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First-principles calculation of elastic moduli of early-late transition metal alloys
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Motivated by interest in the elastic properties of high-strength amorphous metals, we examine the elastic
properties of select crystalline phases. Using first-principles methods, we calculate elastic moduli in various
chemical systems containing transition metals, specifically early (Ta,W) and late (Co,Ni). Theoretically predicted
alloy elastic properties are verified for Ni-Ta by comparison with experimental measurements using resonant
ultrasound spectroscopy. Comparison of our computed elastic moduli with effective medium theories shows
that alloying leads to enhancement of bulk moduli relative to averages of the pure elements and considerable
deviation of predicted and computed shear moduli. Specifically, we find an enhancement of bulk modulus relative
to effective medium theory and propose a candidate system for high-strength, ductile amorphous alloys. Trends
in the elastic properties of chemical systems are analyzed using force constants, electronic densities of state,
and crystal overlap Hamilton populations. We interpret our findings in terms of the electronic structure of the
alloys.
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I. INTRODUCTION

Elastic moduli are important for understanding various
properties of amorphous metals. Bulk moduli, shear moduli,
and their ratio correlate to glass transition temperature [1,2],
glass forming ability [3], brittleness [4–6], Grüneisen pa-
rameters [7], maximum resolved shear stress at yielding [8],
chemical bonding type [9], and possibly fragility [9]. Knowl-
edge of the bulk and shear moduli is thus important for
materials design. However, amorphous materials commonly
contain at least four chemical species, making exhaustive
experimental evaluation of candidate materials impossible.
Empirical methods for predicting stoichiometries with desired
properties are therefore necessary.

First-principles computational methods prove fruitful, ow-
ing to their chemical specificity and absence of adjustable
parameters, as well as the insight they yield into electronic
structure. However, amorphous metals pose computational
difficulties, as they lack both spatial periodicity and a unique
structure. While the first problem can be practically overcome
by imposing suitably large periodic boundary conditions, this
requires hundreds of atoms per computational cell, strain-
ing computational resources, and requiring averaging over
multiple samples to remove sample dependence. The second
problem can be partially overcome by running molecular
dynamics on a liquid sample then rapidly quenching the
sample. However, the requirement for equilibration further
increases the computational time necessary. Hence we adopt a
different strategy.

Frank Kasper phases [10–12] are complex but otherwise
ordinary crystalline phases. Due to their topological close

packing they exhibit local icosahedral ordering similar to
that found in many amorphous metals. Figure 1 shows the
standard Voronoi polyhedra of Frank-Kasper structures. We
expect that the similar local chemical environments of the
Frank-Kasper phases can be used to mimic amorphous metals,
yielding “amorphous approximants,” similar in concept to
“quasicrystal approximants.” These crystalline phases will
be used to understand trends in the elastic properties of
amorphous metals. It is observed that in amorphous metals,
shear moduli are typically 20%–30% lower, and bulk moduli
5%–10% lower, compared to crystalline phases of similar
composition [5]. Many crystalline phases have small unit cells
compared to system sizes required to reproduce amorphous
structures.

Amorphous metals can exhibit high strength [13], but often
at the cost of a lack of ductility owing to the absence of
dislocations. Designing amorphous alloys for high ductility
is impeded both by the challenge of formulating accurate
amorphous structural models, and by the lack of a valid
predictive theory of ductility even for the case of crystalline
compounds, though there are empirical rules based on the
Poisson ratio, or equivalently the shear/bulk modulus ratio.
We hypothesize that relatively ductile crystalline compounds
will tend to create relatively ductile amorphous compounds.
Further, metallic glass composites, consisting of crystalline
grains embedded in an amorphous matrix, have been shown
to increase the toughness, impact resistance and plastic strain
to failure [14], further motivating the investigation into elastic
properties of crystalline phases in metallic glass-forming alloy
systems.
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(a) CN=10, (0,2,8) (b) CN=12, (0,0,12) (c) CN=14, (0,0,12,2) (d) CN=15, (0,0,12,3) (e) CN=16, (0,0,12,4)

FIG. 1. (Color online) Frank-Kasper Voronoi polyhedra, listing coordination numbers and polyhedron codes.

II. BACKGROUND AND METHODS

A. Elasticity

The fundamental equation of linearized elasticity is σi =
Cij εj , where σ is the stress tensor, ε is the strain tensor,
and C the stiffness tensor relating the two. Here, we employ
Voigt notation, converting the tensors σ and ε into vectors
with 6 components {xx,yy,zz,xy,xz,yz}. For crystals, C

depends on the symmetry of the material in question [15]
and contains at least three independent parameters. For the
special case of isotropic materials, C has only two independent
parameters, the bulk modulus K and the shear modulus G. The
nonvanishing elements are C11 = C22 = C33 = K + 4G/3,
C12 = C13 = C23 = K − 2G/3, and C44 = C55 = C66 = G.
An additional elastic quantity of interest is the Poisson ratio
ν, defined to be the negative of the ratio of transverse strain to
axial strain. For crystals, ν depends on the direction of applied
stress, but in the isotropic case, it reduces to

ν = 3 − 2G/K

6 + 2G/K
. (1)

Notice that ν is a function of the shear to bulk modulus ratio
G/K , also known as the Pugh ratio [16].

Ductility and Poisson’s ratio are positively correlated in
both polycrystalline [16] and amorphous [4] solids, with
ν � 0.32 (equivalently G/K � 0.41) proposed as a empirical
criterion for good ductility [17]. Seeking simultaneously high
strength and ductility, it is natural to choose chemical species
which in elemental form have large K . The species chosen
must also be known good glass formers. Early-late transition
metal alloys fit both criteria, as the transition metals from
group IV to XI all have K � 100 GPa, and they are one of
the most frequently examined classes of amorphous metals.
Size mismatch criteria favor using transition metals from
different rows and columns of the periodic table, e.g., Ta and
W for early transition metals (ETMs), and Co and Ni as late
transition metals (LTMs). Co and W are of particular interest
for materials design as Co-based glasses exhibit ultrahigh
fracture strength, W-based glasses have the highest known
glass transition temperature for bulk metallic glasses, and both
have high Young’s modulus [9,18,19].

Ordinary crystalline materials contain randomly orientated
microscopic grains and appear macroscopically isotropic.
To compute the elastic properties for these “polycrystals,”
orientational averaging is required. Each grain is described
microscopically by the same stiffness matrix, which contains
between three (cubic) and 21 (triclinic) independent parame-
ters [20], but macroscopically the crystal is isotropic with only

two independent parameters K and G. In the Voigt average,
the stiffness matrix C is averaged over orientations [21], which
is exact if stress is uniform throughout space. In the Reuss
average, the compliance matrix S = C−1 is averaged over
orientations, which is exact if strain is uniform throughout
space. The Voigt average systematically overestimates the
isotropic moduli, while the Reuss average systematically
underestimates the moduli. Empirically, the arithmetic mean
of the two, known as the Hill average [22], gives improved
agreement with experiment, and this is what we will report.

The polycrystalline average assumes the stiffness matrices
of various grains are identical to the perfect crystal, differing
only by relative orientation. To obtain macroscopic elastic
moduli in materials where chemical environment spatially
varies, in particular, in materials containing chemically dis-
tinct grains, it is necessary to include effects arising from
fluctuations in the local stiffness matrices. A general class
of approximation schemes known as “effective medium
theories” exists where each grain with its local stiffness
matrix interacts with an effective medium characterized by
a background stiffness matrix incorporating the interactions
of all other grains. A popular effective medium theory is the
coherent potential approximation (CPA) [23], a self-consistent
formalism in which the background stiffness matrix is taken as
the macroscopic average itself. The self-consistent interaction
of grains yields a pair of coupled nonlinear equations,

∑

i

φi

Ki − K

3Ki + 4G
= 0 (2)

and
∑

i

φi

Gi − G

5G(3K + 4G) + 6(K + 2G)(Gi − G)
= 0, (3)

which can be solved numerically for the effective K and G,
where φi denotes the volume fraction of grain type i in the
material. Ki and Gi denote the bulk and shear modulus of
grain type i, respectively.

Although intended for mixtures of crystalline grains, we
will apply CPA in the limit where each grain shrinks to a
single atom, to estimate the elastic moduli of compounds using
the self-consistent average of properties of the constituent
pure elements. Our usage of CPA may be viewed as a
higher-order correction to the well-known but highly empirical
“rule of mixtures” paradigm common in materials design,
which has already been applied to bulk metallic glasses [24].
CPA takes into account the pure elemental properties but
lacks information about interspecies bonding and specific
alloy crystal structure. Thus we take CPA as a convenient,
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physically motivated interpolation to establish a baseline for
comparison with the computed alloy moduli revealing the
specific contributions of structure and bonding, though we note
that metallic glasses exist where trace changes in composition
yield relatively large changes in K and G due to alteration of
chemical bonding type [25].

B. First-principles methods

Our first-principles calculations use the Vienna ab initio
simulation package (VASP) [26,27], a plane-wave ab initio
package implementing PAW pseudopotentials [28] in the
PW91 [29] generalized gradient approximation to density
functional theory (DFT). VASP calculates total energies, forces,
elastic moduli, and electronic structure. All structures are
relaxed until the maximum ionic force is below 0.01 eV/Å, and
the k-point density is subsequently increased until total energy
per atom has converged to within 0.1 meV/atom. Default plane
wave energy cutoffs are used for total energy calculations. In
structures containing Co and Ni, spin polarization has been
included. However, we do not include spin-orbit coupling
despite the presence of 5d elements Ta and W. Total energies
are converted to enthalpies of formation by subtracting from
the tie-line joining the total energies of pure elements in their
stable crystalline forms [30].

We perform elastic calculations using a finite difference
method internal to VASP. To ensure proper convergence of
elastic moduli, we increase the k-point density until the
all polycrystalline averages converge to within 2%, then
increase the energy cutoff until the polycrystalline averages
converge. Convergence in energy cutoff occurs at 360 eV, with
the exception of Ni2Ta and Ni4W where 400 and 440 eV,
respectively, were required. All structures were tested for
mechanical stability, and elastic constants were not calculated
for structures that were found to be mechanically unstable,
though they were included in the enthalpy of formation plots,
as it is possible for the stabilizing distortions to affect the
calculated total energy only weakly.

To quantify bond strength between individual atoms in
structures, we calculate interatomic force constants and the
crystal overlap Hamilton population (COHP). To calculate
the force constant kαβ between atoms α,β at position �rα,β ,
separated by a bond in the direction γ̂αβ , we calculate
the Hessian matrix Hαβ = d2E/dδ�rαdδ�rβ . We use density
functional perturbation theory internal to VASP to calculate H
within a supercell of sufficient size that atoms lie at least 4.2 Å
away from their own repeated images. Restricting our attention
to longitudinal (bond stretching) interactions and assuming
central forces, we define

kαβ ≡ γ̂αβ · Hαβ · γ̂αβ (4)

as the projection of the Hessian along γ̂αβ . kαβ must be positive
for the force to be stabilizing.

The COHP provides an electronic structure-based charac-
terization of interatomic bond strength [31]. One calculates
matrix elements 〈αL|H |βL′〉 of the density functional theory
Hamiltonian between localized atomic orbitals L and L′ on
a pair of atoms α and β, then multiplies by the density of
states NαL,βL′ projected onto the two orbitals. We calculate
wave functions using a TB-LMTO method [32] then calculate

FIG. 2. (Color online) XRD verification of single phases of
Ni8Ta, Ni3Ta, Ni2Ta, and NiTa.

an integrated COHP for a pair of atoms αβ, summing over
atomic orbitals and integrating over energies up to the Fermi
energy.

C. Experimental methods

To check the validity of our first-principles calculations,
we have prepared samples of single phase alloys of Ni-Ta
by arc melting the pure element constituents (Ni 99.995%
and Ta 99.95%) under an argon atmosphere. The alloys were
then suction cast into water cooled copper molds to form
rods of 2-mm diameter. Single phases of the rod samples
were verified by x-ray powder diffraction (XRD) (Fig. 2).
Cylindrical samples were obtained by sectioning the rods
with a diamond saw into 4-mm segments. The ends of the
segments were polished to a 3-μm finish. The elastic constants
of the cylinders were calculated using data obtained from a
Magnaflux Quasar resonant ultrasound spectrometer (RUS).
RUS involves placing the cylindrical samples diagonally
between two ultrasonic transceivers and recording the natural
modes of vibration [33]. A Levenberg-Marquardt algorithm
is then used to determine the elastic constants by finding
the best fit solution through minimization of the difference
between measured and calculated natural modes through
iterative changes to the values of elastic constants.

The RUS measurement technique is limited to nonmagnetic
samples. The study using the RUS measurements for compari-
son to theory is limited to the Ni-Ta system where single phases
of Ni8Ta, Ni3Ta, Ni2Ta, and NiTa, which are nonmagnetic, can
be produced, allowing for RUS measurements. Rods of the
pure elements Ni and Ta can also be cast, but of the two only
Ta produces nonmagnetic rods.

III. RESULTS

In this section, we first discuss atomistic structure, then
present results on thermodynamic stability for each alloy
system considered, finally we address the elastic moduli.

A. Structure

Because we consider a large number of specific structures,
we establish a numbering scheme to unambiguously identify
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TABLE I. Structure types considered listing common prototype,
and Strukturbericht and Pearson notations. Frank-Kasper phases list
common names.“*” indicates symmetry-breaking distortion. “Non-
FK” indicates noncanonical Frank-Kasper phase containing CN = 10
Bernal Hole. The final column contains a list of coordination numbers
from Voronoi polyhedra appearing in the structure [34,36,37].

Ref. Prototype Strukt. Pearson FK? CN

1 Cu A1 cF4 NA 12
2 W A2 cI2 NA 14
3 Mg A3 hP2 NA 12
4 Fe6W7 D85 hR13 μ 12, 14, 15, 16
5 Al2Cu C16 tI12 non-FK 10, 15
6 AuCu3 L12 cP4 NA 12, 18
7 BaPb3 hR12 NA 12, 18
8 MgNi2 C36 hP24 Laves 12, 16
9 MgZn2 C14 hP12 Laves 12, 16

10 MgCu2 C15 cF24 Laves∗ 12, 16
11 Ni3Sn D019 hP8 NA 12, 18
12 Al3Ti D022 tI8 NA 12, 14, 16
13 Cu3Ti D08 oP8 NA 12, 14, 16
14 NbPt3 mP16 NA 12, 14, 16
15 MoSi2 C11b tI6 NA 14
16 MoNi4 D1a tI10 NA 13, 14
17 Pt8Ti tI18 NA 13, 14
18 MoNi oP56 δ 12, 14, 15, 16

them (see Table I). In the text, we refer to a given crys-
talline material using the notation compound.pearson (e.g.,
Co2Ta.cF24). Of particular interest are the Frank-Kasper
structures, which we take as amorphous approximants owing
to the prevalence of their coordination polyhedra in many
metallic glasses [34,35]. Canonical Frank-Kasper polyhedra
have coordination numbers CN = 12, 14, 15 and 16. However,
we include the Bernal holes [36,37], notably CN = 10, as
tetrahedral but noncanonical Frank-Kasper polyhedra [34]
suitable for smaller atoms. Also, the tetrahedral close packing
of the Frank Kasper phases matches the packing properties
expected in bulk metallic glasses [38].

To justify use of crystalline phases as amorphous approxi-
mants, we compare Honeycutt-Andersen common neighbor
statistics [39,40], of crystalline and amorphous structures.
Amorphous structures were simulated by quenching 100 atom
liquid structures in NPT ensembles from T = 2500 K down

to 300 K over runs of more than 15 ps. All simulations were
performed at the gamma point with default energy cutoffs.
Shown in Fig. 3 is the number of common neighbors between
two bonded atoms of given types. We show results for Co-Ta,
but Ni-Ta, Ni-W, and Co-W were also simulated and generated
similar results, with the exception of one Ni-W amorphous
sample which was likely out of equilibrium.

All structures have many bonds with n = 5 common
neighbors, especially between unlike atomic species, reflecting
the prevalence of icosahedral ordering in Frank-Kasper phases
and amorphous materials. Very few Co-Co bonds have n = 6
common neighbors, and very few Ta-Ta bonds have n = 4
common neighbors, reflecting the relative sizes of Co and Ta
atoms. Because hR13 is a canonical Frank-Kasper phase with
no bonds sharing n = 4 common neighbors, we utilize tI12 to
capture the role of n = 4 Co-Co bonds.

B. Stability

Figure 4 summarizes our calculated enthalpies of forma-
tion. Vertices of the convex hull of enthalpy as a function of
composition are predicted to be stable phases at low temper-
ature [30]. We employ special plotting symbols to indicate
phases claimed experimentally to be stable at low temperature
(heavy circles) and high temperature (light circles). Phases
whose stability or existence is in question are shown as
squares. From the prevalence of heavy circles on or near the
convex hull, we see general (though imperfect) agreement
with the experimentally reported phase diagrams. We briefly
summarize our findings for the four alloy systems of primary
interest.

1. Co-Ta

For Co-Ta [Fig. 4(a)], at x = 0.25, we find that cP4 and
hR12 (reference numbers 6 and 7) are nearly degenerate,
with cP4 (stability not reported experimentally) favored
by 1 meV/atom, which is closer than DFT can reliably
distinguish. At x = 0.33, three different Laves phases have
been reported (reference Nos. 8–10), with conflicting claims of
stability and uncertain composition. We find that none of these
phases lies on the convex hull. Further, all of their structures
are mechanically unstable to deformation, casting doubt on
the reported structure and stability of these phases. In our plot,
we show the energy of a distorted cF24 structure, which is
mechanically stable, for comparison with the undistorted hP12
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FIG. 3. (Color online) Stacked bar chart of Honeycutt-Andersen common neighbor statistics [39,40].
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FIG. 4. (Color online) Enthalpies of formation for (Co,Ni)-(Ta,W) alloys. Values for Ta shown in black, for W shown in green. Plotting
symbols explained in text.

and hP24. In the vicinity of x = 0.5 lies the Frank-Kasper μ

phase. This phase is common to many alloy systems containing
fourth and fifth row early transition metals with third row
late transition metals. In most cases, the phase shows a broad
composition range at high temperature but favors an ETM-rich
low temperature limit (i.e., with the mixed occupancy 3a site
occupied by an ETM). This feature is correctly reproduced
by our calculation. At x = 0.67, the tI12 phase (reference
number 5) is a noncanonical Frank-Kasper phase, as it contains
a CN = 10 Bernal Hole, in addition to a canonical CN = 15
Kasper polyhedron.

2. Ni-Ta

For Ni-Ta [Fig. 4(b)] at x = 0.11 we find Ni8Ta.tI18 to be
low-temperature stable. The experimental phase diagram has
a tI36 structure stable, however no crystallographic refinement
exists, so we use the known tI18 phase instead. There is
disagreement on recent phase diagrams concerning the stable
structure at x = 0.25, and we find three different structures
have nearly identical enthalpies (tI8 is the lowest). The main
source of disagreement between our T = 0 K phase diagram
and experimental phase diagrams is the stability of NiTa.hR13,
with even the ETM-rich variant lying 7 meV/atom above
the convex hull. Figure 2 shows the diffraction patterns of
our experimentally cast rods, verifying the existence of the
expected phases in our own samples.

3. (Co,Ni)-W

Our calculations verify the known Co3W and Ni3W phase
stabilities. However, the reported Co7W6 phase lies above
the convex hull, and additionally favors the ETM-rich limit
contrary to experimental report. This phase has not been
reported in the Ni-W alloy system, and we indeed find it
lies well above the convex hull. However, we will study the
electronic and elastic properties of this hypothetical phase in
order to elucidate trends with respect to composition. Notice
that enthalpies of formation for alloys with W are lower than
enthalpies with Ta. This does not necessarily reflect lower
mechanical stability or melting points for the compounds, as
the greater cohesive energy of tungsten compared to tantalum
contributes to a reduction of the alloy formation enthalpies. An

equiatomic Ni-W phase with orthorhombic symmetry has been
observed low-temperature stable [41], however, no atomic
structural data exists. Owing to similar chemical identity and
Bravais lattice, we attempted to use the Frank-Kasper phase
MoNi.oP56 with Mo substituted for W, but found that this
structure lies 66 meV/atom above the convex hull and likely
is not the correct phase. It was also too computationally
expensive to compute elastic moduli for this phase.

C. Binary elastic moduli

We examine the effect of alloying on the elastic moduli
by using CPA to approximate a hypothetical alloy where no
interspecies interactions exist. That is, for a well-ordered phase
with stoichiometry AxB1−x , we compare its elastic moduli to a
hypothetical solution of pure specie A and pure specie B with
a stoichiometric ratio x : (1 − x) in the CPA approximation.
As input for CPA, we use our computed elemental elastic
moduli. These agree closely with experimental moduli for Ta
and W but are relatively high for Co and Ni. Note that our
calculation are valid at 0 K, while the experimental values
are room temperature, so it is expected that our values should
be high, especially, for nonrefractory elements. As the CPA
approximation only incorporates elemental elastic moduli with
no atomic environmental details, the deviation of computed
polycrystalline moduli from the CPA approximation yields a
measure of the relative importance of atomic environment and
alloying species for elastic moduli.

All crystal structures are elastically anisotropic, and it is
of interest to characterize the anisotropy of our amorphous
approximants. We define three anisotropies [20,42]: AZ

(Zener), AG (shear), and AE (Young’s) as

AZ = 2C44

C11 − C12
, AG = S44 + S66

2S44
,

and

AE = S11

S33
,

all of which are 1 for isotropic structures, where Sij are ele-
ments of the compliance matrix. Table II compares calculated
anisotropies of our hR13 and tI12 structures with the four pure
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TABLE II. Measures of anisotropy for materials of interest. AG =
AE = 1 for cubic structures.

Composition Structure AZ AG AE

Co-Ta hR13 0.70 0.85 1.13
Ni-Ta hR13 0.81 0.91 1.14
Co-W hR13 0.76 0.88 1.18
Ni-W hR13 1.12 1.06 1.45

Co-Ta tI12 0.90 1.17 1.27
Ni-Ta tI12 1.32 1.24 1.50
Co-W tI12 1.24 1.12 1.20
Ni-W tI12 1.42 1.16 1.07

Co hP2 1.01 1.00 1.31
Ni cF4 2.18 1 1
Ta cI2 1.16 1 1
W cI2 0.83 1 1

elements. Our anisotropies are close to one, similar to those
seen in the pure metals, with hR13 exhibiting less anisotropy
than tI12. These anisotropies can be taken as estimates of
the local anisotropy expected at the atomic level in actual
amorphous structures. Recall that the polycrystalline averages
are expected to reflect the globally isotropic properties of the
bulk amorphous structures.

Shown in Fig. 5 are our calculated K and G values,
compared with CPA estimates. All CPA estimates are indicated
by lines, all calculated moduli by individual data points,
and for Ni-Ta asterisks indicate experimental results. Our
calculated Ni-Ta bulk moduli show excellent agreement with
our experimental results. For all four chemical families, CPA
gives reasonable estimates for bulk moduli, with at most a
16% deviation between estimated and calculated bulk moduli.
However, in all alloy systems and for all structures examined,
CPA underestimates the bulk modulus. This suggests the
dominant correction to the bulk moduli is chemical bonding
and not atomic environmental details such as the prevalence of
tetrahedra. Shear moduli show relatively larger and less regular
deviations from CPA, suggesting that bond topology plays

a significant role. Nonetheless, our calculated Ni-Ta shear
moduli are in good agreement with experiment (crosses).

Shown in Table III are the correlation coefficient for various
linear regressions across all calculated CoTa, CoW, NiTa,
and NiW alloys, where the sign of the correlation coefficient
denotes the sign of the slope. Here, 
K and 
G (units GPa)
are deviations of calculated bulk and shear moduli from CPA
estimates, 
v (units Å3 per atom) the deviation of volume
per atom from a linear interpolation of pure elements, and

h (units eV per atom) the enthalpy of formation per atom as
illustrated in Fig. 4. Correlations of elastic moduli with 
v and

h reflect structure and bonding effects that are missing from
CPA. There is only a weak correlation between 
h and 
v,
though the associated slope is positive, expected as increased
bond strength (more negative 
h) draws atoms closer together
(more negative 
v). 
G and 
K are both correlated to 
v,
with 
K , in particular, strongly correlated. This is in line
with other work that shows that K and G correlate with V

and that the correlation for K is particularly strong [9]. This
is also true for individual chemical families, and for 
K all
chemical families’ regressions have similar slopes. This strong
correlation of 
K with 
v explains why all structures have
CPA underestimating the bulk moduli (positive 
K), as all
structures were also observed to have negative 
v, as expected.
The slopes of 
G and 
K are both negative, as decreasing 
v

draws atoms closer together, shortening bonds and enhancing
interatomic force constants. The observed correlation of 
G

with 
K is likely due to the underlying correlation of each
with 
v.

A goal of metallic glass design is to predict glass-forming
compounds with high ductility. Thus, as a guide, we plot
the Poisson ratio’s of the various alloys under discussion in
Fig. 6. Our computed T = 0 K crystalline Poisson ratios are
expected to be systematically low relative to the corresponding
glasses, as G decreases more rapidly than K as temperature
increases [43], and amorphous G and K are lower relative
to crystalline values by around 30% and 10%, respectively.
Here, we see no systematic trend in the choice of Ta versus
W (empty versus filled plotting symbols) but Ni generally has
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FIG. 5. (Color online) Elastic moduli for (Co,Ni)-(Ta,W) compounds. Lines show CPA estimates. Data points are our DFT calculations.
Asterisks are experimental values from our experiments on Ni-Ta alloys and from the literature for pure elements.

104103-6



FIRST-PRINCIPLES CALCULATION OF ELASTIC . . . PHYSICAL REVIEW B 89, 104103 (2014)

TABLE III. Correlation coefficients for linear regressions involv-
ing elastic moduli and thermodynamic quantities of interest, where
rows denote independent variables and columns dependent variables
for a given regression.


v 
h 
K 
G


v . . . 0.20 −0.83 −0.66

h 0.20 . . . 0.06 −0.47

K −0.83 0.06 . . . 0.60

G −0.66 −0.47 0.60 . . .

higher Poisson’s ratio than Co (red versus blue). Empirically,
it has been observed that ν = 0.32 serves as a rough criterion
for separating ductile and brittle behavior in amorphous
materials [6]. The majority of our Ni alloys lie above this
criterion and Co alloys below. In particular, all Ni-W alloys
satisfy this criterion, and Ni-W in the amorphous approximant
structure hR13 shows particularly large Poisson’s ratios.
Combined with the large bulk modulus due to the presence of
tungsten, we propose that Ni-W is a candidate system for future
research into strong amorphous materials with high ductility.

IV. ANALYSIS AND DISCUSSION

To understand trends in elastic constants of these alloys,
we now look into the interatomic interactions. Within a
first-principles approach there is no unique decomposition of
interactions into pairwise and many-body forces, and no simple
notion of a chemical bond, especially for metals. However,
some heuristic measures are available. Here, we examine
the interatomic force constants, which can be regarded as
springs connecting the atoms, and the crystal overlap Hamilton
populations (COHPs), which are a measure of the covalency
of electronic wave functions.

A. Force constants and COHP

To compare different ETM and LTM substitutions, Table IV
shows k, the mean force constants for the near neighbor bonds
of a given species combination, ρCOHP, the total iCOHP per
unit volume for bonds of a given species combination up to
4 Å, and K , the bulk moduli in the structural prototype tI12. To
calculate the mean force constant, we sum force constants for
all bonds up to 4 Å for a given cell then divide by the number
of atoms.

Both the mean force constant and ρCOHP correlate with
the bulk moduli. This is especially notable in the mean force
constant, where there is a large increase in mean force constant

0 0.2 0.4 0.6 0.8 1
xETM

0.25

0.30

0.35

0.40

ν

Co-Ta
Ni-Ta
Co-W
Ni-W

FIG. 6. (Color online) Calculated Poisson ratios. Dashed line at
ν = 0.32 is putative threshold for ductility.

performing a Ta → W substitution and a relatively small
increase performing a Ni → Co substitution, but the effect
is also present in ρCOHP. As a force constant gives a measure
of the stiffness of an individual bond, this mean force constant
gives a measure of the total stiffness of all bonds, and bulk
modulus is increased under chemical substitution by an overall
increase in the interatomic force constant. We also see in
Table IV that performing a Ni → Co or a Ta → W substitution
enhances ρCOHP. Thus these substitutions have enhanced the
bonding nature of the electronic states.

To further understand the enhancement of bonding, we
calculate electronic densities of state (Fig. 7). The low-energy
peak near −4 or −5 eV consists of sd-hybrid orbitals, followed
by a series of higher-energy peaks consisting solely of d

orbitals, with the Fermi level lying in the middle of the ETM
d band and at or above the top of the LTM d band. For Co-W,
the Co and W d bands are closely aligned, inducing strong
hybridization of Co and W d orbitals. This effect is present
in all structural prototypes we have examined. Performing a
W → Ta substitution shifts the ETM d band up relative to the
LTM d band, decreasing the d-band overlap and diminishing
hybridization. Performing a Co → Ni substitution shifts the
LTM d band down relative to the ETM d band, also decreasing
the d-band overlap. Both of these induce an decrease in the
hybridization of the ETM-LTM d bands. As hybridization
generally creates bonding states below the Fermi level, this
reduction in hybridization going from W → Ta and Co → Ni
decreases the overall bonding characteristic of the occupied
states, leading to the observed trends in ρCOHP, and hence in
bulk modulus.

TABLE IV. Data for tI12. R are average bond lengths for nearest neighbors under 4 Å. k are averaged over atoms (i.e., weighted by the
number of bonds per atom) in units eV/Å2, ρCOHP is iCOHP volume density in units eV/Å3, and K is the calculated bulk moduli in units GPa.

Compound ETM-ETM (44x) ETM-LTM (32x) LTM-LTM (4x) mean mean

tI12 R k ρCOHP R k ρCOHP R k ρCOHP k ρCOHP K

NiTa2 3.12 4.2 0.31 2.63 4.7 0.25 2.43 4.2 0.025 30.7 0.27 222
CoTa2 3.11 5.2 0.31 2.61 3.7 0.30 2.48 4.0 0.030 32.0 0.29 228
NiW2 3.02 4.0 0.31 2.55 7.6 0.34 2.38 4.3 0.041 37.7 0.31 294
CoW2 3.02 5.1 0.37 2.54 6.7 0.36 2.38 4.8 0.037 39.9 0.35 308
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FIG. 7. (Color online) Electronic densities of states for hR13 structures. Line segments indicate the mean and standard deviations of the
element projected d bands.

B. Microstructural details: ternaries and quaternaries

Elemental properties provide the dominant contribution to
the elasticity of these ETM-LTM intermetallic compounds, as
can be seen in the qualitative agreement of calculated alloy
moduli with the CPA predictions shown in Fig. 5. In Table V
we see that the small decreases in modulus from Co to Ni, and
the large increases from Ta to W, are echoed in the moduli of
the hR13 Frank-Kasper structure.

While binary amorphous metals exist, size mismatch
criteria and material property tuning favor the usage of
multiple constituent species in amorphous metals for practical

TABLE V. Elastic moduli for pure elements and binary hR13
structures.

K G K G

Co 218 107 Ni 200 93
Nb (K = 173, G = 22) Co6Nb7 213 92 Ni6Nb7 198 81
Ta (K = 202, G = 61) Co6Ta7 234 106 Ni6Ta7 218 93
W (K = 331, G = 143) Co6W7 302 117 Ni6W7 279 77

applications, and thus the question of transferability of binary
results to structures with three or more constituent species
must be addressed. In addition, there is still the lingering
need to quantify how atomic environment affects the elastic
moduli. To answer both these questions, we perform chemical
substitutions in a binary structure to yields ternaries and
quaternary structures. This changes the chemical identities of
formerly equivalent sites, altering local chemical ordering.

Shown in Table VI is a comparison of binary hR13
structures (including also alloys with Nb, an ETM) with nearly
equiatomic composition quaternary variants of hR13 and six
associated ternaries. Site occupancies in the quaternary has
been chosen to maintain the ETM/LTM nature of sites and
minimize energy, and the ternaries were formed by keeping
the early/late site identity fixed.

To compare our binary results to ternaries and quaternaries,
we here use a simple chemical environment averaging scheme
between ETM and LTM, with a equiatomic ABCD mixture
with A and B LTM and C and D ETM approximated by
1/4(AC + AD + BC + BD), and an ABC mixture (with C

having near 50% concentration) approximated by 1/2(AC +
BC). Here, AC, AD, BC, and BD refer to the relevant binary
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TABLE VI. Comparison of calculated ternary and quaternary
hR13 moduli with averaged values of binaries. Moduli are given
in GPa, and deviations in percentages.

Chemical formula Calculated K , G Averaged K , G Deviation

Co3Ni3Nb7 205, 87 205, 87 0.3, 0.5
Co3Nb3Ta4 225, 100 223, 99 0.7, 1.4
Co3Ni3Ta7 225, 102 226, 100 0.4, 2.2
Ni6Nb3Ta4 210, 89 208, 87 0.9, 2.2
Co3Ni3W7 290, 94 291, 97 0.3, 2.4
Co3Ni3Nb3Ta4 217, 97 216, 93 0.1, 3.7
Co6Ta4W3 261, 123 268, 111 2.5, 10.0
Co3Ni3Ta3W4 253, 115 258, 98 2.1, 14.6
Co6Nb3W4 261, 121 257, 104 1.5, 16.4
Ni6Nb3W4 241, 92 239, 79 0.8, 16.8
Ni6Ta4W3 242, 100 249, 85 2.6, 17.8
Co3Nb3Ni3W4 248, 109 248, 92 0.2, 18.7

hR13 structure with the associated chemical formula. As
an example, the predicted bulk moduli of Co6Ta3W4 would
be the average bulk modulus of Co6Ta7 and Co6W7. While
this ignores interspecies ETM-ETM and LTM-LTM bonds
present (i.e., AB and CD), binary enthalpies of formation for
ETM-ETM and LTM-LTM families are weak compared to
ETM-LTM families, suggesting that as a first approximation
we may assume the differences in interspecies ETM-ETM and
LTM-LTM bond strength average out.

Differences between our predicted interpolated elastic mod-
uli and computed elastic moduli follow the trends previously
reported for CPA. Again, we see bulk moduli negligibly
affected by atomic environment and predominately determined
by the alloying species, with deviations in bulk moduli below
2.6% for all structures. For shear moduli, the structures can be
placed into two categories: those structures that have only one
ETM species or else two ETM species from the same group
(here Nb and Ta belong to group IV), which have deviations
in shear moduli below 3.7%, and those that have ETM species
from different groups (here W from group V together with Nb
or Ta from group IV) which have deviations in shear moduli
between 10.0% and 18.7%. In all cases where predicted shear

moduli deviate significantly from calculated shear moduli, the
computed shear moduli have been enhanced.

That mixing Co and Ni or Nb and Ta causes little
deviation in shear modulus, but mixing Ta and W does, is
further evidence for the dependence of shear modulus on
atomic environment. Co and Ni have similar atomic radii and
electronegativity, as do Nb and Ta. For a topologically close-
packed structure like hR13, substitution of these chemical
species should not noticeably affect bond lengths and ionic
charges, yielding similar calculated and averaged results.
However, Nb and Ta have larger atomic radii and lower
electronegativity than W, leading to larger charge transfers and
changes in bond length, reducing the accuracy of our averaging
scheme, while generally increasing bonding strength.

V. CONCLUSIONS

In this paper, we examined the elasticity of various early
transition metal-late transition metal crystalline binary alloys
using first-principles calculations and comparison with various
averaging schemes. Calculated bulk moduli were reasonably
close to the CPA using pure elemental species, but CPA
predictions were systematically low. This deviation correlates
strongly with volume per atom. Larger and less regular devi-
ations were observed for shear moduli, suggesting structural
distortion being responsible for the deviation. Select ternary
and quaternary structures were examined and confirmed these
trends. To explain the dependence of elastic moduli on
chemical bonding, force constants and electronic densities of
state were calculated and it was found early transition metals
are responsible for the strongest bonding, which agrees with
observed trends in the bulk moduli. We find that Ni-W alloys
have the largest Poisson ratios among the compositions studied
and hence hold promise as the basis for design of ductile
metallic glasses.
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