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Magnetic flux density and the critical field in the intermediate state of type-I superconductors
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To address unsolved fundamental problems of the intermediate state (IS), the equilibrium magnetic flux
structure and the critical field in a high-purity type-I superconductor (indium film) are investigated using magneto-
optical imaging with a three-dimensional vector magnet and electrical transport measurements. The least expected
observation is that the critical field in the IS can be as small as nearly 40% of the thermodynamic critical field Hc.
This indicates that the flux density in the bulk of normal domains can be considerably less than Hc, in apparent
contradiction with the long-established paradigm, stating that the normal phase is unstable in fields below Hc.
Here we present a theoretical model consistently describing this and all other properties of the IS. Moreover, our
model, based on a rigorous thermodynamic treatment of the observed equilibrium flux structure in a tilted field,
allows for a quantitative determination of the domain-wall parameter and the coherence length, and provides
new insight into the properties of superconductors.
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The interest in domain shapes and patterns in a big variety of
physicochemical systems with spatially modulated phases [1]
has sparked renewed attention to the intermediate state (IS)
in type-I superconductors [2–6], a classical example of such
systems with very rich physics [7]. Besides the equilibrium
magnetic flux pattern, unsolved fundamental problems of the
IS include the flux density B in the normal (N) domains and
the critical field Hci for the IS-N transition. The IS provides
access to one of the most fundamental parameters, namely the
Pippard/BCS coherence length ξ0 (the size of Cooper pairs).
However, a verified recipe to extract ξ0 from the IS properties is
missing. On the other hand, some properties of the IS, e.g., the
field distribution near the sample surface, can be similar to the
properties of the mixed state (MS) in type-II superconductors.
Therefore, better understanding of the IS can provide new
insights in understanding of the MS.

Ever since Landau introduced a laminar model (LLM) for
a slab in a perpendicular field [8], many models of the IS have
been proposed. However, none is fully adequate [9]. In this
Rapid Communication we report on an experimental study
of the IS performed with a high-purity indium sample and
introduce a comprehensive theoretical model for a slab in a
tilted field. Our model is surprisingly simple. Nevertheless,
it allows for quantitative evaluation of the IS parameters,
including ξ0, and sheds new light on fundamental properties
of superconductors.

When a type-I superconductor with demagnetizing factor
η is subjected to a weak magnetic field H , the sample
is in the Meissner state until H reaches Hi = (1 − η)Hc,
Hc being the thermodynamic critical field [7]. At Hi the
sample undergoes a transition to the IS, where it breaks up
into N and superconducting (S) domains with flux densities
B and zero, respectively. Under increasing H the normal
fraction ρn = Vn/V (where Vn and V are the volumes of
N domains and of the sample, respectively) increases until
the entire sample becomes normal at Hci . In agreement with
the standard paradigm stating that the N phase is unstable at
B < Hc [10,11], Hci is assumed equal to [8] or slightly less

than [7,12] Hc. Below we show that this is true only for very
thick samples.

The domain shape depends on many factors [13]. An
important role is played by purity. Structural and chemical
flaws reduce the electron mean free path, hence increasing the
Ginzburg-Landau (GL) parameter κ and, therefore, decrease
the S/N interface tension γ , the latter being the “driving force”
in reaching the ground state. In addition, the flaws create
pinning centers, hence reducing domains’ mobility. Therefore,
samples for studies of equilibrium flux patterns have to be pure
and possess maximum possible γ (minimum κ) [14]. The
equilibrium flux pattern is well established for a cylinder in a
perpendicular field and a slab in a strongly tilted field [15]. For
the latter η = 1 (Hi = 0) and domains are ordered laminae.
The IS in the slab can be investigated using magneto-optics
(MO) [13]. This is the experiment we performed.

We focus on the following questions. (1) How does the
flux density B and the critical field Hci depend on the material
parameters, and how do these quantities evolve with magnitude
and orientation of H? (2) How can the domain-wall parameter
δ [and therefore the GL ξ (T ) and the Pippard ξ0 coherence
lengths] be inferred from the IS structure? The relationship
between δ(T ), characterizing the width of the transition region
between N and S domains, ξ (T ), and ξ0 depends on the material
and its purity. For the pure-limit Pippard superconductors (κ �
1) δ(T ) = 1.89ξ (T ) = 1.4ξ0/(1 − t)0.5, where t = T/Tc [7].

At first sight the answers are known [7,11,12,15]. However,
ξ0 in Sn and In, determined from the measurements in the
Meissner state (310 nm in Sn and 380 nm in In) [16], differ
from ξ0 calculated from δ(0) obtained in the IS (180 [17]
and 240 nm [18], respectively). Since in both cases the
samples were very pure, this signals the inadequacy of models
used either in Ref. [16] or in Refs. [17,18]. Resolving this
contradiction was the original motivation for this work.

The IS structure was first treated by Landau in 1937 [8]. He
established the concept of the surface tension γ (δ was later
defined as 8πγ/H 2

c [19]) and proposed the LLM. Assuming
that B = Hc, Landau calculated the shape of rounded corners
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of a cross section of the S laminae. The rounded corners yield
an excess energy of the system competing with the interface
energy. Minimizing the sum of these energy contributions,
Landau obtained the period of the laminar structure, D =√

δd/fL(ρn), where d is the sample thickness and fL(ρn) is the
“spacing function” with ρn = h ≡ H/Hc; fL is determined by
the shape of the corners [11].

Soon thereafter Landau admitted that the LLM is unstable
because roundness of the corners makes B near the surface
less than Hc. However, a “branching” model [19], proposed
instead of the LLM, was disproved by Meshkovsky and
Shalnikov [20]. Owing to that Lifshitz and Sharvin turned back
to the LLM and calculated fL(ρn) and B numerically [21].
Identical results were later obtained analytically [22]. In the
LLM B, being Hc in the bulk, is 0.66Hc near the surface at
low H and increases up to Hc at the IS-N transition. Fifty
years later direct bulk μSR measurements of B in a Sn slab
in a perpendicular field revealed that B(H ) starts from Hc and
decreases down to Hci [23]. Such a dependence for B(H ) had
been anticipated by Tinkham [7].

De Gennes [12] noticed that a positive γ should reduce
Hci . Assuming a small reduction, de Gennes obtained for the
transverse configuration Hci⊥ = Hc[1 − 0.9(δ/d)0.5].

Tinkham [7] recognized that the dominant contribution to
the excess energy term comes from inhomogeneity of the field
outside the sample and therefore roundness of the corners can
be neglected. Tinkham computed this energy by introducing a
“healing length” Lh over which the field relaxes to its uniform
state: L−1

h = D−1
n + D−1

s , where Dn and Ds are the width of
the S and N laminae, respectively. Assuming a rectangular
cross section of the laminae and hence a uniform B, allowed
to be somewhat less than Hc, Tinkham obtained

Hci⊥ = Hc[(1 + 4δ/d)0.5 − 2(δ/d)0.5]. (1)

The structure expected from the LLM has never been
observed. Images reported from the 1950s onward revealed
intricate flux patterns, often forming corrugated laminae [13].

Sharvin [17] was the first to observe the ordered laminar
pattern in a strongly tilted field for 2-mm-thick Sn [17] and
In [18] samples. He measured D at different temperatures
and calculated δ(T ) using an extended LLM assuming B‖ =
H‖ (where B‖ and H‖ are in-plane components of B and H ,
respectively) on top of Landau’s original assumption that B =
Hc. Sharvin’s equation for D is

D2 = δd

fL(ρn)

H 2
c

H 2
c − H 2

‖
. (2)

The values of δ(0) obtained for In and Sn using
Eq. (2) [17,18] are those from which we started our story.
Faber [14] criticized Eq. (2), arguing that H‖ can alter the shape
of the corners. One may add that if B‖ = H‖ the magnetic flux
is not conserved and therefore the energy balance in the system
must be reconsidered.

From the above it follows that the extended LLM [17]
is questionable. Therefore, the values of δ(0) obtained in
Refs. [17,18] are questionable as well. However, the δ(T )
dependence obtained by Sharvin is correct because it agrees
with the GL theory (historically, it was in reverse order [7]).
Besides, the question of how to extract δ from the IS pattern

(a) (b) (c) (d) (e)

FIG. 1. (Color online) MO images taken at 2.5 K. Supercon-
ducting regions are black (H‖, H⊥ in Oe): (a) (0, 1), (b) (60, 8),
(c) (100, 6), (d) (110, 3), (e) (115, 1.3).

in a tilted field remains to be answered. The latter two issues,
along with the questions on B and Hci , are addressed below.

The MO imaging was achieved using a setup equipped with
a three-dimensional vector magnet [24]. The sample was a
2.5-μm-thick In film on a SiO2 wafer. The film residual
resistivity ratio was 540. The other film characteristics were
the same as those in Ref. [16]. Overall, the film is a Pippard
superconductor (κ � 0.07) in the pure limit. The sample
length was 1 mm and the width-to-thickness ratio was 120,
implying that for the perpendicular and parallel fields η is 1
and 0, respectively. Images were taken simultaneously with
measurements of the electrical resistance R using a small
low-frequency (11-Hz) ac.

Typical images are presented in Fig. 1. The flux patterns
are laminae independent of the history of the applied field. At
H⊥ � 1 Oe fractionated laminae were seen in some runs. The
laminae are planar and ordered at H‖ � 0.5Hc. At smaller H‖
(=0.47Hc at 1.67 K) slight wavelike corrugations appear. In
a perpendicular field the laminae are disordered [Fig. 1(a)].
Therefore, the laminar structure is the ground-state topology
of the IS. The same conclusion was drawn by Faber from the
experiment with Al (κ ≈ 0.01) sample [14].

While Dn (Ds) increases (decreases) and R varies linearly
with H⊥, the period D = Dn + Ds , being dependent on H‖, is
constant for 0.3 � H⊥/Hic⊥ � 0.8. Near H⊥ = 0 and Hci⊥
the number of laminae decreases. The IS-N transition for
decreasing field is accompanied by deep supercooling of the N
state. This confirms the high purity of the sample and verifies
that the IS-N transition is a first-order phase transition [15].

Figure 2 presents the sample phase diagram Hc(T ) =
Hc‖(T ) measured with a dc magnetometer and used for in
situ temperature determination. It is compared with data
measured on other samples and the data from Ref. [25]. The
lower curve presents Hci⊥(T ) at H‖ = 0, determined from
disappearance of the last S lamina in the images and from
R(H⊥) measurements; the two perfectly coincide. As seen,
Hci⊥(T ) is less than half of Hc(T ). The stars represent Hci⊥
calculated from Eq. (1) with ξ0 = 380 nm and are clearly
consistent with the experimental data. De Gennes’ formula
yields Hci⊥ considerably exceeding the experimental data.
Hence, Tinkham’s interpretation of the excess energy term
is used further on.

Since we adopt Tinkham’s approach and, in agreement
with the experimental images, the N and S domains are
assumed to be rectangular parallelepipeds extending in the
H‖ direction. The contribution of the negative surface tension
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FIG. 2. (Color online) The phase diagram of our sample in
parallel and perpendicular fields. The solid curves are parabolic fits
of the data obtained with our sample.

at the S/vacuum interface is neglected since the penetration
depth is much less than the sample thickness. The out-of-plane
and in-plane demagnetizing factors are η⊥ = 1 and η‖ = 0,
respectively. The former means that B⊥ρn = H⊥ (conservation
of the flux of the out-of-plane component of the magnetic
field), whereas the latter means that B‖ = H‖ and therefore
the flux of B‖ is not conserved. Hence, the appropriate
thermodynamic potential is F̃ ≡ f̃ V = F − V (B‖H‖/4π ) =
F − Vn(H 2

‖ /4π ), where F is the free energy and the second
term accounts for the work done by the magnet power supply
to maintain H‖ [11]. This term is the key distinctive element of
our model. We note that this term is neither small (it can exceed
the condensation energy) nor trivial (its omission or incorrect
form leads to violation of the limiting condition Hci⊥ → 0 at
H‖ → Hc).

Summing the sample free energy at zero field V [fn −
H 2

c (1 − ρn)/8π )], the energy of the field B in the sample
Vρn(B2

⊥ + B2
‖ )/8π , the energy of the S/N interfaces V 2γ /D,

and the excess energy of the field over the healing length
2V Lh(ρnB

2
⊥ − H 2

⊥)/8πd, one obtains

f̃ = fn − (1 − ρn)
H 2

c

8π
+ H 2

⊥
8πρn

− ρn

H 2
‖

8π

+ 2
H 2

c

8π

δ

D
+ 2

H 2
⊥

8π

D

d
(1 − ρn)2, (3)

where fn is the free energy density of the sample in the normal
state (magnetic permeability in this state is assumed 1 and
therefore fn does not depend on H ).

Similar to the LLM, competition between the last two terms
provides the equilibrium D:

D2 = dδ

ρ2
n(1 − ρn)2

H 2
c

B2
⊥

= dδ

(1 − ρn)2

H 2
c

H 2
⊥

. (4)

Substituting Eq. (4) in Eq. (3) and then minimizing f̃ (ρn)
one obtains the equilibrium ρn:

ρ2
n = h2

⊥/(1 − 4h⊥
√

δ/d − h2
‖), (5)

where h⊥ = H⊥/Hc and h‖ = H‖/Hc.

FIG. 3. (Color online) The perpendicular critical field
Hci⊥/Hci⊥(0) versus h‖ = H‖/Hc. Hci⊥(0) is Hci⊥ at H‖ = 0.

At the IS-N transition ρn = 1, therefore,

hci⊥ =
√

4(δ/d) + 1 − h2
‖ − 2

√
δ/d. (6)

Finally, the reduced flux density b = B/Hc is

b2 = b2
⊥ + b2

‖ = h2
⊥/ρ2

n + h2
‖ = 1 − 4h⊥

√
δ/d. (7)

The model satisfies the limiting cases, i.e., ρn → 0 at
H⊥ → 0 and Hci⊥ → 0 at H‖ → Hc. In very thick samples
(
√

δ/d � 1) B = Hc and Eq. (4) converts to Eq. (2) if
ρ2

n(1 − ρn)2 is replaced by fL(ρn); this explains the correctness
of the temperature dependence of δ(T ) in Refs. [17,18].

For a perpendicular field (H‖ = 0) we have that (a)
according to Eq. (7) B decreases with increasing H from
Hc down to Hci , in agreement with the μSR results [23] and
(b) Eq. (6) reduces to Eq. (1), implying that the theoretical
points in Fig. 2 are the same in our model. Hence, our model,
developed for a regular laminar structure, can be used for
irregular laminar patterns as well.

In Fig. 3 the data for Hci⊥ at nonzero H‖ are compared to
the Hci⊥(H‖) dependence given by Eq. (6). We find that Eq. (6)
correctly describes the experimental data.

Figure 4 presents the results for δ at T = 1.7 K obtained
in three ways. The circles represent δ calculated from Eq. (2)
and Eq. (4) using our experimental data for the average D

and H⊥ at ρn = 0.5. The dashed line in Fig. 4 represents δ

calculated directly using ξ0 = 380 nm. We find that the results
following from Eq. (4) agree with the directly calculated value
of δ. However, this is not the case for δ obtained using Eq. (2).

Figure 5 presents data for the average D obtained in
two runs at T = 1.7 K and H‖ = 0.85Hc and corresponding
theoretical curves following from Eqs. (2) and (4). In Eq. (2) D

is controlled by fL; in our model the spacing function is f =
(1 − ρn)2h2

⊥ with ρn and h⊥ linked by Eq. (5). We find that both
fL and f qualitatively reproduce the experimental data. How-
ever, fL is better at high values of H⊥/Hci⊥, whereas f is better
at small H⊥. This indicates the importance of the rounded
corners at high H⊥, where inhomogeneity of H⊥ is minimal.
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FIG. 4. (Color online) The domain-wall parameter δ inferred
from MO images taken at T = 1.7 K using Eq. (2) and Eq. (4) plotted
on two scales. The dashed line represents the directly calculated
δ = 1.4ξ0/(1 − T/Tc)0.5, Tc = 3.415 K, and ξ0 = 380 nm.

In summary, (i) we have performed a magneto-optical study
of the IS in a high-purity type-I superconductor resulting
in a comprehensive model of the IS for a slab in a tilted
magnetic field, which includes the perpendicular field as the
limiting case. The model reproduces all available experimental
data including ξ0. Overall, our model is a good first-order
approximation of the IS in a slab as advanced by Landau many
years ago. (ii) We have shown that a superconducting system
in search of the lowest free energy may opt to keep B in the
bulk of N domains considerably smaller than Hc. This alters
the paradigm stating that this is impossible. In type-II materials
variation of B in the vortex core can be a factor responsible
for the dependence of the core size on the applied field [26].
In that case the core size should also depend on the sample
thickness.

We note that the system free energy f̃ [Eq. (3)] (and hence
also ρn [Eq. (5)], hci⊥ [Eq. (6)], and b [Eq. (7)]) depends
on δ via the ratio δ/d. Taking into account that δ represents
the minimum thickness of the S laminae, the physical sig-
nificance of δ/d is similar to that of the diameter-to-length

FIG. 5. Experimental data (circles) and theoretical curves for the
period of the laminar structure. Solid circles are the data obtained at
increasing H⊥ with the sample cooled at H⊥ = 0. Open circles are the
data taken after H⊥ was reduced from above Hci⊥ down to 0.5Hci⊥.

ratio of a solenoid where it characterizes the contribution
of the inhomogeneous field at the solenoid’s ends in the
total energy of the magnetic field. For the IS the ratio δ/d

characterizes the energy contribution of the inhomogeneous
field near the sample surface to the free energy of the
system.

A weak point of our model is the oversimplified form of
Lh and neglect of the effect of the rounded corners. This is
the main reason for the discrepancy between the experimental
data and the theoretical curve in Fig. 5 and the deviation of
ρn(h⊥) in Eq. (6) from the linear dependence following from
the linearity of R(H⊥). To resolve this issue, measurements
of the magnetic field near the surface outside and inside the
sample are required.
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