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Single-impurity Kondo physics at extreme particle-hole asymmetry
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We study the fate of the Kondo effect with one-dimensional conduction baths at very low densities, such that
the system explores the bottom of the conduction band. This can involve either finite low densities or a small
number of fixed conduction electrons in a large system; i.e., the limit of large bath sizes can be taken with either
fixed small density or with fixed number. We characterize the Kondo physics for such systems through the energy
gain due to Kondo coupling, which is a general analog of the Kondo temperature scale, and through real-space
profiles of densities and spin-spin correlation functions.
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I. INTRODUCTION

The single-impurity Kondo model [1,2] has played a crucial
role in the study of correlated electron and mesoscopic
physics for several decades. Central to Kondo physics is
the competition between itinerancy of conduction electrons
and magnetic coupling to an immobile impurity, which leads
to many-body screening of the impurity moment at low
temperatures. The original setting [1] involves a conduction
bath in the thermodynamic limit at finite filling and a Kondo
coupling much smaller than the conduction bandwidth or
Fermi energy. As a result, the scattering processes responsible
for screening are restricted to the region around the Fermi
surface where the dispersion can be considered linear and
continuous. With the realization of experimental setups where
many-body phenomena can be explored in novel confined
geometries, some attention has been paid to situations such as
the “Kondo box” where the conduction bath is small enough for
the bath spectrum to be discrete [3–8]. Further generalizations
of the Kondo problem involve nonmetallic host systems such
as superconductors [9–12] or semimetals [13–18].

In this work, we examine a situation that differs from the
original context in that the number or density of mobile carriers
is extremely small, but the spatial size of the conduction bath
is not necessarily small. Here we will treat a small number or
density of electrons; these situations are equivalent to those
with a small number or density of holes.

In most of the paper, we shall provide explicit results for
Nc mobile fermions (“conduction electrons”) in a tight-binding
chain with periodic boundary conditions, Fig. 1(a). One site
of the lattice is Kondo coupled to a single spin- 1

2 “impurity.”
The Hamiltonian is

H = −
∑
i,s

(c†i,sci+1,s + H.c.) + J �Simp · �s0, (1)

where �s0 = 1
2

∑
s,s ′ c

†
0,s �σss ′c0,s ′ is the spin on site i = 0 (s, s ′ are

spin indices), and i ∈ [0,L − 1] is the site index. The Kondo
coupling is antiferromagnetic (J > 0) and prefers singlet
formation. We use the conduction band hopping strength
(quarter the bandwidth) as the unit of energy. Our regimes of
interest are (a) constant number of bath electrons Nc in a large
number of sites, L → ∞, and (b) constant and small density,

i.e., 0 < nc = (Nc/L) � 1
2 with L → ∞. The first situation

does not correspond to the usual thermodynamic limit; we
will refer to this as the “ultralow density” limit. The second
situation is the low-density thermodynamic limit. While most
of our analytical and numerical results are specific to the case
of a one-dimensional (1D) bath, the overall picture is of more
general validity, and we will briefly discuss the modifications
occurring for higher dimensional geometries.

The case of a few electrons forming the bath (ultralow-
density limit, small fixed Nc) involves the competition between
itinerancy and antiferromagnetic coupling, which is at the heart
of the Kondo effect, but does not have a true Fermi surface,
which is central to the standard analysis of the single-impurity
Kondo problem. This is thus an important toy model to study
the effects of the above-mentioned competition without the
effects of a regular Fermi surface. The finite but low-density
thermodynamic limit (small fixed Nc/L) is closer to the usual
situation [2] but explores the nonlinearity of the lowest part of
the band—there is a Fermi surface but it might not be possible
to linearize around it. The two situations (ultralow density and
low density) are thus only loosely related to each other, and
are both different from the usual Kondo setup and from the
“Kondo box” (small L) situation.

It is quite conceivable that one or both of the regimes we
study here might be realized in either mesoscopic setups, or
cold atoms, or both. In a mesoscopic situation, a low density
or low number of bath electrons might possibly be achieved
by appropriately gating the bath. Small numbers or densities
are completely natural with cold-atom experiments, although
a cold-atom realization of Kondo physics is not yet available.
(Ref. [19] proposes such a realization.)

We characterize single-impurity Kondo physics in the
low-density or small-number situation in two ways. First,
we provide results on the energy gained due to the im-
purity, i.e., the ground state energy without the impurity
coupling subtracted from the ground state energy with the
impurity coupling, �E(J ) = E0(0) − E0(J ). This quantity
is the analog of the Kondo temperature TK well known in
the usual Kondo physics [2] and thus clearly an observable
of central importance for any type of Kondo physics. (We
use the notations TK and �E interchangeably; depending on
the definition of TK they differ by an unimportant constant
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FIG. 1. (Color online) Left: Geometry used in this work. Right:
Dependence of the energy gain �E(J ) = E0(0) − E0(J ) on Kondo
coupling parameter J for a system with L = 100 sites with Nc = 1
(blue diamonds and line) and Nc = 3 (red circles and line) conduction
electrons. The three regions (explained in text) are clearly visible and
separated by vertical lines. The curve with no symbols is the analytical
L = ∞ result for Nc = 1.

factor.) Second, we look at real-space profiles, in the spirit of
recent work examining the “Kondo cloud” [20–38]. We present
results on the conduction electron density, nj = ∑

σ 〈c†jσ cjσ 〉,
and the impurity-bath spin correlator, χj = 〈�Simp · �sj 〉, as a
function of the distance j from the impurity. At and near
half filling, the shape of the function χj is often described as
characterizing the Kondo cloud, while the conduction electron
is not strongly affected by the magnetic impurity. Away from
half filling, the spin and charge sectors are strongly coupled.
In fact, in the extreme limit of a single particle, we show that
the two profiles, nj and χj , are identical. As half filling is
approached, the real-space profiles of nj and χj become more
and more decoupled. For Nc = 1, we also describe the spatial
structures in terms of the entanglement entropy between a
block including the impurity and the rest of the system. This is
motivated by recent descriptions of impurity screening clouds
using such entanglement entropies [35,44,45].

In the original setting for Kondo physics, the coupling
J is small compared to the other energy scales such as the
bandwidth or Fermi energy. Since the regimes considered
here are expected to be relevant to new settings for Kondo
physics, we consider J values from J � 1 to J 
 1 without
restriction.

Figure 1 summarizes the behavior of �E(J ) for small,
intermediate, and large J , for a fixed number of particles (Nc =
1 and Nc = 3) in a large ring with L 
 1. For any finite L, there
are three clearly different regions of J values, which we will
refer to as regions A, B, and C from small to large J . Region A
(small J ) is where the Kondo coupling is perturbative. Hence
�E(J ) is linear, with a coefficient that vanishes as ∼L−1

at large L. In region C (large J ), the Kondo coupling J is
so strong that the impurity simply binds one fermion to it
in a singlet. As far as the other electrons are concerned, the
impurity-connected site (j = 0) is blocked and the ring is
cut into an open chain of (L − 1) sites. The energy gain is
the singlet energy, �E(J ) ≈ 3

4J . Between these two linear-J
regions lies the nonperturbative region B. We will present
evidence that there the behavior is �E(J )∼J 2 in 1D for fixed
small Nc. This also applies for small densities nc and not too
small J . For infinite L the region A disappears and region B

extends all the way down to infinitesimal J ; this is seen from
the L = ∞ curve for Nc = 1 in Fig. 1.

A. Outline

Using the general orientation to the three J regions
provided by these observations on the energy gain �E(J ),
in Sec. II we will give an overview of the types of situations
encountered in this study (fixed number, fixed small density),
and explain how these connect to the usual thermodynamic
limit and well-known finite density results. In Sec. III we
present renormalization group arguments for the �E(J )
behavior at finite but small densities. Section IV considers
the ultralow density situation of fixed Nc. In Sec. IV A, we
detail the case of a single electron (Nc = 1), which is exactly
solvable. Results for finite numbers of electrons, Nc > 1, are
outlined in Sec. IV B. Since our numerical calculations (exact
diagonalization) are restricted to smaller L at larger Nc, the
results for Nc = 3,5, . . . also provide a description of how
the half-filling case is approached, e.g., how spin and charge
are more and more decoupled at larger fillings. In Sec. V, we
consider briefly the case of higher dimensions.

II. OVERVIEW: FIXED NUMBER VERSUS FIXED
SMALL DENSITIES

Low-density and ultralow-density situations correspond
to different orders of limits for system size L and particle
number Nc. Figure 2(a) charts out several different regimes.
The usual thermodynamic limit involves both L → ∞ and
Nc → ∞ while keeping the density (Nc/L) fixed. On the
Nc-L plane, this corresponds to going toward large sizes along

FIG. 2. (Color online) (a) Different regimes on the Nc-L param-
eter space: the ultralow-density regime (Nc fixed; vertical lines), the
low-density regime (Nc/L fixed at small value; steep shaded area),
and regime near half filling (Nc/L ∼ 1; shaded area with smaller
slope). (b), (c) Schematics showing different �E(J ) behaviors in
different J regions, for the cases of small and large Nc, respectively.
See text for details.
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a finite-slope path, e.g., along one of the shaded paths. Low
but finite density corresponds to a steep but finite-slope path.
The ultralow-density situation involves fixed Nc at arbitrary
L, including L → ∞; these are vertical lines in Fig. 2(a) and
do not correspond to the regular thermodynamic limit.

We note that the regimes overlap at smaller Nc; e.g.,
the vertical dashed lines cross through the shaded areas
indicating the thermodynamic limit. Thus, for finite but large
L and finite Nc � L, it may be ambiguous to decide whether
the physics of the system is best described by low-density
results in the thermodynamic limit, or by the ultralow-density
physics that does not correspond to the usual thermodynamic
limit.

In Figs. 2(b) and 2(c) we have summarized our results for
the energy gain (analog of the Kondo temperature) in the 1D
case; the derivations will appear in later sections. Differences
occurring for higher dimensional baths will be discussed in
Sec. V.

Panels 2(b) and 2(c) correspond to 1 ∼ Nc � L and 1 �
Nc � L, respectively. The insets show a rough “band filling”
picture of these cases: for small Nc one may think of a finite
number of single-particle levels of the conduction band being
occupied, while for larger Nc a picture of small band filling is
more appropriate.

In both cases and for finite L, there is a finite-size-
dominated A region at small J where �E = c1J , with c1 = 3

2L

in every case except for Nc = 1, where we have c1 = 3
4L

. The
C region with localized singlet and energy gain �E = 3

4J is
also the same for all cases. These behaviors in the A and C
regions hold not only for the cases we are considering but even
for the half-filling situation.

For the interesting B region, �E(J ) is nonperturbative. For
fixed small Nc, the behavior is �E ∼ J 2. For Nc = 1, the exact
solution yields �E = ( 3

8J )2. There are no exact solutions for
fixed Nc > 1, but we present strong numerical evidence that
the energy gain in the B region is identical for Nc = 3, and we
conjecture that this applies for all small odd Nc.

For larger Nc, shown in Fig. 2(c), the B region can have
two types of behavior. If J is small enough that the Kondo
energy scale is significantly smaller than the Fermi energy
with respect to the band bottom, screening is dominated by
electron states around the Fermi points where the dispersion
is nearly linear, so that we recover the usual Kondo effect, and
one expects a J dependence according to �E(J ) ∼ e−c2/J . On
the other hand, if J is larger so that the Kondo energy scale
is of the order or larger than the Fermi energy, linearization
is not possible and the density of states at the bottom of the
spectrum has to be taken into account. For the 1D conduction
bath, this turns out to lead to �E ∼ J 2, as described in
Sec. III. We have marked these two regions as B1 and B2 in
Fig. 2(c).

The limit L → ∞ with Nc fixed yields the ultralow-density
limit announced in the introduction; in this limit only the B
(or B2) and C regions survive. In the low-density limit, with
L → ∞ and Nc → ∞, there is a B1 region at small J which
connects to the standard (nonperturbative) Kondo setting with
�E(J ) ∼ e−c2/J . In contrast, the B2 region occurring for larger
J does not have the familiar e−c2/J behavior for the energy gain
(in 1D), but nevertheless has nonperturbative behavior.

III. RENORMALIZATION-GROUP PREDICTIONS FOR
SMALL FINITE DENSITIES

Results for the low-density case in the thermodynamic limit
can be obtained using a perturbative renormalization-group
(RG) expansion around the free-moment fixed point of the
Kondo model, i.e., a generalization [11,39] of Anderson’s poor
man’s scaling [40]. We note that the results continue to apply
for finite L as long as the bath level spacing is small compared
to the Kondo temperature TK.

We restrict our attention to the case of a one-dimensional
conduction band as in Eq. (1). It is convenient to work in a
grand-canonical ensemble, with a chemical potential μ; in the
following μ and all energies will be measured relative to the
band bottom. The density of states at small energies is

ρ(ω) = ρ0

∣∣∣∣ ω

D

∣∣∣∣
r

�(ω), r = −1/2 (2)

with D = 4 the bandwidth and ρ0 = 1/(4π ), such that chem-
ical potential and average filling nc = Nc/L are related by

nc ∝ μ1/2. (3)

Equations (1) and (2) define an unconventional Kondo
problem, with nonconstant and strongly asymmetric density
of states. In the course of the RG, a scattering potential V

at the impurity site will be generated which keeps track of
the particle–hole asymmetry. We introduce the dimensionless
running couplings j = ρ0J and v = ρ0V . (This notation
appears only in this section, and should cause no confusion
with site indices, for which the symbol j is used in other
sections.) For the limiting case of μ = 0 the weak-coupling
beta functions for the running couplings read [41,42]

dj

d ln 	
= rj − j 2

2
+ 2vj ,

dv

d ln 	
= rv + 3j 2

16
+ v2 (4)

to second order, with 	 being the running UV cutoff, and the
initial values j0 = ρ0J and v0 = 0 according to Eq. (1).

A. Kondo scale

Clearly, for small j and v, the first (tree-level) term in the
beta function dominates the flow. For r = −1/2 < 0 the initial
j grows under RG and diverges at 	 = TK with [43]

TK ∝ D

(
ρ0J

−r

)−1/r

= D(2ρ0J )2. (5)

As usual, the energy scale 	 = TK where j diverges is the
estimate for the Kondo energy or temperature scale, expected
to be proportional to the energy gain �E introduced earlier.
This μ = 0 result continues to hold for nonzero μ as long as
TK > μ, as in this case the RG flow reaches strong coupling
before the deviation from the band edge becomes relevant –
this is exactly what defines the region B2 in Fig. 2.

In the opposite limit TK � μ, corresponding to region
B1, the dominant contribution to screening arises from the
regime 	 < μ where the density of states can be ap-
proximated as constant, ρ(μ) = ρ0(μ/D)−1/2 ∝ ρ0/nc. The
standard exponential estimate for the energy scale applies,
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consequently:

TK ∝ D exp

(
−c2

J

)
(6)

with c2 ∝ nc/ρ0.

B. Crossovers between the A, B, and C regions

These considerations allow us to extract the locations of
the crossovers between the various regions. First, the B-C
crossover is set by TK ∼ 1, which implies ρ0JBC ∼ 1.

Second, the boundary between the B1 and B2 regions is
defined by TK ∼ μ; using Eqs. (3) and (5) this yields ρ0JB12 ∼
nc. Alternatively, we can demand the TK expressions in Eqs. (5)
and (6) to match, resulting in ρ0JB12 ln[1/(ρ0JB12)] ∼ nc

which is identical to the first criterion up to logarithmic
accuracy. This shows how the region B1 disappears when
passing from the low-density to the ultralow-density limit,
nc → 0.

Third, the boundary of the A region can also be found be
equating the expressions for TK (or �E). Using �E ∝ J/L

in the A region, this yields for a direct crossover from A to
B2 the relation ρ0JAB2 ∼ 1/L. In contrast, the A-B1 crossover
occurs at ρ0JAB1 ∼ Nc/(L ln L); this formula is valid only for
Nc 
 1 and up to logarithmic accuracy.

Taken together, these relations show that 1 ∼ Nc � L (with
L finite) implies a direct crossover from A to B2 as in Fig. 2(b),
whereas for large Nc a B1 region intervenes.

IV. FIXED NUMBER OF CONDUCTION ELECTRONS
(ULTRALOW DENSITIES)

In this section we describe systems with a fixed number
Nc of electrons in the one-dimensional conduction bath. We
will restrict ourselves to odd numbers of Nc so that the total
spin is integer and hence can be a singlet. In Sec. IV A we
treat analytically the Nc = 1 case and describe the energy gain
and spatial profiles. In Sec. IV B we describe Nc > 1, again
focusing on the energy gain and spatial profiles. Section IV C
describes perturbative results for the A (small J ) region for
finite L.

A. Exactly solvable case: Nc = 1

Focusing on the solvable case of a single fermion in the
bath (Nc = 1), we will derive below the energy gain in the B
and C regions. We also show that the impurity-bath spin-spin
correlator χj = 〈�Simp · �sj 〉 is locked to the density profile nj =∑

σ 〈c†jσ cjσ 〉, through the relation χj = − 3
4nj .

The three J regions have simple spatial interpretations in
terms of the density profile of the single electron. In an infinite
chain, in the ground state, the fermion is localized around
the impurity-coupled site (i = 0) with localization length ξ .
(ξ decreases with increasing J .) At large J (region C), the
itinerant fermion is almost completely localized at site 0 (ξ �
1). At smaller J , the itinerant fermion is spread over multiple
sites ξ > 1 (region B). In an infinite system, this region would
extend to arbitrarily small J . However, for any finite size L,
there is a boundary-sensitive small-J region (region A) where
the fermion cloud extends over the whole system (ξ � L).

1. Analytic solution for energy gain

To examine the ground state, we restrict ourselves to the
singlet sector. Within this sector, the states can be written in
the basis of single-particle momentum eigenstates

|k〉 = 1

L
√

2

∑
j

e−ikj (|↑; j↓〉 − |↓; j↑〉). (7)

The |S; js〉 notation refers to the impurity spin S and the
electron position j and spin s. Within the singlet sector the
Kondo coupling serves as a local potential on the site j = 0, of
strength − 3

4J ; i.e., this sector is described by a single-particle
problem in a resonant level model:

H = −2
∑

k

|k〉 cos k〈k| − 3

4

J

L

∑
k,k′

|k〉〈k′|. (8)

The components ψk of an eigenstate |ψ〉 = ∑
k ψk|k〉 with

energy E obey the relation

(−2 cos k − E)ψk = 3

4

J

L

∑
k′

ψk′ . (9)

Summing over k one gets closed equations for E and for ψk:

1 = 3

4

J

L

∑
k

(−2 cos k − E)−1, (10)

ψk = 1

N (−2 cos k − E)−1, (11)

where N is a normalization constant. This gives all the singlet
eigenstates at finite L. For L → ∞ the continuum version of
Eq. (10) gives the ground-state energy, because the rest of
the states are part of a continuum in E ∈ [−2,2]. The ground
state energy E0 thus satisfies 4

3J
= − ∫

dk/(2π)
2 cos k+E0

, leading to

E0 = −
√

( 3
4J )2 + 4, so that the energy gain, �E = −2 − E0,

is

�E = −2 +
√

( 3
4J )2 + 4 ≈

{
9

64J 2 J � 1,

3
4J J 
 1.

(12)

This is the solid curve in Fig. 1. For finite L, the 9
64J 2 behavior

gets cut off at smaller J and is replaced by the A region,
�E ≈ 3

2J . This can be numerically extracted from Eq. (10)
or can be calculated perturbatively (Sec. IV C).

2. Real-space profiles: Density and spin correlator

The density is

nj =
∑

s

〈c†j,scj,s〉 = |ψj |2 =
∣∣∣∣ 1√

L

∑
k

e−ikjψk

∣∣∣∣
2

(13)

with ψk given by Eq. (11). The impurity-bath spin-spin
correlator is

χj = 〈�Simp · �sj 〉 = − 3
4 |ψj |2 = − 3

4nj , (14)

showing that the two quantities are locked to each other in the
Nc = 1 case. In the L → ∞ limit, one obtains nj ∝ e−|j |/ξ ,
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FIG. 3. (Color online) Ground state for single bath electron
(Nc = 1), L = 100. (a)–(c) Density profiles in A, B, C regions:
J = 0.02; J = 0.5; J = 5. (d) The localization length ξ . Black solid
line is analytic large-L expression (15). Filled dots are obtained by
fitting function f1(x) (see text) to ( L

2 − 1) sites around the impurity.
Open dots in the A region are obtained by fitting f2(x).

with

ξ−1 = − ln
[√(

3
8J

)2 + 1 − 3
8J

]
. (15)

For finite L, the density (and χj ) profile is exponentially
localized around the impurity site in the B and C regions,
but is modified by the boundary in the A region, as shown
in Figs. 3(a)–3(c). Figure 3(d) compares the expression (15)
with the length scale ξ̃ obtained from an exponential fit
f1(x) = A1 exp[−x/ξ̃ ] in the B and C regions (J � 1) for
an L = 100 system. In the A region, we find that the
real-space profile is well described by the corrected form
f2(x) = A2 exp[−x/ξ̃ + x2/(ξ̃L)]; Fig. 3(d) also compares ξ̃

obtained with this fit in the A region.

3. Entanglement entropy profile

We will now characterize the spatial structure of the
system using block-block entanglement entropy, S(J,r) =
−Tr[ρr ln ρr ], where ρr is the reduced density matrix of a block
containing the impurity spin and the (2r − 1) sites centered
around the impurity-coupled site. This is analogous to studies
in finite-density impurity systems where block entanglement
entropies have been used to describe the real-space impurity
screening cloud [35,44,45].

Figure 4(a) shows the typical behaviors of the entanglement
entropy as a function of block size, for J values in the A, B,
C regions. In the C region, S(J,r) is nearly zero for all r > 1,
since the electron is localized at the impurity-coupled site. In
the B region, there is structure indicative of the localization
length ξ (J ). The A region curve is the entanglement entropy
of a uniform system; the lack of left-right symmetry is due
to the block containing the impurity spin and therefore being
inequivalent to its complement when containing half the lattice
sites.

In panel (b) the entanglement entropy is shown for block
size r = 1; i.e., the block contains only the impurity and the
site j = 0. In the extreme C region the cloud is completely
localized on this site, so that the rest of the system is
decoupled: SJ→∞(J,r) → 0. In the extreme A region the
density is uniform, so that the entanglement entropy has
constant L-dependent value. Constructing the density matrix

FIG. 4. (Color online) Entanglement entropy S(J,r) for Nc = 1,
L = 100, between a block containing the impurity and the (2r + 1)
bath sites around it, and the rest of the system. (a) S(J,r) against block
size r , for one J value each in the A, B, C regions. (b) S(J,1) against
J . Exact numerical curve crosses over from the constant S(0,1) value
to the curve SExpon(J,1) calculated assuming exponentially localized
electron, Eq. (16) to Eq. (17). Vertical lines demarcate A, B, C regions.

explicitly, we obtain for this uniform case

S(J = 0,r = 1) = L − 1

L
ln

(
2L

L − 1

)
+ 1

L
ln(L).

(16)

In the B and C regions, the electronic cloud decays exponen-
tially nj ∝ e−j/ξ (J ) where ξ (J ) is given in Eq. (15). Explicit
calculation gives

SExpon(J,r = 1) = −2M1 ln M1 − M2 ln M2, (17)

with M1(J ) = [1 + e1/ξ (J )]−1 and M2(J ) = tanh( 1
2ξ (J ) ).

Figure 4(b) shows the above expressions together with the
exact numerical S(J,1) for L = 100. The exact curve moves
from S(0,1) to SExpon(J,1) as J is increased from the A to
the B region; the two curves cross near J = 16

3L
, which is the

boundary between A and B regions at large L as obtained from
the condition ξ (J ) = L/2.

B. A few mobile electrons: Nc > 1

We now look at the energy gain and the real-space profiles
for a few fermions (Nc odd and > 1) in a 1D bath. As we
shall show, a general feature is that for L → ∞, the Nc > 1
systems behave in some ways similarly to the Nc = 1 system.
We will see this both in the energy gain and in the real-space
profiles. Intuitively, the reason is that for large L the ground
state involves one of the bath fermions localized around the
impurity while the other fermions spread out with vanishing
density and therefore negligible effect. Thus the physics of the
impurity interacting with a single fermion is dominant, so that
one recovers signatures of the energy gain �E and localization
length ξ derived in Sec. IV A.

1. Energy gain

Unlike the Nc = 1 case, it is not possible to obtain an
analytical expression or simple equation for �E. However,
numerical calculation (Fig. 1) shows that there are three J

regions with the same characteristics. For large J (C region)
the energy gain is the singlet energy �E ≈ 3

4J . At small J
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FIG. 5. (Color online) (a) Second derivative of the energy gain
∂JJ �E(J ) for Nc = 3 mobile electrons and different L. Thick solid
line shows the exact ∂JJ �E(J ) for Nc = 1, L → ∞, Eq. (12).
With increasing L, the 3-electron curves clearly approach the exact
1-electron curve. (b) Difference between maximum of the Nc = 3
curves ∂JJ �E(J ) and the maximum of the Nc = 1 curve, against L.
(c) Similar data as (a), but for Nc = 7 electrons.

(A region) the energy gain is perturbative and L dependent:
�E ∼ 3

4L
J for any Nc > 1 (Sec. IV C). This is half the energy

gain for Nc = 1 in the A region.
The intermediate J region (B region) is more tricky to

characterize; it is not straightforward to infer the J dependence
in the B region by looking only at the numerical �E(J )
with available sizes. Analyzing instead the second derivative
∂JJ �E(J ), we provide numerical evidence that in the L → ∞
limit the �E(J ) curve for Nc > 1 coincides with the �E(J )
curve calculated for Nc = 1. This implies that the B region is
described by �E ∼ 9

64J 2 also for Nc > 1.
Figure 5(a) shows the second derivative for Nc = 3, for

system sizes from L = 10 to L = 100. Clearly, ∂JJ �E(J )
approaches the L → ∞ solution of the single-electron (Nc =
1) case. In Fig. 5(b) we show the difference between the
maximum value of ∂JJ �E(J ) of the finite-size Nc = 3 data,
from the exact Nc = 1 solution. The difference decreases with
L, apparently with a superlinear power law. This provides
relatively strong evidence that, in the limit L 
 ∞, the B
region for Nc = 3 has the same �E(J ) behavior as for the
exactly solved Nc = 1 case.

For larger Nc, it is difficult to use large enough L for a proper
finite-size scaling analysis. However, Fig. 5(c) shows the
second derivative ∂JJ �E(J ) for Nc = 7 conduction electrons
in an L = 8 bath and in an L = 12 bath. The features of
these curves, and the way in which they approach the analytic
Nc = 1 curve with increasing L, are very similar to the Nc = 3
case. This leads us to suggest that for any fixed odd Nc � 3,
the B2 region is described by �E ∼ 9

64J 2. As discussed in
Sec. III, for Nc 
 1 there will be an additional B1 region at
small J with exponential behavior of �E; this is not captured
by our finite-size numerics.

2. Real-space profiles: Density and spin correlator

Figure 6 plots the spatial dependence of the total electronic
density nj and the impurity-bulk spin correlator χj for Nc = 3
and Nc = 5, with L = 12 sites.

FIG. 6. (Color online) Real-space profiles in an L = 12 bath:
(a)–(c) electronic density nj ; (d)–(f) impurity-bulk spin susceptibility
χj . Each panel shows data for Nc = 3 (filled orange circles) and
Nc = 5 (empty blue circles).

For J � 1, the densities are primarily determined by the
bath. The single-particle spectrum of the bath includes two
degenerate states at momentum k = 0, and four degenerate
states each at momenta k = ± 2π

L
n. Thus the cases of Nc =

4n − 1 and Nc = 4n + 1 are closely linked, corresponding to
having one or three states filled among the highest fourfold-
degenerate set. This explains why the density profiles for
Nc = 3 and Nc = 5 are closely linked. The density profiles for
Nc = 7 and Nc = 9 form a similar pair. More strikingly, the
correlators χj are identical for Nc = 4n − 1 and Nc = 4n + 1
in the J � 1 limit. These features in the perturbative J � 1
region will be explained in more detail in Sec. IV C.

Similar arguments can be made in the large-J limit, where
one particle is bound to the impurity and the remaining
(Nc − 1) fermions can be treated as free fermions in an open-
boundary (L − 1)-site chain. Again, the Nc = 3 and Nc = 5
density profiles are closely linked, and the spin correlators are
nearly identical. Surprisingly, we find χj for Nc = 4n − 1 and
Nc = 4n + 1 to be nearly identical even for intermediate J

(Fig. 6, middle row), where we cannot use free-fermion ideas
to explain this feature.

For large L, the real-space behavior for finite Nc > 1 is
governed by the single-electron localization length. In Fig. 6
we illustrate this through the spin correlator χj . We extract the
length scale of localization around the impurity by fitting |χj |
to f1(x) = A1 exp[−x/ξχ ] in the B and C regions, using χj on
only three sites near the impurity to avoid complications such
as sign changes of χj at larger j . For small J , it is necessary
to incorporate the boundary with the modified exponential
f2(x) = A2 exp[−x/ξ̃ + x2/(ξ̃L)], as in the 1-electron case.
In addition, from Fig. 6 (top row) it is clear that an overall 2kF
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FIG. 7. (Color online) (a) Decay length scale of χj close to the
impurity, for L = 40, Nc = 3. Length scale ξχ obtained from f1(x)
fit (red dots), and from f2(x) cos2(2πx/L) fit (open blue squares) are
shown. Localization length for Nc = 1 is given by solid line. (b) The
relative difference between Nc = 3 and Nc = 1 electron exponents
η(ξχ ) is shown for L = 40 and L = 20. Here ξχ is obtained by fitting
with f1. (c) For J = 0.1, the exact numerical χj data are shown
together with best fits with f2(x) cos2(2πx/L). The oscillatory factor
is divided out. Exact data are shown as open orange circles (L = 20)
and filled blue circles (L = 40); fits are shown with orange dashed
line and blue dotted lines. Black solid line shows χj for Nc = 1,
L = 40.

oscillation is important at small J . Therefore for small J a fit
with f2(x) cos2(2πx/L) is used to extract the length scale ξχ .
In this case about 35% of the sites are used for the fit.

Figure 7(a) compares the length scale ξχ extracted numer-
ically from the 3-electron χj , with the 1-electron result ξ 1el

from Eq. (15). The close match indicates that the localization
is governed by the Nc = 1 length scale. Figure 7(b) shows that
this match gets better with increasing L, by plotting the relative
difference, η(ξχ ) = |ξχ − ξ 1el|/ξ1el, between the 1-electron
length scale and the 3-electron length scale obtained from
a f1(x) fit. (The f1 fit is not expected to be reasonable at small
J .) Figure 7(c) shows that f2(x) cos2(2πx/L) is a meaningful
description for moderate distances from the impurity.

Figure 8 shows how the density nj and the spin structure
χj gradually decouple as half filling is approached. We have
shown (Sec. IV A) that the nj and χj profiles are locked
together (proportional to each other) for Nc = 1. Figure 8
shows nj and χj to be very similar for L
Nc = 3, while at
half filling with Nc = L = 9 they bear little resemblance to
each other. In the half-filled situation at large sizes and small

FIG. 8. (Color online) Spin-charge decoupling upon approach-
ing half filling. A Nc�L case and a Nc = L case are shown.

J , nj is essentially constant, while the spatial profile of χj

characterizes the so-called Kondo cloud [20–25].

C. Analytic expressions for the A region, J � 1

For the A region, one can perturbatively calculate the energy
gain �E(J ). This gives the coefficient of the linear ∼L−1J

dependence in this region. Also, by examining the perturbative
expressions for nj and χj profiles, one can expain the close
relationship (Fig. 6) between profiles of Nc = 4n ± 1 pairs,
where n is an integer.

1. Perturbative calculation for energy gain

The ground state of the hopping part of the Hamiltonian is
degenerate. The degeneracy is twofold for Nc = 1 and fourfold
for Nc � 3.

We first consider Nc � 3. For Nc = 4n + 1, the four
degenerate states for J = 0 are

|�1〉 = |↓〉 ⊗ |0↑,0↓, . . . ,kF↑〉,
|�2〉 = |↓〉 ⊗ |0↑,0↓, . . . , − kF↑〉,

(18)|�3〉 = |↑〉 ⊗ |0↑,0↓, . . . ,kF↓〉,
|�4〉 = |↑〉 ⊗ |0↑,0↓, . . . , − kF↓〉,

where the states are written as products of the impurity spin
state and the bath state. The Nc-particle bath states are written
by specifying the single-particle momentum and spin of the
particles; the states above are obtained by filling up the single-
particle states up to the Fermi momentum. There are four
ground states because there are four single-particle states with
momentum ±kF , and the last bath electron can fill any one
of them. For Nc = 4n − 1, the last bath electron can keep any
one of the last four states empty, so that there are also 4 ground
states.

The Kondo-coupling part of the Hamiltonian, HK , is
now the perturbation. The matrix elements Hij = Hji =
〈�i |HK |�j 〉 of the degeneracy matrix are found to be

Hii = H12 = H34 = − J

4L
, (19)

H31 = H41 = H32 = H42 = J

2L
. (20)

The smallest eigenvalue of the Hij matrix gives the most
negative energy correction, and hence the ground state energy
gain at first order is

�E = 3

2

J

L
for Nc � 3. (21)

The corresponding eigenstate is

|�g〉 = 1
2 (|�1〉 + |�2〉 − |�3〉 − |�4〉). (22)

For Nc = 1, the ground state is twofold degenerate: the
states can be taken as |�1〉 and |�3〉, using the notation
introduced above, with kF = 0. Matrix elements are the same:
H11 = H33 = − J

4L
, H31 = J

2L
. The smallest eigenvalue of the

degeneracy matrix is

�E = 3

4

J

L
for Nc = 1. (23)
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2. Density and spin correlation function at J → 0+

Using the ground state (22) from perturbation theory
we also calculate the electron density nj and the spin-spin
correlation function χj . After expressing the operators n̂j =∑

s c
†
j,scj,s and �Simp · �sj = �Simp · ∑

s,s ′ c
†
j,s �σss ′cj,s ′ in momen-

tum basis, the expectation values in state (22) are found to be

nj = Nc

L
− 1

L
sin

(
π

2
Nc

)
cos(2kFj ) (24)

and

χj = − 3

4L
[1 + cos(2kFj )]. (25)

The factor sin(π
2 Nc) used above has values ±1 for Nc = 4n ±

1; Eq. (24) explains Fig. 6(a). Equation (25) shows that the
impurity-bath spin-spin correlator profiles for Nc = 4n ± 1
cases (same kF ) are identical at small J , Fig. 6(d).

V. HIGHER DIMENSIONAL BATHS

While our main focus in this paper has been on 1D
conduction baths, we will comment now on higher dimensional
baths. Few changes occur in the regions A and C: Region C
is dominated by local singlet formation, such that �E ≈ 3

4J

continues to hold. Region A remains perturbative, with �E ∝
J
L

and a prefactor depending on Nc and the lattice geometry.
In contrast, changes are expected in the nonperturbative

B region, as the phase space (or density of states) near the
band bottom depends on the number of space dimensions.
Therefore, the region-B expression for �E in the ultralow-
density case (Sec. IV) as well as the region-B2 expression for
TK in the low-density case (Sec. III) are specific to 1D and are
different in higher dimensions.

As an example, let us consider the ultralow-density case
with a single electron Nc = 1 in an infinite 2D square-lattice
bath. The integral expression for the ground state energy E0

in Sec. IV A is modified to

4

3J
= −

∫
dkxdky/(2π )2

2 cos(kx) + 2 cos(ky) + E0
. (26)

Unlike the 1D case, this cannot be solved analytically for
E0(J ). However, for small J , the energy gain �E = −4 − E0

is found to have the behavior

lim
J→0

�E = 32e−16π/3J . (27)

Our results in 1D suggest that the energy gain might have the
same behavior for any finite odd Nc > 1 in an infinite lattice;
however, it is difficult to check this conjecture numerically in
2D.

For the low-density (finite Nc/L) case, the calculation of
Sec. III is modified in larger dimensions. For d = 2 the density
of states now follows Eq. (2) with exponent r = 0, such that
the tree-level terms in Eq. (4) are absent. Then, the one-loop
result for TK at μ = 0 is [41]

TK ∝ D exp

(
− 3

4ρ0J

)
, (28)

where the factor 3/4 is a result of the particle-hole asymmetry;
this result continues to hold in region B2. In contrast, region

B1 yields the standard formula

TK ∝ D exp

(
− 1

ρ0J

)
. (29)

The crossover between the two regions remains defined by
TK ∼ μ which now gives an estimate for the boundary as
ρ0JB12 ∼ −1/ ln nc.

The behavior in d = 3 is more intriguing: Here, the density
of states is given by Eq. (2) with exponent r = 1/2. As a result
of the vanishing ρ(ω = 0) there will be no Kondo screening for
μ = 0 and small J [11]. Instead, a quantum phase transition
will occur at μ = 0 between an unscreened and a screened
phase upon increasing J [46]. This quantum phase transition
will be smeared for μ > 0, in a manner similar to that discussed
for doped graphene in Ref. [16]. From ρ(μ) ∝ μ1/2 and nc ∝
μ3/2 we can estimate TK for small J from the standard Kondo
formula, resulting in

TK ∝ D exp

(
−c3

J

)
, (30)

where c3 ∝ 1/(ρ0n
1/3
c ). This estimate applies to both B1 and B2

regions, however, with different c3 prefactors in the exponen-
tial, similarly to Eqs. (28) and (29). A more detailed analysis
of the crossovers in the d = 3 case will be given elsewhere.

VI. SUMMARY AND CONCLUSIONS

In this work we have presented a study of Kondo physics
at very low bath densities, so that particle-hole symmetry is
strongly violated. We have distinguished between two ways of
taking the infinite bath limit, one of them corresponding to the
usual thermodynamic limit at low densities, and the other with
fixed particle number, which we call the ultralow-density limit.
To the best of our knowledge, these regimes have not been
studied in depth in the literature (see however Refs. [47,48]).
Either of these two situations may conceivably be realized in
the near future in novel experimental conditions.

In both low-density and ultralow-density cases, there are
three clearly distinguishable regions of coupling: a large-J
region where one of the bath electrons is strongly localized
forms a localized singlet with the impurity, an intermediate
nonperturbative region where the singlet formation is not
sharply localized, and (for finite-sized baths) a small-J
perturbative region. In the low-density case, the intermediate
region is further demarcated into J values for which the
physics is dominated by the Fermi surface or by the band
edge. Our focus has mostly been specific to 1D baths, but
we have provided some considerations on higher dimensional
baths in the penultimate section.

In contrast to the “Kondo box” situation [3–8], the regimes
under study here do not involve small L but rather small Nc

or small Nc/L. The bath volume only plays a role at small
J (A region), where the energy gain is L dependent, and in
determining the crossover between the A and B regions. Unlike
the Kondo box case, the discreteness of the band levels has no
significant effect in this regime.

The present work opens up several open questions and
directions of study. Perhaps most prominently, it motivates
a full analysis of (ultra)low-density situations in higher
dimensions, and also for various lattice geometries. Our brief
treatment of 2D shows, for example, that the intermediate-J
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energy gain is described by different nonperturbative
behaviors in 1D and 2D. The role of bath dimensionality
or geometry in determining density profiles (nj and χj ) is
also currently unclear. Other questions include the influence
of interactions in the bath—this has been addressed for the
usual finite-density situation [49,50], but the effects will
conceivably be different in the (ultra)low-density cases.
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