] + R̃k

)
× P̂k;θ4θ2

[φb,φ̂b]. (B11)

The algebraic manipulations are straightforward, but the
resulting expressions are too lengthy to be reproduced here. We
stress that no approximations are involved in deriving results
at the lowest order of the expansion in free sums over copies.
The higher orders are not needed.

We can now collect the above results and insert them in
the exact RG equation for the first cumulant, Eq. (A5). This
leads to

∂tΓk1[�1]

= 1

2

∫
x1x2

∫
θ1,θ2

{
∂t R̃k(x1 − x2)P̂k;(x1,θ1)(x2,θ2)[φ1,φ̂1]

+ ∂t R̂k(x1 − x2) δθ1,θ2

(
P̂k;(x1,θ1)(x2,θ2)[φ1,φ̂1]

+ P̃k;(x1,θ1)(x2,θ2)[φ1,φ̂1,φ2,φ̂2]
)}

. (B12)

After taking a functional derivative with respect to �1(x,θ ),
evaluating the outcome for θ = θ̄ = 0, and using Eqs. (B1)–
(B3), one obtains an explicit RG flow equation for �

(1)UL
k1;x [φ1] +

γk1(φ1(x),φ̂1(x)) + φ̂1(x)γ (01)
k1 (φ1(x),φ̂1(x)). To keep the pre-

sentation in a reasonable format, we further evaluate the
equation for spatially uniform fields φ1(x) ≡ φ1,φ̂1(x) ≡ φ̂1,
so that it simplifies to

∂tU
(1)
k (φ1) + ∂t

[
γk1(φ1,φ̂1) + φ̂1γ

(01)
k1 (φ1,φ̂1)

]
= 1

2

δ

δφ̂1

∫
q

{
∂t R̃k(q2)Ŝk(q2) + ∂t R̂k(q2)

(
2[P̂k(q2) − T̂k(q2)] + 2Ŝk(q2)

[
�

(11)
k2 (q2; φ1,φ1) − R̃k(q2)

]
P̂k(q2)

+ 2Q̂k(q2)φ̂2
1�

(22)
k2 (q2; φ1,φ1)P̂k(q2) + [

Q̂k(q2)Ŝk(q2) + P̂k(q2)2
]
φ̂1

[
�

(21)
k2 (q2; φ1,φ1) + �

(12)
k2 (q2; φ1,φ1)

])}
, (B13)

where Uk(φ1) is the effective average potential, i.e., the component of the first cumulant that is ultralocal in both Euclidean and
Grassmann coordinates; P̂k(q2),Q̂k(q2),Ŝk(q2),T̂k(q2) are functions of φ1 and φ̂1.

Since we are interested in showing that the non-ultralocal corrections give subdominant corrections near the fixed point in the
limit |φ̂| → +∞, it is sufficient to consider an expansion in 1/|φ̂|. For convenience, we choose to study the descending branch
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of the hysteresis loop with Ĵ > 0 and φ̂ > 0. The non-ultralocal component γk1(φ,φ̂) has an expansion of the form

γk1(φ,φ̂) = 1

φ̂p

(
Xk0(φ) + Xk1(φ)

φ̂
+ · · ·

)
(B14)

with p > 1.
It is easily realized that when the above expansion is inserted in the functional RG equation, Eq. (B13), the right-hand side

can also be expanded in powers of 1/φ̂ and the flow of the ultralocal function UUL
k (φ1) is not affected by the non-ultralocal

contributions. This property generalizes to the higher cumulants and to the case in which the fields are not uniform in the
Euclidean space. This is different from what is encountered in the equilibrium case when studying the asymptotic dominance of
the ground state [24,25]. Along the same lines, the flow for any Xkn(φ) is independent of the higher-order terms of the expansion.
For instance, the flow of Xk0(φ) reads

∂tXk0(φ)|φ ≡ βX0,k(φ)

= 1

2(p − 1)
∂̃t

∫
q

{
X′′

k0(φ)
[
�

(11)
k2 (q2; φ,φ) − R̃k(q2)

]
P̂k(q2)2

+ 2X′
k0(φ)P̂k(q2)2

(
2P̂k(q2)�(3)UL

k1 (q2; φ)
[
�

(11)
k2 (q2; φ,φ) − R̃k(q2)

]
− [

�
(21)
k2 (q2; φ,φ) + �

(12)
k2 (q2; φ,φ)

]) + 3Xk0(φ)P̂k(q2)2
(
2P̂k(q2)2�

(3)UL
k1 (q2; φ)2

[
�

(11)
k2 (q2; φ,φ) − R̃k(q2)

] − P̂k(q2)

×[
�

(21)
k2 (q2; φ,φ) + �

(12)
k2 (q2; φ,φ)

] + 2�
(22)
k2 (q2; φ,φ)

)}
. (B15)

If Xk0 is equal to zero at the microscopic scale �, which is the
initial condition for the RG flow (X�0 = 0), then it is obvious
from the above equation that it stays zero all along the flow. The
power p of the leading behavior in 1/φ̂ in Eq. (B14) is thus
fixed by the initial condition. The latter is a mean-field-like
description, which amounts to an effective zero-dimensional
model. In the following, we therefore make a detour to study a
toy model, namely the d = 0 version of the out-of-equilibrium
RFIM considered here. This will also prove instructive to
elucidate the physics behind the non-ultralocal corrections.

APPENDIX C: ZERO-DIMENSIONAL RFIM MODEL

We consider the d = 0 version of the φ4 theory in a
quenched random field defined by Eqs. (1)–(4) of the main
text, i.e.,

S(φ; h + J ) = r

2
φ2 + u

4!
φ4 − (J + h)φ, (C1)

where r < 0, so that the extremization equation ∂S(φ; h +
J )/∂φ = −|r|φ + (u/3!)φ3 − (J + h) = 0 has three solu-
tions for a range of h + J around zero. The partition function
in the presence of an auxiliary field Ĵ has contributions from
the three solutions (when present):

Zh(Ĵ ,J ) =
3∑

α=1

(−1)nαCα(h + J )eĴφα (h+J ), (C2)

where Cα(h + J ) is the characteristic function of the interval
of h + J over which φα exists, and nα is the index of the αth
solution (here, +1 for a maximum and −1 for a minimum).

Consider again for illustration the descending branch of the
hysteresis characterized by the extremal state with maximum
magnetization φM (h + J ), which is obtained when Ĵ → +∞.
When Ĵ is large but not infinite, the generating functional in
Eq. (C2) is dominated by exp[Ĵ φM (h + J )] (the maximal state
is a minimum). Corrections that do not vanish exponentially
with Ĵ can only occur for the range of h + J where a

second solution has a magnetization, say φS , that is within
1/φ̂ of φM . This takes place in the vicinity of the point
h + J = J ∗ and φ = φ∗, where the extremal state (minimum)
collapses with the nearby saddle-point (maximum). Then, the
disorder average of the logarithm of the generating functional,

W1(Ĵ ,J ) = lnZh(Ĵ ,J ), is given at leading orders in Ĵ by

W1(Ĵ ,J ) − Ĵ φM (h + J )

∼
∫

d(δh)
e
− (δh−J+J∗ )2

2�B√
2π�B

ln

(
1 − e

−2Ĵ

√
2|δh|
uφ∗

)
, (C3)

where the integral over δh = h + J − J ∗ is restricted to a
finite range around 0. When Ĵ → ∞, this leads to

W1(Ĵ ,J ) − Ĵ φM (h + J ) ∼ e
− (J−J∗ )2

2�B√
2π�B

1

Ĵ 2
. (C4)

From the above behavior, one immediately obtains
that φ̂ = W (01)

1 (Ĵ ,J ) ∼ Ĵ + O(1/Ĵ 2), φ = W (10)
1 (Ĵ ,J ) �

φM (h + J ) + O(1/Ĵ 3), and that Γ1(φ,φ̂) = −W1(Ĵ ,J ) +
Ĵ φ + J φ̂ is given by

Γ1(φ,φ̂) = φ̂ JM (φ) + Y (φ)

φ̂2
+ lO(1/φ̂3) (C5)

when φ̂,Ĵ → ∞, where JM (φ) is the inverse function of
φM (h + J ).

The first term on the right-hand side of Eq. (C5) is the
contribution that is ultralocal in the Grassmann coordinates,
and the second one is the dominant non-ultralocal correction
(the fermionic fields have been set to zero for simplicity). The
latter, therefore, behaves like 1/φ̂2 when φ̂ → ∞. The same
result is valid for the mean-field approximation in general
dimension d as it essentially amounts to considering a self-
consistent zero-dimensional effective system. This shows that
the non-ultralocal contribution at the uv scale, γk=�1(φ,φ̂) [see
Eqs. (B3) and (B14) above], behaves as 1/φ̂3 at large φ̂, i.e.,
p = 3.

104201-8



SAME UNIVERSALITY CLASS FOR THE CRITICAL . . . PHYSICAL REVIEW B 89, 104201 (2014)

APPENDIX D: IRRELEVANCE OF NON-ULTRALOCAL
CORRECTIONS AT LARGE DISTANCE

To investigate the long-distance physics in the vicinity
of the out-of-equilibrium critical point, we must cast the
functional RG flow equations in dimensionless form by using
scaling dimensions appropriate for a zero-temperature fixed
point. This is described in the main text (and in more detail
in Ref. [25]). Accordingly, we define a dimensionless non-
ultralocal contribution from Xk0(φ) = kκχk0(ϕ̃); the associ-
ated β function in Eq. (B15) similarly scales as βX0,k(φ) =
kκβχ0,k(ϕ̃), so that in dimensionless form,

∂tχk0(ϕ̃)|ϕ̃ = −κχk0(ϕ̃) + 1
2 (d − 4 + η̄)ϕ̃χ ′

k0(ϕ̃) + βχ0,k(ϕ̃).

(D1)

The naive expectation for the scaling of φ̂ is that it behaves
like k(d+2η−η̄)/2. However, φ̂ should rather be adjusted so that
Ĵ can go to infinity even at the fixed point since this is the way
to select the extremal state. As

Ĵ = ∂Γk1[φ,φ̂]

∂φ̂
� U

(2)
k (φ) φ̂ (D2)

with U
(2)
k (φ) ∼ k2−η near the fixed point, φ̂ should scale

as k−(2−η). More precisely, we define a constant φ̂0 which
asymptotically behaves as Ĵ and such that φ̂ evolves under
the RG flow close to the fixed point as k−(2−η)φ̂0. The relevant
non-ultralocal quantity to be compared with the ultralocal one,
U

(1)
k (φ) = k(d−2η+η̄)/2u′

k(ϕ̃), can thus be expressed as

Xk0(φ)

φ̂3
= kω χk0(ϕ̃)

φ̂3
0

(D3)

with ω = κ + 3(2 − η).
We solve Eq. (D1) as an eigenvalue equation by setting

∂tχ∗0(ϕ̃) = 0 and by using the ultralocal functions already
found for the fixed point. The 1-replica functions u′′

∗(ϕ̃), z∗(ϕ̃),
and χ∗0(ϕ̃) are discretized on a grid of 2 × 110 + 1 points
with a mesh of δϕ̃ = 0.005, thus giving the range of the
field ϕ̃ from −0.55 to 0.55. The 2-replica function, i.e., the
second cumulant of the renormalized random field, δ∗(x,y)
with x = (ϕ̃1 + ϕ̃2)/2 and x = (ϕ̃1 − ϕ̃2)/2, is discretized on
a trapezoidal grid with a base identical to the domain of the
1-replica functions and a height of 36 points. The mesh in
the second field y is identical to that of the field x, δy = δx.
(We checked that by doubling the resolution of the mesh, our
results change on the fourth digit, and by changing the range
of fields, the change is on the sixth digit.)

There are two nontrivial solutions of the eigenvalue equa-
tion, which are illustrated in Fig. 4 for the dimension d = 4.
The eigenvalues κ1,2 are monotonically increasing functions
of the dimension, and they reach the upper critical dimension
d = 6 values that can be analytically derived: κ1(d = 6) = 0
and κ2(d = 6) = 1. The eigenvalue ω defined in Eq. (D3) is
then simply obtained by adding 3(2 − η). The result is plotted
as a function of dimension in Fig. 5. One can clearly see
that the exponent of the non-ultralocal contribution (whether
obtained from the symmetric or the antisymmetric solution)
is much larger than that of the ultralocal term. This proves
that the corrections to Grassmann ultralocality are irrelevant

-0.4 -0.2 0 0.2 0.4
ϕ

-0.2

-0.1

0

0.1

0.2

-0.4 -0.2 0 0.2 0.4~

FIG. 4. (Color online) The two nontrivial solutions χ∗0(ϕ̃) = 0 in
d = 4. One is Z2 symmetric and the other is antisymmetric. In this
particular spatial dimension, the corresponding eigenvalues κ1 and κ2

are almost identical.

at large distance, i.e., that the selection of the extremal states
is properly ensured.

We conclude this appendix by briefly discussing the physics
behind the non-ultralocal corrections. A first hint is given
by the zero-dimensional model. As seen in Appendix C, the
most significant contribution associated with the corrections
comes from rare situations in which the extremal state almost
coincides (within 1/Ĵ when Ĵ → +∞) with a nearby saddle
point.

The reasoning can be carried over to the general case. The
non-ultralocal corrections are due to rare events in which there
is an almost degeneracy (within 1/|Ĵ |) between the relevant
extremal state and a nearby stationary state, the solution of the
stochastic field equation δS[ϕ; h + J ]/δϕ(x) = 0, with a very
different configuration yet a very close total magnetization.
These rare instances make the non-ultralocal contributions
vanish at large distance as a power law rather than the naively
anticipated exponential decay. This is somewhat reminiscent
of the role of power-law rare “droplet” excitations near the
ground state at low but nonzero temperature in the equilibrium
case [18,19,23].

4 4.5 5 5.5 6
d

2

3

4

5

6

7

(d-2η+η)/2
ω1
ω2

FIG. 5. (Color online) Exponents ω1 (for the Z2 symmetric
eigenfunction) and ω2 (for the Z2 antisymmetric eigenfunction)
of the non-ultralocal correction as a function of dimension d . We
also plot the scaling exponent (d − 2η + η)/2 of the corresponding
ultralocal term (blue line). It is clear that the non-ultralocal terms are
subdominant and do not affect then the universal behavior.
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