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Lattice dynamics of cubic AuZn from first principles
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We study the mechanism of the B2 → R martensitic transformation in the shape memory alloy AuZn by
means of first-principles theory. Phonon anomalies in the TA2 acoustic branch along the �-M [ξ ,ξ ,0] direction
associated with a structural transformation are observed. The calculated Fermi surface of the B2 phase of AuZn
reveals large portions nested with each other by a translation through a vector q = 1

3 [1,1,0] associated with the
soft mode. In addition, we find that the B2 phase can be stabilized by pressure in the low-temperature limit. The
energetic barrier for the B2 → R transition is 2 mRy and appears to be near a critical point.
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I. INTRODUCTION

A substantial amount of thermodynamic data has been
published on the B2-phase alloy AuZn. These data include:
(1) elastic neutron scattering and inelastic x-ray scattering
[1,2], (2) specific heat [3,4] and thermal expansivity [5],
(3) electrical transport [3,6], (4) elastic constants and con-
stitutive properties [3], (5) quantum oscillatory phenomena,
including de Haas-van Alphen [7,8] and quantum oscillations
in the speed of sound [9], (6) Au self-diffusion rates [10–13],
(7) angle-resolved and core-level photoemission spectroscopy
[14], and (8) a recent Ginzburg-Landau analysis [15]. AuZn
is known to undergo a martensitic transformation at Tc =
64 K [2]. Such transformations are known to give rise to bulk
scale properties such as recovery of macroscopic shape with
temperature, stress, or magnetic field. First discovered nearly a
century ago by Ölander [16], this class of materials has become
the largest behind the steel industry [17–20].

Martensitic phase transformations are ferroelastic, whereby
a spontaneous strain develops below a transformation tempera-
ture [21]. Although they commonly occur in many other alloys,
only a subset of materials with this phase demonstrates the
shape-memory effect. A high-temperature phase transforms
to a low-temperature martensitic phase with lower symmetry
through softening of a particular phonon branch, usually the
TA2 [ξ ,ξ ,0] for most bcc austenitic phases [22]. Early on Zener
established the connection between a low shear resistance
and lattice distortions in bcc and related structures [23].
According to Zener, bcc-based structures have the highest
elastic shear modulus anisotropy, A = 2c44/(c11 − c12), where
c11, c12, and c44 are three independent elastic constants for
crystals with cubic symmetry and can be used as an indicator
of mechanical instability with respect to (110) [110] shear
[24]. It has been shown that the shear instability is linked to
alterations in the electronic structure [25,26]. For the AuZn
system, the subject of our investigation, the shape-memory
effect is connected to a reversible structural transformation
from an austenitic B2 phase (space group 221, Pm3m, Oh

1,
Pearson symbol cP2) to a trigonal R (space group 143, P 3,
C3

1) martensitic phase containing 27 atoms per primitive
cell [1].

The aforementioned data suggest a connection between
the band structure and anomalies in the vibrational spectra.
In light of these data, we address from first principles the
interaction between the electron gas and the lattice vibrations
in the vicinity of the structural martensitic transformation in
AuZn. It is shown that the transition is nearly critical and
phonon softening is accompanied by alterations in the band
structure.

II. METHOD

The linear-response (LR) calculations presented in this
study are based on density functional theory [27,28] and
density functional perturbation theory [29] as implemented
in the Quantum ESPRESSO package [30]. These calculations
employ ultrasoft (US) pseudopotentials to describe electron-
ion interaction [31,32]. Primarily, calculations based on the
local density approximation (LDA) [33] have been used,
but we also performed calculations based on the generalized
gradient approximation (GGA) [34]. A plane-wave basis set
with a charge-density cutoff energy up to 800 Ry (10 880 eV)
was used to describe the augmented charge of localized d

electrons of gold and zinc for both LDA and GGA functionals.
Band summation was performed using the “cold smearing”
technique by Marzari-Vanderbilt [35] with a broadening of
σ = 0.025 Ry (0.34 eV). A 6 × 6 × 6 q-point mesh resulting
in 20 dynamical matrices has been used to perform inverse
Fourier transformation and find interatomic force constant
matrices in order to calculate phonon frequencies at noncom-
mensurate q points by interpolation.

Direct-force (DF) phonon spectra calculations have been
performed using the small displacement method as imple-
mented in PHON package [36]. Force calculations as well as
frozen phonon calculations have been performed using density
functional theory as implemented within the VASP package
[37]. The LDA [38], as well as GGA [34] have been used
to describe the exchange-correlation effects. The projector-
augmented wave (PAW) potentials have been used with the
cutoff energy up to 450 eV. The supercell used in our DF and
frozen phonon calculations contains 432 atoms and is obtained
by increasing the primitive unit cell 6 times along each of the
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primitive lattice vectors. Integration over the Brillouin zone
was performed using a special k-points technique [39] with
4 × 4 × 4 mesh together with Methfessel-Paxton smearing
of σ = 0.200 eV [40]. Both Fermi surface and bare-static
susceptibility calculations are performed by using a single cell
with 100 × 100 × 100 and 200 × 200 × 200 Monkhorst-Pack
[39] k points, respectively.

III. RESULTS AND DISCUSSION

A. Phonon dispersion relation

To proceed with the analysis of the lattice dynamical
properties of B2 AuZn, one has to ensure that all the parameters
involved into the calculations are converged. Therefore, we
have examined the phonon dispersion relations at the experi-
mental lattice parameter 3.13 Å [41] with respect to the cutoff
energies, both for the LR US and the DF PAW calculations.

Figure 1 shows the evolution of the phonon dispersion
curves of B2 AuZn with the cutoff energy. For the US LR
calculations the charge-density cutoff was varied [Figs. 1(a)
and 1(b)], while for the PAW DF calculations we varied
the kinetic cutoff energy [Figs. 1(c) and 1(d)]. The LR US
GGA calculations with the cutoff energy of 400 Ry result
in a stable TA2 mode along the �-M direction, as shown
in Fig. 1(a). However, if the cutoff energy is increased up
to 800 Ry, the TA2 mode softens and imaginary frequencies

appear. The phonon frequency at the M point is ω
LR,GGA
M =

0.947 THz, and at the wave vector q = 1
3 [1,1,0] the frequency

is ωLR,GGA
q = −0.329i THz. If US LDA is used for phonon

dispersion calculations [Fig. 1(b)], then at the cutoff energy of
400 Ry the TA2 mode has imaginary frequencies almost along
the whole �-M direction. When the cutoff energy is increased
up to 700 or 800 Ry, the behavior of the TA2 mode mimics the
experimental phonon dispersion relation and the imaginary
frequency appears close to the wave vector q = 1

3 [1,1,0]

(ωLR,LDA
M = 0.679 THz, ωLR,LDA

q = −0.483i THz), unlike
for the US GGA calculations, where additional imaginary
frequency at q = 1

6 [1,1,0] persists. The LR calculations are
converged when the charge-density cutoff is close to 800 Ry,
and both LDA and GGA give imaginary frequencies around
q = 1

3 [1,1,0] [Figs. 1(a) and 1(b)].
As for the DF calculations, from Figs. 1(c) and 1(d) one

can see that for the cutoff energy of 350 eV only PAW LDA
picks up the instability along the �-M direction ω

DF,LDA
M =

0.486 THz, ωDF,LDA
q = −0.383i THz), while PAW GGA

results in positive frequencies along the whole �-M direction
(ωDF,GGA

M = 0.750 THz, ωDF,GGA
q = 0.274 THz). The result

for the PAW GGA potential is in agreement with the phonon
dispersion relations obtained in Ref. [15], where the authors
have used the DF technique together with the PAW GGA
potential and a cutoff energy of 346 eV. One should note here
that in Ref. [15] the DF calculations have been performed
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FIG. 1. (Color online) Phonon dispersion relations of B2-AuZn calculated using LR (a), (b) and DF (c), (d) methods with different cutoff
energies. The DF calculations have been performed using the amplitude of atomic displacement of 0.038 Å. The results of the LR and the DF
calculations are shown together with the experimental data (circles) measured using inelastic x-ray scattering at T = 200 K [2].
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FIG. 2. (Color online) Direct-force phonon dispersion relations of B2-AuZn calculated using different values of atomic displacement and
cutoff energy. The results are shown together with the experimental data (circles) measured using inelastic x-ray scattering at T = 200 K [2].

using a theoretical lattice parameter (3.195 Å) and a 72-atom
supercell. We have, therefore, performed additional PAW
GGA DF calculations at the lattice parameter 3.195 Å using
a 6 × 6 × 6 supercell (432 atoms) and the cutoff energy
of 350 eV. The calculation resulted in a soft TA2 acoustic
branch with imaginary frequencies along the �-M direction
ωDF,GGA

q = −0.197i THz, unlike Ref. [15], where the authors
obtained ωDF,GGA

q ≈ 0.484 THz. Coming back to our calcu-
lations at the experimental lattice parameter, from Figs. 1(c)
and 1(d) one can see that imaginary frequencies appear along
the �-M direction if the cutoff energy is increased up to
450 eV and that these results are consistent with the data in
Figs. 1(a) and 1(b). These calculated phonon dispersion curves
show unusual behavior of the optical mode along the �-X
direction, such as abrupt increase in frequencies up to 5.63 THz
(PAW LDA) and 6.02 THz (PAW GGA) and additional
imaginary frequencies close to the � point along the �-M
(ωDF,LDA = −0.411i THz, ωDF,GGA = −0.382i THz) and
�-R (ωDF,LDA = −0.112i THz, ωDF,GGA = −0.048i THz)
directions in TA2 mode. Assuming that this can be a problem
with interpolation, we have performed another PAW GGA cal-
culation, but with a 6 × 6 × 6 k-point grid for the integration
over the Brillouin zone. However, the calculation resulted in
the same phonon spectrum as in Fig. 1(c) for a 450-eV cutoff
energy. On the other hand, the unusual behavior of the optical
mode might be associated with very small atomic displacement

used for interatomic force constant calculations. We address
this issue in detail below.

An important factor that can significantly affect the phonon
dispersion relation, while using the DF technique, is the
amplitude of atomic displacement used for interatomic force
constants calculations. Figure 2 shows the evolution of phonon
spectra, calculated using the DF method, with different initial
atomic displacements of Au and Zn atoms. We also compare
the phonon dispersion curves calculated with the kinetic en-
ergy cutoff of 350 and 450 eV. For small atomic displacements
at the kinetic cutoff energy of 350 eV [Figs. 1(a) and 1(b)],
PAW LDA calculations result in imaginary frequencies along
the [ξ ,ξ ,0] direction, in agreement with the LR results, while
PAW GGA gives positive frequencies and no instabilities are
present. Further increase in atomic displacement from 0.038
to 0.169 Å in PAW GGA calculation results in insignificant
change in phonon frequency at q = 1

3 [1,1,0] [Fig. 2(a)]. On
the other hand, in the case of LDA PAW, increase of the initial
displacements in the calculation of the force constants stiffens
the transverse TA2 acoustic branch, providing a stabilizing
effect for the soft mode [Fig. 2(b)]. For an atomic displacement
of 0.038 Å, the phonon frequency is ωDF,LDA

q = −0.383i THz

at q = 1
3 [1,1,0], for 0.113 Å the frequency is ωDF,LDA

q =
−0.271i THz, and for an atomic displacement of 0.169 Å
the phonon frequency is positive ωDF,LDA

q = 0.081 THz.
Therefore, the low-energy TA2 phonon branch along the
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[ξ ,ξ ,0] direction is very sensitive to the amplitude of atomic
displacements due to large anharmonic effects. We note,
however, that the DF calculations converge towards the LR,
when the displacement is gradually reduced. At higher cutoff
energy (450 eV) PAW GGA and PAW LDA both result in soft
mode with imaginary frequencies along the �-M direction if
a small displacement is used, which stiffens with the increase
of atomic displacement revealing an anharmonic behavior of
B2 AuZn. Moreover, a change in atomic displacement at the
kinetic energy cutoff of 450 eV resolves the numerical problem
in the optical part of the spectrum along the �-X direction.

Considering all these results, one can see that at a suffi-
ciently large cutoff energy in the DF PAW calculations, both
LDA and GGA result in very similar phonon dispersions and
are able to pick up the instability along the �-M direction,
provided sufficiently small displacements are used for the
calculation of the dynamical matrix. Both LDA and GGA
approximations can be used to describe lattice dynamics of
B2 AuZn, though GGA must be applied very carefully, so it
does not lead to nonconverged results. Overall, we consider
the LDA functional to describe best the main feature of the
phonon spectrum properly, i.e., soft mode at the wave vector
q = 1

3 [1,1,0] that is found experimentally. The TA2 acoustic
phonon branches along the �-M [ξ ,ξ ,0] direction calculated by
means of LR and DF methods are in qualitative agreement with
the experimental data measured by inelastic x-ray scattering
at T = 200 K. Here, by qualitative agreement we mean that
theory is able to pick up the instability of the TA2 acoustic
branch along �-M direction and predict correctly dynamical
instability of B2 AuZn at low temperatures [2]. The softening
along TA2 [ξ ,ξ ,0] is similar to that observed in NiTi [42], NiAl
[43,44], AuCd [45], FePt [46], and other binary Hume-Rothery
alloys with electron per atom concentration e/a = 3 : 2.

B. Electron gas properties

Kohn has shown that the lattice vibrations are screened by
the conduction electrons in metals leading to a damping of
the phonon modes along particular high symmetry directions
of the Brillouin zone [47]. Damping can take place whenever
there are parallel portions of the Fermi surface resulting in a
strong electronic response at the nesting wave vector. Recent
de Haas-van Alphen experiments have been performed in
stoichiometric AuZn [8]. The Fermi surface of martensitic
AuZn has been determined by quantum oscillations in the
magnetization [8] and quantum oscillations in the speed of
sound [3]. It has been shown that a significant Fermi surface
reconstruction takes place during the transformation so that
the Fermi surfaces of the parent and the product phases coexist
down to 60 mK [8].

To further investigate the microscopical reason for the
martensitic transformation in AuZn, we have examined
the topology of the Fermi surface of ordered B2 AuZn.
The fermi surface has been calculated using both US LDA
pseudopotential and PAW LDA potential, which resulted in the
same topology, though we show only the one calculated with
PAW LDA (Fig. 3). The theoretical Fermi surface is derived
from two bands that cross the Fermi level and is in favorable
agreement with the one previously calculated using the full
potential linearized augmented plane wave method (FLAPW)

FIG. 3. (Color online) Theoretical Fermi surface of B2-AuZn at
T = 0 K (top). The bottom panel shows a cut through the Fermi
surface along (100) plane together with the nesting vector (red
arrow) q = 1

3 [1,0,0]. For the Fermi surface calculations a single cell
containing one atom of Au and one atom of Zn has been used together
with PAW LDA potentials and 100 × 100 × 100 k-point mesh.

[7]. The Fermi surface does not reveal any particularly complex
topology and is consistent of a hole sheet that is centered at the
� point (sheet in green color), and small, almost flat, electron
pockets that are close to the R points (sheets in blue color).
These electron pockets are high-frequency pockets and they
show up at low magnetic fields and de Haas-van Alphen effect
[8]. In Fig. 3 the Fermi surface in the kxky plane is shown
together with the nesting regions where the Fermi surface
sheets can be embedded into another by a translation through
the vector q = 1

3 [1,1,0]. This nesting vector coincides with
the wave vector at which TA2 mode exhibits a softening.
The Fermi surface of AuZn resembles that of Ni-Al, calcu-
lated from first principles [25] and measured by Compton
scattering [48].

In order to compare our theoretical calculations with de
Haas-van Alphen experiments, we have performed an analysis
of several extremal orbits of the Fermi surface. The area of
extremal orbit obtained from the electronic band in (110) plane
(that incorporates the � point) is S1 = 0.489 Å−2. For a closed
orbit obtained from the electronic band in (100) plane (that
incorporates X point) the area is S2 = 0.705 Å−2. Finally, for
the closed orbit in (100) obtained from the hole band, the area
is S3 = 1.431 Å−2. The measured frequency of de Haas-van
Alphen oscillation of 4.7 kT [8] is connected to area of the
extremal orbit, Sexp, via Sexp = 2πeH/�c [49], so we obtain
Sexp = 0.445 Å−2. Therefore, the area of the first orbit S1 is in
favorable agreement with the experimental Sexp with an error
≈9.8%. The frequency of de Haas-van Alphen oscillations
calculated using the theoretical area of extremal orbit, 5.1 kT,
is comparable with the measured one, 4.7 kT [8].
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In order to further highlight the effects of nesting, we have
also calculated the bare-static susceptibility defined by the
Lindhard formula,

χ (q) =
∑

k

∑

n,m

f (εn,k+q) − f (εm,k)

εn,k+q − εm,k
, (1)

where f is the Fermi-Dirac distribution function and εm,k is
the energy of the electronic band state with band number m

and wave vector k. The temperature at which the martensitic
transformation takes place (Tc = 64 K) is lower than the Fermi
temperature, so instead of the Fermi-Dirac distribution we have
used the step function 	(ε − εF ) approximation, and Kohn-
Sham eigenvalues are summed up over the irreducible part of
the Brillouin zone. Figure 4 shows the bare-static susceptibility
calculated along the [ξ,ξ,0] direction of the cubic Brillouin
zone for T = 0 K. We find that the bare-static susceptibility
function exhibits a peak along the high-symmetry [ξ,ξ,0]
direction of the Brillouin zone. The peak along [ξ,ξ,0] is
quite pronounced and occurs at q = 1

3 [1,1,0], where phonon
softening is observed in the calculation (Fig. 2). Nesting along
the [ξ,ξ,0] direction is related to softening of the TA2 branch
along the [ξ,ξ,0] direction and is associated with the B2 → R

phase transition in AuZn. One can expect that a contribution
from the electron-phonon coupling matrix elements to the
susceptibility will make the peak along [ξ,ξ,0] stronger.

C. Phenomenological approach to B2 → R phase transition

Within the context of Ginzburg-Landau theory we have
performed LDA PAW frozen phonon energy calculations,
where we have used concepts of order parameter, Q, and excess
energy, 
E. The magnitude of the displacement of the TA2

phonon mode can be considered as a primary order parameter
driving the B2 → R phase transformation in AuZn, similarly
to the AuCd system [50]. According to Landau theory of phase
transitions one can expand the excess energy of a system,
undergoing phase transition, in a Taylor series of the order
parameter. Therefore, we calculate the energy of a frozen TA2
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FIG. 5. (Color online) Frozen phonon energy as a function of
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using PAW potentials together with a LDA functional and a 4 × 4 × 4
k-point mesh. Energies shown in the figure correspond to the energy
per cell containing 432 atoms.

phonon (the excess energy in our case) with the eigenvector
q = 1

3 [1,1,0] excited along [ξ ,ξ ,0] direction (Fig. 5).
Landau potentials have been calculated with different

values of kinetic cutoff energy and bandwidth smearing. As can
be seen from Fig. 5, if cutoff energy of 350 eV is used together
with a band smearing of 0.200 eV, the Landau potential has a
positive curvature at zero phonon amplitudes, which disagrees
with the existence of an imaginary TA2 phonon mode along the
[ξ,ξ,0] direction [Fig. 1(b)]. The form of the potential is not
changed if bandwidth smearing is decreased down to 0.020 eV.
However, if the cutoff energy is increased from 350 up to
430 eV, the Landau potential profile changes drastically. The
curvature of the potential becomes negative (for both choices
of band smearing) and reflects an instability of the B2 phase
with respect to the R phase at low temperatures, which is
consistent with the phonon dispersion curves [Fig. 1(b)].

The form of the excess energy versus order parameter
defines the order of the phase transition. If the curvature
had been positive for the calculated Landau potential at low
values of the ion displacement for the TA2 phonon mode
at q = 1

3 [1,1,0] and T = 0 K, we would have made the
conjecture that the transition is most likely first order. In the
present case the Landau potential has a negative curvature for
low values, and it is difficult to draw any conclusion on the
order of the phase transition. However, along with the Landau
analysis there is another evidence that can be used to illuminate
the order of the phase transition.

Figure 5 shows the measured squared phonon frequencies
at the wave vector q = 1

3 [1,1,0] versus temperature. The
ω2(q) versus T dependence is expected to be linear and the
extrapolation of the experimental frequencies down to zero
gives a transition temperature. Here the extrapolation results
in negative B2 → R transformation temperature (≈−150 K).
This can be explained if the phase transformation is first order
when the phonon amplitude suddenly changes its value from
zero to a nonzero value. In this case a soft-mode theory,
where the frequency dependence on temperature yields ω2 ≈
a(T − Tc), does not work. Instead, the dependence is expected
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to be ω2 ≈ a(T + Tc). The anharmonic effects push up the soft
mode and it has nonzero value at the transition temperature
(Fig. 6). The first-order behavior is also manifested by the
observation of critical scattering near 64 K [8].

D. Pressure effects

Stabilization of B2 AuZn at low temperatures under
pressure has also been addressed. We notice first that the
experimental lattice parameter 3.13 Å used in our LR phonon
spectra calculations results in a hydrostatic pressure of PLDA =
−5.3 GPa in US LDA, and PGGA = 8.0 GPa in US GGA
calculations. If perfect agreement between theory and experi-
ment had been achieved as regards the equilibrium volume,
the calculated pressures should have been 0 GPa. Hence,
the deviation from 0 GPa represents a slight overbinding
of the LDA functional and a slight underbinding in the
GGA functional. The equilibrium lattice parameters of AuZn
in LDA and GGA approximations are 3.09 and 3.19 Å.
Phonon frequencies at the M point and at q = 1

3 [1,1,0]
calculated at these theoretical equilibrium lattice parameters
are ω

LR,LDA
M = 0.800 THz, ωLR,LDA

q = −0.392i THz for the

US LDA and ω
LR,GGA
M = 0.948 THz, ωLR,GGA

q = −0.363i THz
for US GGA calculations. The phonon frequencies calculated
at the theoretical equilibrium volumes in both LDA and GGA
approaches are imaginary at the q = 1

3 [1,1,0] wave vector,
as discussed above, which reflects instability of the TA2 mode
along the �-M directions, and is consistent with the experiment
[2].

Next we proceed with the study of evolution of the
soft TA2 mode at q = 1

3 [1,1,0] wave vector at selected
volumes using the LR technique with US GGA and US
LDA pseudopotentials. The results of our calculations are
summarized in Table I. From this table one can see that the soft
TA2 mode stiffens with pressure and stabilizes at a theoretical
pressure of 11.2 GPa for US GGA and at 11.5 GPa for for
US LDA. A similar effect is observed in α-U where the �4

branch stiffens with pressure [52]. Pressure-stabilized phonon
dispersion curves of the B2 phase AuZn together with the

TABLE I. Evolution of the frequency of TA2 mode ω at
q = 1

3 [1,1,0] with pressure P . For each pressure we also show
corresponding lattice parameter a and volume compression 
V/V ,
where V is theoretical equilibrium volume. The calculations are
performed within the LR technique.

Functional a (Å) P (GPa) 
V/V ω (THz)

GGA 3.163 3.4 0.028 − 0.464i

3.130 8.0 0.058 − 0.329i

3.110 11.2 0.076 0.269
3.050 23.0 0.128 0.733

LDA 3.130 − 5.3 − 0.036 − 0.483i

3.060 5.5 0.032 − 0.299i

3.030 11.5 0.060 0.180
2.980 23.8 0.106 0.517

corresponding phonon densities of states are shown in Fig. 7.
Peaks in the theoretical phonon density of states are due to
dispersionless phonon modes in acoustical and optical parts
of the calculated spectra. Thus, we find that the B2 phase
should be stable at low temperatures under pressure. The
pressure dependence of the transition temperature measured by
ac transport confirms our findings [2], where the B2 structure
is found to be stable at pressures ≈3 GPa. As mentioned above,
due to unknown exact form of the exchange-correlation energy,
the theoretical equations of states do not represent minima
at the experimental lattice parameter 3.13 Å. Therefore, we
can not directly compare a theoretical pressure at which B2
AuZn is stabilized (11.2 GPa for US GGA and 11.5 GPa for
US LDA) with the experimental 3 GPa. However, assuming
theoretical pressure versus volume curves are the same as
the experimental one, we can recalculate an experimental
volume compression at 3 GPa from the theoretical curves. We
obtain the experimental volume compression 
V/V = 0.027
from the US GGA curve, while 
V/V = 0.018 from the US
LDA curve. Next, we notice that in US GGA calculations
the B2 phase becomes dynamically stable in the pressure
range 8.0–11.2 GPa, while in US LDA calculations that range
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FIG. 7. (Color online) Linear response phonon dispersion rela-
tions and phonon density of states calculated at theoretical pressure
11.2 GPa in US GGA (dashed curve) and 11.5 GPa in US LDA (solid
curve) calculations.
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is 5.5–11.5 GPa. Therefore, we calculate theoretical volume
compressions corresponding to these pressure ranges both for
GGA and LDA functionals. We obtain 
V/V = 0.019 for
US GGA, and 
V/V = 0.029 for US LDA. These volume
compressions are in favorable agreement with the experimental
volume compressions, recalculated from our theoretical data.

One must also notice here that the dip in the TA2

phonon mode along the �-M direction that is found in both
US LDA and US GGA calculations is a result of strong
electron-phonon coupling that points towards the possibility
of superconductivity in the B2 phase under pressure, which
has recently been observed [53].

IV. SUMMARY

We present a comprehensive theoretical study of the
microscopic mechanism behind the martensitic transformation
in AuZn, where both the vibrational spectrum and the Fermi
surface are addressed. Different ab initio approaches have
been used to describe the lattice dynamics of AuZn at
low temperatures. It has been emphasized that high cutoff
energies, such as 800 Ry in US GGA and 450 eV in PAW
GGA calculations, have to be used in order to capture the
instability of TA2 mode along the �-M direction. In the case
of LDA one can use smaller cutoff energies, e.g., 700 Ry
for US pseudopotentials and 450 eV for PAW potentials.
At a sufficiently large cutoff energy both GGA and LDA
functionals, in US LR and PAW DF calculations, result in
a very similar phonon dispersions and are able to pick up the
instability along the �-M direction. We have also shown that
careful description of frozen TA2 phonon mode, responsible
for the B2 → R transition, at q = 1

3 [1,1,0] requires higher
cutoff energies compared to the phonon dispersion calculations
if the PAW LDA potential is used. In the case of AuZn an
insufficient cutoff energy can result in Landau potential profile
inconsistent with the phonon spectrum. From the experimental

ω2(q) versus T dependence we conclude that the B2 → R

transition is of first order.
Our studies show that AuZn is anharmonic, in the sense that

phonon modes which are imaginary for smaller displacements
of atoms become real for larger displacements. The topology
of the Fermi surface has been investigated and it has been
shown that Fermi surface nesting along q = 1

3 [1,1,0] is
coupled to the phonon softening along the �-M direction of
the cubic Brillouin zone. The contribution of the bare-static
susceptibility to electron-phonon interaction has also been
investigated. We have shown that phonon softening occurs
at the same wave vector q = 1

3 [1,1,0] where the susceptibility
exhibits a maximum. The peak in the bare-static susceptibility
combined with the soft TA2 phonon mode are likely to be
the driving mechanism for the martensitic transition in AuZn.
We also suggest that the strong electron-phonon coupling is
likely to be the operative mechanism for martensitic B2 → R

transformation in AuZn. From the measured temperature
dependence of phonon frequencies at the q = 1

3 [1,1,0] wave
vector we suggest that the transformation is of first order.
B2 AuZn is stabilized at low temperatures at a theoretical
pressure of 11.2 GPa in US GGA and 11.5 GPa in US
LDA LR calculations, and we suggest that the B2 phase
of AuZn under pressure can be the global ground state at
low temperatures. Large softening along [ξ ,ξ ,0] direction
can arise due to strong electron-phonon coupling and could
give rise to superconductivity similar to charge-density wave
materials.
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[24] A. Planes and L. Mañosa, Sol. St. Phys. 55, 159 (2001).
[25] G. L. Zhao and B. N. Harmon, Phys. Rev. B 45, 2818 (1992).
[26] G. L. Zhao and B. N. Harmon, Phys. Rev. B 48, 2031 (1993).
[27] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[28] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[29] S. Baroni et al., Rev. Mod. Phys. 73, 515 (2001).
[30] P. Giannozzi et al., J. Phys. Condens. Matter 21, 395502 (2009).
[31] A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulos,

Phys. Rev. B 41, 1227(R) (1990).
[32] D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
[33] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
[34] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).

104101-7

http://dx.doi.org/10.1016/0921-4526(95)00179-D
http://dx.doi.org/10.1016/0921-4526(95)00179-D
http://dx.doi.org/10.1016/0921-4526(95)00179-D
http://dx.doi.org/10.1016/0921-4526(95)00179-D
http://dx.doi.org/10.1103/PhysRevLett.101.135703
http://dx.doi.org/10.1103/PhysRevLett.101.135703
http://dx.doi.org/10.1103/PhysRevLett.101.135703
http://dx.doi.org/10.1103/PhysRevLett.101.135703
http://dx.doi.org/10.1080/13642810208224372
http://dx.doi.org/10.1080/13642810208224372
http://dx.doi.org/10.1080/13642810208224372
http://dx.doi.org/10.1080/13642810208224372
http://dx.doi.org/10.1006/jcht.2002.0899
http://dx.doi.org/10.1006/jcht.2002.0899
http://dx.doi.org/10.1006/jcht.2002.0899
http://dx.doi.org/10.1006/jcht.2002.0899
http://dx.doi.org/10.2320/matertrans.47.587
http://dx.doi.org/10.2320/matertrans.47.587
http://dx.doi.org/10.2320/matertrans.47.587
http://dx.doi.org/10.2320/matertrans.47.587
http://dx.doi.org/10.1088/0953-8984/17/6/L01
http://dx.doi.org/10.1088/0953-8984/17/6/L01
http://dx.doi.org/10.1088/0953-8984/17/6/L01
http://dx.doi.org/10.1088/0953-8984/17/6/L01
http://dx.doi.org/10.1103/PhysRevLett.94.116401
http://dx.doi.org/10.1103/PhysRevLett.94.116401
http://dx.doi.org/10.1103/PhysRevLett.94.116401
http://dx.doi.org/10.1103/PhysRevLett.94.116401
http://dx.doi.org/10.1103/PhysRevB.75.205119
http://dx.doi.org/10.1103/PhysRevB.75.205119
http://dx.doi.org/10.1103/PhysRevB.75.205119
http://dx.doi.org/10.1103/PhysRevB.75.205119
http://dx.doi.org/10.1103/PhysRevB.4.1070
http://dx.doi.org/10.1103/PhysRevB.4.1070
http://dx.doi.org/10.1103/PhysRevB.4.1070
http://dx.doi.org/10.1103/PhysRevB.4.1070
http://dx.doi.org/10.1103/PhysRevB.6.4432
http://dx.doi.org/10.1103/PhysRevB.6.4432
http://dx.doi.org/10.1103/PhysRevB.6.4432
http://dx.doi.org/10.1103/PhysRevB.6.4432
http://dx.doi.org/10.1080/01418610208240011
http://dx.doi.org/10.1080/01418610208240011
http://dx.doi.org/10.1080/01418610208240011
http://dx.doi.org/10.1080/01418610208240011
http://dx.doi.org/10.1016/0966-9795(93)90035-T
http://dx.doi.org/10.1016/0966-9795(93)90035-T
http://dx.doi.org/10.1016/0966-9795(93)90035-T
http://dx.doi.org/10.1016/0966-9795(93)90035-T
http://dx.doi.org/10.1103/PhysRevB.88.024110
http://dx.doi.org/10.1103/PhysRevB.88.024110
http://dx.doi.org/10.1103/PhysRevB.88.024110
http://dx.doi.org/10.1103/PhysRevB.88.024110
http://dx.doi.org/10.1021/ja01349a004
http://dx.doi.org/10.1021/ja01349a004
http://dx.doi.org/10.1021/ja01349a004
http://dx.doi.org/10.1021/ja01349a004
http://dx.doi.org/10.1557/mrs2002.43
http://dx.doi.org/10.1557/mrs2002.43
http://dx.doi.org/10.1557/mrs2002.43
http://dx.doi.org/10.1557/mrs2002.43
http://dx.doi.org/10.1557/mrs2002.45
http://dx.doi.org/10.1557/mrs2002.45
http://dx.doi.org/10.1557/mrs2002.45
http://dx.doi.org/10.1557/mrs2002.45
http://dx.doi.org/10.1557/mrs2002.44
http://dx.doi.org/10.1557/mrs2002.44
http://dx.doi.org/10.1557/mrs2002.44
http://dx.doi.org/10.1557/mrs2002.44
http://dx.doi.org/10.1016/S0921-5093(99)00286-5
http://dx.doi.org/10.1016/S0921-5093(99)00286-5
http://dx.doi.org/10.1016/S0921-5093(99)00286-5
http://dx.doi.org/10.1016/S0921-5093(99)00286-5
http://dx.doi.org/10.1080/00150199008223816
http://dx.doi.org/10.1080/00150199008223816
http://dx.doi.org/10.1080/00150199008223816
http://dx.doi.org/10.1080/00150199008223816
http://dx.doi.org/10.1103/RevModPhys.84.945
http://dx.doi.org/10.1103/RevModPhys.84.945
http://dx.doi.org/10.1103/RevModPhys.84.945
http://dx.doi.org/10.1103/RevModPhys.84.945
http://dx.doi.org/10.1103/PhysRev.71.846
http://dx.doi.org/10.1103/PhysRev.71.846
http://dx.doi.org/10.1103/PhysRev.71.846
http://dx.doi.org/10.1103/PhysRev.71.846
http://dx.doi.org/10.1016/S0081-1947(01)80005-9
http://dx.doi.org/10.1016/S0081-1947(01)80005-9
http://dx.doi.org/10.1016/S0081-1947(01)80005-9
http://dx.doi.org/10.1016/S0081-1947(01)80005-9
http://dx.doi.org/10.1103/PhysRevB.45.2818
http://dx.doi.org/10.1103/PhysRevB.45.2818
http://dx.doi.org/10.1103/PhysRevB.45.2818
http://dx.doi.org/10.1103/PhysRevB.45.2818
http://dx.doi.org/10.1103/PhysRevB.48.2031
http://dx.doi.org/10.1103/PhysRevB.48.2031
http://dx.doi.org/10.1103/PhysRevB.48.2031
http://dx.doi.org/10.1103/PhysRevB.48.2031
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1103/PhysRevB.41.1227
http://dx.doi.org/10.1103/PhysRevB.41.1227
http://dx.doi.org/10.1103/PhysRevB.41.1227
http://dx.doi.org/10.1103/PhysRevB.41.1227
http://dx.doi.org/10.1103/PhysRevB.41.7892
http://dx.doi.org/10.1103/PhysRevB.41.7892
http://dx.doi.org/10.1103/PhysRevB.41.7892
http://dx.doi.org/10.1103/PhysRevB.41.7892
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevB.23.5048
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865


ISAEVA, SOUVATZIS, ERIKSSON, AND LASHLEY PHYSICAL REVIEW B 89, 104101 (2014)

[35] N. Marzari, D. Vanderbilt, A. DeVita, and M. C. Payne, Phys.
Rev. Lett. 82, 3296 (1999).

[36] D. Alfe, Comput. Phys. Commun. 180, 2622 (2009).
[37] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
[38] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
[39] H. Monkhorst and J. Pack, Phys. Rev. B 13, 5188 (1976).
[40] M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).
[41] K. Krompholz and A. Weiss, Ber. Bunsenges. Phys. Chem. 82,

334 (1978).
[42] H. Tietze, M. Mullner, and B. Renker, J. Phys. C 17, L529

(1984).
[43] S. M. Shapiro, B. X. Yang, Y. Noda, L. E. Tanner, and

D. Schryvers, Phys. Rev. B 44, 9301 (1991).

[44] E. I. Isaev et al., Solid State Commun. 129, 809 (2004).
[45] T. Ohba, Phase Transitions 69, 289 (1999).
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