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We develop the finite-size scaling (FSS) theory at quantum transitions. We consider various boundary
conditions, such as open and periodic boundary conditions, and characterize the corrections to the leading FSS
behavior. Using renormalization-group (RG) theory, we generalize the classical scaling ansatz to describe FSS
in the quantum case, classifying the different sources of scaling corrections. We identify nonanalytic corrections
due to irrelevant (bulk and boundary) RG perturbations and analytic contributions due to regular backgrounds and
analytic expansions of the nonlinear scaling fields. To check the general predictions, we consider the quantum
XY chain in a transverse field. For this model exact or numerically accurate results can be obtained by exploiting
its fermionic quadratic representation. We study the FSS of several observables, such as the free energy, the
energy differences between low-energy levels, correlation functions of the order parameter, etc., confirming the
general predictions in all cases. Moreover, we consider bipartite entanglement entropies, which are characterized
by the presence of additional scaling corrections, as predicted by conformal field theory.
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I. INTRODUCTION

Finite-size effects in critical phenomena have been the
object of theoretical studies for a long time [1–5]. Finite-size
scaling (FSS) describes the critical behavior around a critical
point, when the correlation length ξ of the critical modes
becomes comparable to the size L of the system. For large
sizes, this regime presents universal features, shared by all
systems whose transition belongs to the same universality
class. Although formulated in the classical framework, FSS
also holds at zero-temperature quantum transitions [6], in
which the critical behavior is driven by quantum fluctuations.

The FSS approach is one of the most effective techniques
for the numerical determination of the critical quantities.
While infinite-volume methods require that the condition
ξ � L is satisfied, FSS applies to the less demanding regime
ξ ∼ L. More precisely, FSS theory provides the asymptotic
scaling behavior when both L,ξ → ∞ keeping their ratio
ξ/L fixed. However, knowledge of the asymptotic behavior
may not be enough to estimate the critical parameters, because
data are generally available for limited ranges of parameter
values and system sizes, which are often relatively small.
Under these conditions, the asymptotic FSS predictions are
affected by sizable scaling corrections. Thus, reliably accurate
estimates of the critical parameters need a robust control of the
corrections to the asymptotic behavior. This is also important
for a conclusive identification of the universality class of the
quantum critical behavior when it is a priori uncertain.

An understanding of the finite-size effects is also relevant
for experiments, when relatively small systems are considered
(see, e.g., Ref. [7]), or in particle systems trapped by external
(usually harmonic) forces, as in recent cold-atom experiments
(see, e.g., Refs. [8–12]).

In this paper we study FSS at quantum transitions [13].
For this purpose, the renormalization-group (RG) ap-
proach [3,4,14] to FSS at classical transitions (generally
driven by thermal fluctuations) is generalized to quantum
transitions driven by quantum fluctuations. This allows us to
characterize the corrections to the asymptotic FSS behavior.
We predict nonanalytic scaling corrections due to the irrelevant

RG perturbations and analytic contributions which are due to
regular backgrounds and to the expansions of the nonlinear
scaling fields in terms of the Hamiltonian parameters.

To verify the RG predictions, we consider the quantum XY

chain in a transverse field, which represents a standard theoret-
ical laboratory for the understanding of quantum transitions.
Its Hamiltonian can be rewritten as a quadratic Hamiltonian of
spinless fermions [15,16]. Using this representation, several
quantities can be computed either exactly or very precisely
by numerical methods. This allows us to check the FSS
predictions for the scaling corrections of several observables.
We consider the free energy, the energy differences between
the lowest-energy levels, and the correlation functions of the
order parameter, confirming the RG results in all cases.

Finally, we discuss the FSS behavior of bipartite entangle-
ment entropies in one-dimensional systems with an isolated
critical point with z = 1. We perform a detailed study in
the XY model, verifying the presence of further peculiar
corrections related to conical singularities in conformal field
theory [17,18], besides those associated with the usual bulk
and boundary RG irrelevant perturbations.

The paper is organized as follows. In Sec. II we discuss
the general RG approach to the study of FSS at quantum
transitions, considering, in particular, the case of isolated
quantum critical points between different quantum phases. In
Sec. III we present a thorough FSS analysis of the quantum
XY chain in a transverse field at the Ising transition, checking
the general asymptotic FSS predictions for several physically
interesting quantities. Section IV is devoted to a FSS analysis
of the bipartite entanglement entropy at the quantum transition
of the quantum XY chain, focusing again on the nature of the
scaling corrections. Finally, in Sec. V we summarize our main
results and draw some conclusions. Two appendices report
some formulas which are used in the paper.

II. FINITE-SIZE SCALING AT A QUANTUM TRANSITION

In this section we summarize the main RG ideas behind
FSS, providing the framework to analyze critical finite-size
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effects in continuous quantum transitions. As their classical
counterparts, they are characterized by a diverging length
scale ξ and show universal scaling properties, which can
be analyzed in the framework of RG theory. Guided by
the quantum-to-classical mapping, we generalize Wegner’s
scaling ansatz [3,4,14,19] to quantum systems, and then
use it to predict the type of subleading corrections that are
expected in finite systems and/or at finite T , close to a
continuous transition. We will consider different types of
boundary conditions, focusing mainly on periodic or antiperi-
odic boundary conditions (PBC and ABC, respectively) and
on open boundary conditions (OBC).

We consider the standard case in which the quantum
zero-temperature transition of a d-dimensional system is
characterized by two relevant parameters μ and h, defined so
that they vanish at the critical point. Therefore, the quantum
critical point is at

T = 0, μ = 0, h = 0. (1)

We assume the presence of a paritylike Z2 symmetry, as it oc-
curs, for instance, in Ising or O(N ) transitions which separate
a paramagnetic phase with μ > 0 from a ferromagnetic phase
with μ < 0. The parameter μ is coupled to a RG perturbation
that is invariant under the symmetry, while h is associated
with the leading odd perturbation, generally related to the
order parameter of the transition. As usual, we express the RG
dimensions of the perturbations associated with μ and h in
terms of the critical exponents ν and η, as [13]

yμ ≡ 1

ν
, yh ≡ 1

2
(d + z + 2 − η), (2)

where z is the dynamic critical exponent associated with time
and temperature. At the critical point the low-energy scales
vanish: The gap � behaves as � ∼ |μ|zν at T = 0 and h = 0.
The length scale ξ associated with the critical modes diverges
as ξ ∼ |μ|−ν at T = 0 and h = 0, and as ξ ∼ T −1/z at μ = 0
and h = 0.

A. Scaling law of the free energy

Under the quantum-to-classical mapping, the inverse tem-
perature corresponds to the system size in an imaginary time
direction. Thus, the temperature scaling at a quantum critical
point in d dimensions is analogous to FSS in a corresponding
d + 1 classical system. If z = 1, which holds for transitions
described by two-dimensional (2D) conformal field theories
(CFTs) [20] and for paramagnetic-ferromagnetic transitions
in d-dimensional O(N ) symmetric spin systems [21] (Ising
systems correspond to N = 1), the quantum transition cor-
responds to a classical (d + 1)-dimensional equilibrium tran-
sition, in which 1/T plays the role of an additional spatial
dimension. There are also interesting cases in which z �= 1. For
instance, superfluid-to-vacuum and Mott transitions of lattice
particle systems described by the Hubbard and Bose-Hubbard
models have z = 2 when driven by the chemical potential [13].
In this case, the classical system is strongly anisotropic
since L → λL, 1/T → λz/T under a RG rescaling. Also
for this class of transitions, which include many dynamic
off-equilibrium transitions [22], FSS is quite well established.
We can, therefore, extend those results to the quantum case.

According to RG, close to a continuous transition the
free energy satisfies a general scaling law. Extending the
classical FSS ansatz [3,4,6,14,19,23], we generally write the
free-energy density as

F (L,T ,μ,h)

= Freg(L,T ,μ,h2) + Fsing(ul,ut ,uμ,uh,{vi},{̃vi}), (3)

where Freg is a nonuniversal function, which is analytic at
the critical point (it must also be even with respect to the
parameter h related to the odd perturbation), and Fsing bears
the nonanalyticity of the critical behavior and its universal
features. The arguments of Fsing are the so-called nonlinear
scaling fields [14]. They are analytic nonlinear functions
of the model parameters, which are associated with the
eigenoperators that diagonalize the RG flow close to the RG
fixed point.

1. Nonlinear scaling fields

The scaling fields uμ and uh are the relevant scaling fields
related to the model parameters μ and h. The scaling fields ul

and ut are also relevant, with RG dimensions

yl = 1, yt = z, (4)

respectively, and are associated with the finite spatial size L

(ul ∼ 1/L) and with the temperature (ut ∼ T ).
Besides the relevant scaling fields, we should also consider

an infinite number of irrelevant scaling fields with negative RG
dimensions. We distinguish them into two families, the bulk
scaling fields {vi} and the surface scaling fields {̃vi}, with RG
dimensions yi and ỹi , respectively. The first set is the only one
that occurs in the infinite-volume limit and whenever there are
no boundaries in the system, for instance, for PBC or ABC.
They are responsible for the scaling corrections to the leading
critical behavior in the infinite-volume limit. Using standard
notation, assuming that they are ordered so that |y1| � |y2| �
. . ., we set

ω = −y1. (5)

In the presence of a surface, an additional set of boundary
RG perturbations should be included. Their RG dimensions
depend on the type of boundary conditions and, in particular,
on the type of surface critical behavior one is considering. We
set

ωs = −ỹ1, (6)

where ỹ1 is the dimension of the leading boundary operator.
To go further we must discuss how the nonlinear scaling

fields depend on the control parameters μ, h, L, and T . First,
it is natural to assume that the bulk scaling fields uμ, uh, and vi

do not depend on the temperature and the size of the system,
i.e., they do not mix with 1/L and T . This hypothesis is quite
natural for systems with short-range interactions. Under a RG
transformation, the transformed bulk couplings only depend
on the local Hamiltonian, hence they are independent of the
boundary. Taking into account the assumed Z2 symmetry
and the even/odd properties of μ/h, close to the critical
point the relevant scaling fields uμ and uh can be generally
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expanded as

uμ = μ + bμμ2 + O(μ3,h2μ), (7)

uh = h + bhμh + O(h3,μ2h), (8)

where bμ and bh are nonuniversal constants. As for the
irrelevant scaling fields, they are usually nonvanishing at the
critical point.

The scaling fields ul and ut are associated with the size
of the (d + 1)-dimensional system. For classical systems in
a box of size Ld with PBC or ABC and, more generally,
for translation-invariant boundary conditions, it is usually
assumed that ul = 1/L, exactly. This assumption, which
has been verified in many instances—for instance, in the
two-dimensional Ising model—and extensively discussed in
Ref. [19], can be justified as follows. Consider a lattice system
and a decimation transformation which reduces the number
of lattice sites by a factor 2d . In the absence of boundaries
and for short-range interactions, the new (translation-invariant)
couplings are only functions of the couplings of the original
lattice and are independent of L, while L → L/2. Since the
flow of L is independent of the flow of the couplings, we expect

ul = L−1 (9)

for PBC or ABC. This condition does not generally hold for
nontranslation-invariant systems. We thus assume that ul is an
arbitrary function of 1/L. For L → ∞ it can be expanded as

ul = L−1 + bL−2 + · · · . (10)

Note that, if we define an effective size

Le = L − b, (11)

the scaling field becomes

ul = 1/Le + O
(
L−3

e

)
. (12)

Hence, by using Le, all subleading corrections due to b/L2 are
eliminated in any observable. Of course, this does not imply
that 1/L corrections are absent in any observable, as such
type of corrections may have other origins (we will come back
to this point in Sec. III F). Such an observable-independent
shift is often considered in FSS studies of systems with
boundary conditions that differ from the periodic ones (see,
e.g., Refs. [24–26]), which also provide some evidence of the
presence of L−2,L−3 corrections in the scaling field ul .

Let us now consider the thermal scaling field ut . To
clarify the issue, let us first assume that z = 1, so that
the quantum system is equivalent to a classical (d + 1)-
dimensional system. The classical system is, however, weakly
anisotropic: Couplings in the thermal direction differ from
those in the spatial one. Moreover, the anisotropy depends on
the model parameters. In classical weakly anisotropic systems,
universality is obtained only after transforming them to an
isotropic system by means of a scale transformation (see
Refs. [27,28], and references therein). Therefore, we define

ut = T

c(μ,h)
≈ T

c0
[1 + btμ + O(μ2,h2)], (13)

where c(μ,h) is an appropriate nonuniversal function, c0 ≡
c(0,0), and bt is a constant. The function c may be identified

with the speed of sound. More precisely, if E(k) is the
dispersion relation of the model, which is assumed to be
spatially isotropic, we define c = |∇kE|kmin , where kmin is
the value of k where the energy has an absolute minimum.
Relation (13) is expected to hold also when z �= 1, although
in this case the rescaling factor is not related to the sound
velocity.

2. Asymptotic expansion of the singular free energy

The singular part of the free energy (3) is expected to satisfy
the scaling equation

Fsing(ul,ut ,uμ,uh,{vi},{̃vi})
= λ−(d+z)Fsing(λul,λ

zut ,λ
yμuμ,λyhuh,{λyi vi},{λỹi ṽi}), (14)

where λ is arbitrary. In the FSS case it is useful to take λ =
1/ul , obtaining

Fsing = ud+z
l F

[
ut

uz
l

,
uμ

u
yμ

l

,
uh

u
yh

l

,

{
vi

u
yi

l

}
,

{
ṽi

u
ỹi

l

}]
. (15)

The scaling variables viu
−yi

l and ṽiu
−ỹi

l , corresponding to the
irrelevant scaling fields, vanish for L → ∞ since yi and ỹi are
negative. Thus, provided that Fsing is finite and nonvanishing
in this limit, we can expand the singular part of the free energy
as

Fsing ≈ ud+z
l F0

(
ut/u

z
l ,uμ/u

yμ

l ,uh/u
yh

l

)
+ v1u

d+z+ω
l Fω

(
ut/u

z
l ,uμ/u

yμ

l ,uh/u
yh

l

) + · · ·
+ ṽ1u

d+z+ωs

l Fs

(
ut/u

z
l ,uμ/u

yμ

l ,uh/u
yh

l

) + · · · , (16)

where we retain only the contributions of the dominant (least)
irrelevant bulk and surface scaling fields, of RG dimensions
−ω and −ωs , respectively. Note that expansion (16) is only
possible below the upper critical dimension [29]. Above it,
Fsing is singular and cannot be expanded as in Eq. (16).
The breakdown of this expansion causes a breakdown of the
hyperscaling relations and allows us to obtain the mean-field
exponents.

As usual, we introduce the scaling variables

w ≡ μL1/ν, κ ≡ hLyh, τ ≡ 1

c0
T Lz, (17)

and

we ≡ μL1/ν
e , κe ≡ hLyh

e , τe ≡ 1

c0
T Lz

e, (18)

where Le is defined in Eq. (11). Then, we have

uμ

u
yμ

l

≈ w

(
1 − b1

ν

1

L

)
+ bμ

L1/ν
w2 ≈ we + bμ

L1/ν
w2

e ,

uh

u
yh

l

≈ κ

(
1 − yhb1

1

L

)
+ bh

L1/ν
wκ ≈ κe + bh

L1/ν
κewe, (19)

ut

uz
l

≈ τ

(
1 − zb1

1

L

)
+ bt

L1/ν
τw ≈ τe + bt

L1/ν
τewe,

where we have included the leading scaling correction. If ν <

1 and w, κ , and τ are used as FSS variables, the leading
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correction is of order 1/L. If instead, one uses we, κe, and τe,
the leading correction decreases faster, as L−1/ν .

3. The regular part of the free energy

Finally, we should also take into account the regular part
Freg of the free energy [see Eq. (3)]. For classical systems,
in the absence of boundaries, e.g., for PBC or ABC, Freg is
assumed to be independent of L, or, more plausibly, to depend
on L only through exponentially small corrections [3,4,19].
We extend this conjecture to the quantum case. Since PBC or
ABC are always taken in the thermal direction, it is natural to
assume that Freg does not depend on the size 1/T of the thermal
direction: Freg does not depend on temperature. Instead, we
see no reason why Freg should not depend on L for generic
spatial boundary conditions. Therefore, we assume a regular
expansion in powers of 1/L such as

Freg(L,μ,h2) = Freg,0(μ,h2) + 1

L
Freg,1(μ,h2) + · · · , (20)

where Freg,0(μ,h2) is the bulk contribution, the only one
present when PBC or ABC are considered in the spatial
direction.

4. Universality

An important question concerns the universality of the
function F related to the singular part of the free energy
[cf. Eq. (15)]. Since scaling fields are arbitrarily normalized,
universality holds apart from a normalization of each argument
and an overall constant. Therefore, given two different models,
if F1 and F2 are the corresponding scaling functions, we have

F1(x1,x2,x3,{yi},{ỹi}) = AF2(c1x1,c2x2,c3x3,{diyi},{d̃i ỹi}),
(21)

where all constants A, ci , di , and d̃i are nonuniversal.
The universality properties of F imply analogous relations

for F0, Fω, and Fs , entering its asymptotic expansion (16),
which are expected to be universal, apart from multiplicative
normalizations and normalizations of the scaling fields. This
implies that, within the given universality class, they are in-
dependent of the microscopic features of the model. However,
they depend on the nature of the boundary conditions. Note
also the presence of the variable ut/u

z
l , which corresponds to

the so-called shape factor in classical transitions: The universal
scaling functions depend on the shape of the finite system that
is considered.

5. Summary

Expansions (16), (19), and (20) allow us to compute all
scaling corrections. Collecting all terms and using Le as basic
length scale, we can write

F (L,T ,μ,h) = Freg,0(μ,h2) + L−(d+z)
e F0(τe,we,κe)

+ v1L
−(d+z+ω)
e Fω(τe,we,κe)

+ ṽ1L
−(d+z+ωs )
e Fs(τe,we,κe)

+ 1

L
Freg,1(μ,h2) + 1

L2
Freg,2(μ,h2) + · · · ,

(22)

where v1 and ṽ1 are computed at the critical point. The missing
corrections are of order (relative to the leading singular term
L−(d+z)

e ) L
−1/ν
e , L

−|y2|
e , L

−|̃y2|
e (they are due to the singular

part of the free energy), and of order Ld+z−3 (they are due
to the regular part of the free energy). The last three terms
appearing in Eq. (22) represent boundary contributions, hence
they should not be present for PBC or ABC. Moreover, in
this case we also have Le = L. Finally, note that, since the
corrections of order L

−1/ν
e are due to the expansion of the

scaling fields, they are always proportional to w [see Eq. (19)],
thus they vanish for μ = 0.

To summarize, the RG expansion (22) provides information
on the corrections to the asymptotic behavior. There are several
different sources of scaling corrections:

(i) The irrelevant RG perturbations which generally give
rise to O(L−ω) corrections, where ω is a universal exponent
associated with the leading irrelevant RG perturbation.

(ii) Corrections arising from the expansion of the scaling
fields uμ, uh, and ut in terms of the Hamiltonian parameters.
They give rise to corrections of order L−1/ν and are absent for
μ = 0.

(iii) Corrections arising from the analytic background term
of the free energy.

(iv) The irrelevant RG perturbations associated with the
boundary conditions, which are of order L−ωs . They are absent
in the absence of boundaries, such as PBC or ABC.

(v) The O(1/L) boundary corrections arising from the
nontrivial analytic L dependence of the scaling field ul ,
Eq. (10). They are absent in the absence of boundaries.
The leading correction can be taken into account by simply
redefining the length scale L, i.e., by using Le instead of L [cf.
Eq. (11)] .

Equations (15) and (16) give the generic scaling form of the
free-energy density. However, in certain cases the behavior is
more complex due to the appearance of logarithmic terms [14].
They may be due to the presence of marginal RG perturbations,
as happens in Berezinskii-Kosterlitz-Thouless transitions in
U(1)-symmetric systems [30–33], or to resonances between
the RG eigenvalues, as occurs in transitions belonging to the
2D Ising universality class [14,34] or to the three-dimensional
O(N )-vector universality class in the large-N limit [26,35]. We
should also mention that peculiar FSS behaviors—for instance,
a modulation of the leading amplitudes—are observed in
quantum particle systems at fixed chemical potential when
an infinite number of level crossings occurs as the system size
varies, and in the so-called XX chain in a transverse external
field [36–38].

Several interesting quantities can be obtained by taking
derivatives of the free energy. For example, in particle systems
whose relevant parameter μ is a linear function of the chemical
potential, the FSS of the particle density is obtained by
differentiating Eq. (22) with respect to μ, i.e., ρ ∼ ∂F/∂μ.
Therefore, for h = 0, we obtain

ρ = ρreg(μ) + 1

L
ρreg,1(μ) + · · · + L

−(d+z−yμ)
e D(we,τe) + · · ·

(23)

We note that the regular term represents the leading term
when d + z − yμ > 0, which is the case for most physically
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interesting systems. The compressibility can be obtained by
taking an additional derivative with respect to μ.

B. Scaling law in the infinite-volume limit

We can also write down general scaling laws for the
quantum critical behavior in the infinite-volume limit. We start
again from Eq. (14), setting in this case ul = 0 and λ = u

−1/z
t .

The free-energy density scales as

F = Freg(μ,h2) + u
d/z+1
t F

(
uμu

−yμ/z
t ,uhu

−yh/z
t ,

{
viu

−yi/z
t

})
,

(24)

where, as explained above, we assume that Freg(μ,h2) is T

independent. For h = 0 and ut → 0, we can expand the free
energy as

F ≈ u
d/z+1
t A

(
uμu

−1/(zν)
t

) + u
d/z+1+ω/z
t v1Aω

(
uμu

−1/(zν)
t

)
+Freg(μ,0) + · · · (25)

The specific heat is obtained by differentiating the previous
expression:

CV ≡ T
∂2F

∂T 2

= u
d/z
t

c

[
C
(
uμu

−1/(zν)
t

) + u
ω/z
t Cω

(
uμu

−1/(zν)
t

) + · · · ]. (26)

Notice that there are no contributions from the regular part of
the free energy. At the critical point μ = 0, Eq. (26) predicts

CV ∼ T d/z[1 + O(T ω/z)]. (27)

C. FSS of the low-energy scales

The singular part of the free energy is essentially determined
by the behavior of the low-energy levels at the quantum
transition. Therefore, the low-energy scales, and in particular
the energy difference � of the lowest-energy levels, should
show an analogous asymptotic behavior, besides the leading
term [13] � ∼ L−z. Thus, at T = 0 and h = 0, they are
expected to show the asymptotic FSS behavior

c(μ)�(L,μ) = L−z
e

[
D(we) + v1L

−ω
e Dω(we)

+ ṽ1L
−ωs

e Ds(we) + · · · ], (28)

where c is the function providing the relation of ut with T

[cf. Eq. (13)]. Such a factor is needed to take into account that
energies are expressed in terms of the temperature T , while
the right-hand side contains the spatial dimension Le. The ne-
glected corrections are of order L−2,L−1/ν,L−|y2|,L−|̃y2|. The
scaling functions D# are universal, apart from multiplicative
factors and a normalization of their argument. For we → ∞,
D(w) ∼ wzν to ensure � ∼ μzν for μ > 0 (paramagnetic
phase) in the infinite-volume limit.

D. FSS of the two-point correlation function

We now consider the correlation functions of the order-
parameter field φ(x,t), for example, the equal-time two-point
function,

G(x,y) = 〈φ(x,t)φ(y,t)〉. (29)

For vanishing magnetic field, the leading scaling behavior is
given by

G(x,y; T ,μ,L) ≈ u
d+z−2+η

l G
(
ulx,uly; ut/u

z
l ,uμ/u

yμ

l

)
. (30)

Equation (30) is only valid for L → ∞, |x − y| → ∞ with
|x − y|/L fixed. Instead, if one takes the limit at fixed |x − y|,
no singular behavior is observed in the FSS limit. Corrections
to Eq. (30) arise from two different sources. First of all, there
are the corrections due to the scaling fields with negative RG
dimensions. Moreover, there are corrections which we will
call field-mixing terms. Indeed, the order-parameter field φ is
in general a linear combination,

φ =
∑
i=1

aiOh,i , (31)

of the odd fixed-point operators Oh,i , which satisfy

〈Oh,i(r) Oh,j (s)〉 ∼ |r − s|−di−dj (32)

at the critical point, where the associated dimensions di

(we assume here d1 < d2 < d3 . . .) are related to the RG
dimensions yh,i of the odd (leading and subleading) RG
operators by di = d + z − yh,i . The leading odd operator
Oh ≡ Oh1 is associated with the leading nonlinear scaling field
of RG dimension yh given in Eq. (2). Equation (30) represents
the contribution of the leading operator Oh since

d + z − yh = 1
2 (d + z − 2 + η). (33)

Furthermore, we should also consider the contributions of all
subleading operators that have the same symmetry properties
of the order parameter. Hence, we end up with the expansion

G(x,y; T ,μ,L) ≈
∑
jk

u
2(d+z)−yhj −yhk

l Gjk

(
ulx,uly;

ut/u
z
l ,uμ/u

yμ

l ,
{
viu

−yi

l

}
,
{̃
viu

−ỹi

l

})
. (34)

In the case of OBC, also boundary operators should be
considered.

Let us consider the space integral of the correlation
function (29), defined as

χy ≡
∑

x

G(y,x). (35)

In the case of PBC or ABC, since translation invariance holds,
χy is independent of y. In the presence of a boundary, this
is no longer the case. As long as y is fixed in the FSS limit,
the leading scaling behavior is always the same, while scaling
corrections are expected to depend on y. The asymptotic FSS
expansion of χy for h = 0 and T = 0 is expected to be

χy(μ,L) = L2−z−η[X (w) + L−ωXω(w) + L−1Xs1(w)

+L−ωsXs2(w) + L−1/νXu(w)

+Lyh2−yhXh(w) + · · · ] + Bχ (μ,L), (36)

where w is defined in Eq. (17), the scaling functions X# are
universal apart from multiplicative factors and a normalization
of the argument, and yh2 is the RG dimension of the next-to-
leading operator which is odd under h → −h (this term is due
to the field mixing). The corrections of order L−1/ν arise from
the expansion (7) of the scaling field uμ. Finally, Bχ is an
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analytic background term which represents the contribution to
the integral of points x such that |x − y| � L. It is the analog
of the analytic part of the free energy [see Eq. (3)]. Therefore,
the leading scaling corrections for χ scale as L−ζ with

ζ = min[ω,1,ωs,1/ν,2 − z − η,yh − yh2]. (37)

It is important to note that χy should not be confused with
the magnetic susceptibility, which is a macroscopic quantity
obtained by differentiating the free energy with respect to the
magnetic field.

One can also consider a correlation length ξ associated with
the critical modes. Since ξ has RG dimension 1, in the FSS
limit we obtain an expansion analogous to Eq. (36), i.e.,

ξ (μ,L) = L[Y(w) + L−ωYω(w) + L−1Ys1(w)

+L−ωsYs2(w) + L−1/νYu(w)

+Lyh2−yhYh(w) + · · · ] + Bξ (μ,L). (38)

Here Bξ (μ,L) is a background term depending on the explicit
definition of the correlation length. For example, we may
define a second-moment correlation length by using the
two-point function (29), as

ξ 2 = 1

2dχ0

∑
x

x2G(0,x), (39)

where the point y = 0 is at the center of the system. In the
case of PBC or ABC, one may consider the more convenient
definition

ξ 2 ≡ 1

4 sin2(pmin/2)

G̃(0) − G̃(p)

G̃(p)
, (40)

where p = (pmin,0, . . .), pmin ≡ 2π/L, and G̃(p) is the Fourier
transform of G(x). For these definitions there are two back-
ground contributions. One contribution is due to χ0 and scales
as Lη+z−2. A second one is due the sum appearing in the
numerator of expression (39) and scales as Lη+z−4. This second
contribution is subleading with respect to the first one, hence

Bξ (μ,L) = Lη+z−1Bχ (μ,L). (41)

We thus conclude that scaling corrections are analogous to
those for χ , i.e., scale as L−ζ , where ζ is given in Eq. (37).

E. Dimensionless RG invariant quantities

Dimensionless RG invariant quantities are particularly
useful to investigate the critical region. Examples of such
quantities are the ratio

Rξ ≡ ξ/L, (42)

where ξ is any length scale related to the critical modes,
for example the one defined in Eq. (39), and ratios of the
correlation function G at different distances, e.g.,

Rg(X,Y) = ln[G(0,XL)/G(0,YL)], (43)

where the point x = 0 is at the center of the system. We denote
them generically by R.

According to FSS, at T = 0 and h = 0, they must behave
as

R(μ,L) = R(w) + L−1/ν Ru(w) + L−ω Rω(w)

+L−1 Rs1(w) + L−2 Rs2(w) + L−ωs Rωs
(w)

+L−(yh−yh2)Rh(w) + · · · , (44)

where w = μL1/ν . Note the presence of the corrections of
order L−1, which are related to the fact that L is used as
a normalizing length scale in Eqs. (42) and (43). One could
have equally used Le or u−1

l , obtaining RG invariant quantities
that have the same universal scaling behavior, but that differ
by corrections of order 1/L.

The scaling function R(w) is universal apart from a trivial
normalization of the argument. In particular, the limit

lim
L→∞

R(0,L) = R(0) (45)

is universal within the given universality class, i.e., it is
independent of the microscopic details of the model, although
it depends on the shape of the finite volume and on the
boundary conditions. Since Ru arises from the next-to-leading
O(μ2) term of the expansion (7) of the scaling fields, we
have Ru ∼ w2R′(w) (with an unknown coefficient because
the expansion of the scaling field is usually unknown). Thus,
this term does not contribute at μ = 0. Note also that the
boundary term is absent for PBC. Moreover, in the case of Rξ

with ξ defined as in Eq. (39), there is also a L−2+z+η correction
due to the background Bξ [this term is absent in the case of Rg

as defined in Eq. (43)].
A popular method [5,39] to determine the critical point uses

the finite-size behavior of R as a function of L and μ. Indeed,
if

lim
μ→0−

lim
L→∞

R(μ,L) > lim
L→∞

R(0,L) > lim
μ→0+

lim
L→∞

R(μ,L)

(46)
or vice versa, one can define μcross by requiring

R(μcross,L) = R(μcross,2L). (47)

The crossing point μcross converges to μ = 0 with correc-
tions of order L−1/ν−ζ . Here ζ = min[ω,1,ωs,(yh − yh2)] for
generic boundary conditions breaking translation invariance
and ζ = min[ω,(yh − yh2)] for PBC. In the presence of back-
grounds, we should also include the background corrections.
For instance, in the case of Rξ [cf. Eq. (42)], we have

ζ = min[ω,1,ωs,2 − z − η,yh − yh2]. (48)

III. FSS IN THE QUANTUM XY CHAIN

A. The 1D XY model

The quantum XY chain in a transverse field is a standard
theoretical laboratory for quantum transitions. In the case of
OBC, its Hamiltonian is

HOBC(J,g) = −
L/2−1∑

x=−L/2+1

Hx,x+1 − g

L/2∑
x=−L/2+1

σ (3)
x ,

(49)

Hx,x+1 = J

2

[
(1 + γ )σ (1)

x σ
(1)
x+1 + (1 − γ )σ (2)

x σ
(2)
x+1

]
,
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where σ (i) are the Pauli matrices. In the case of PBC and ABC,
respectively, we have

HPBC/ABC(J,g) = HOBC(J,g) ± H−L/2+1,L/2, (50)

where the upper sign refers to PBC and the lower one to
ABC. It is not restrictive to set J = 1. We always take L even,
setting the origin at the center of the domain, more precisely
at one of the two central sites, so that −L/2 + 1 � x � L/2.
For γ = 0 we recover the so-called XX chain in a transverse
external field.

For any γ �= 0 the model undergoes a quantum transition
at

μ ≡ g − 1 = 0, (51)

separating a quantum paramagnetic phase for μ > 0 from
a quantum ferromagnetic phase for μ < 0. The transition
belongs to the 2D Ising universality class, hence its critical
behavior is associated with a 2D CFT with central charge
c = 1/2. The critical exponents take the values z = 1, ν = 1,
and η = 1/4. The structure of the subleading corrections
for Ising systems was discussed in Refs. [34,40–42]. In
particular, Reinicke [42] analyzed the subleading corrections
for the XY chain at the critical point. If the finite system
is translation invariant—this is the case of PBC—the most
relevant subleading operators have RG dimension −2. They
belong to the identity family and can be expressed by using
the Virasoro generators [43,44] as QI

2Q̄
I
2 and QI

4 + Q̄I
4,

where Q2 = L−2|I 〉, Q4 = (L2
−2 − 3

5L−4)|I 〉. The analysis
of Ref. [42] shows that the spin-zero operator QI

2Q̄
I
2 (which

can be related to the energy-momentun tensor) is absent, as
also occurs in the classical 2D Ising model [34]. The second
(spin-four) operator gives rise instead to scaling corrections
that are proportional to 3/4 − γ 2. The primary field associated
with the energy family controls the off-critical behavior. The
corresponding scaling field is uμ ∼ μ/γ [41,45].

According to the analysis of Ref. [34], the next subleading
operator (Qε

4 + Q
ε

4 in their notations) gives correction of order
L−3. Such an operator is odd under duality transformations,
which also hold for the XY model to some extent, as we discuss
below. Hence, we expect it to contribute only at quadratic order
(hence it gives corrections of order L−6), as occurs in the 2D
Ising model [34]. If this term is absent, the next-to-leading
correction is related to the leading spin-six operator in the
identity family, which has RG dimension −4.

The quantum XY Hamiltonian can be mapped onto a
quadratic Hamiltonian of spinless fermions by a Jordan-
Wigner transformation [15,16], which can be straightfor-
wardly diagonalized. One obtains [16]

H =
∑

k

E(k)

(
a
†
kak − 1

2

)
, (52)

where a
†
k and ak are fermionic creation-annihilation operators

and

E(k) = 2[g2 + γ 2 − 2g cos k + (1 − γ 2) cos2 k]1/2. (53)

The set of values of k which must be summed over and the al-
lowed states depend on the boundary conditions [15,16,46,47].

In the limit T → 0, the relevant modes are those with the
lowest energy, i.e., those with k ≈ 0. For k → 0, the energy

E(k) can be expanded as

E(k)2 = c(μ,γ )2[uμ(μ,γ )2 + k2 + v1(μ,γ )k4 + O(k6)],

(54)

where

c(μ,γ ) = 2
√

γ 2 + μ, (55)

uμ(μ,γ ) = μ√
γ 2 + μ

, (56)

v1(μ,γ ) = 3 − 4γ 2 − μ

12(γ 2 + μ)
. (57)

As we shall see, uμ(μ,γ ) and v1(μ,γ ) play the role of the
nonlinear scaling fields associated with μ and with the leading
irrelevant operator. Note that

v1(0,γ ) = 0 for γ = γi =
√

3/2. (58)

Therefore, provided that v1(μ,γ ) is the correct scaling field,
no corrections of order L−ω = L−2 due to the leading bulk
irrelevant operator are expected for the particular value γ = γi

in any observable (note, however, that corrections of order
L−ω−1 do not cancel out). The identification of uμ and v1

as scaling fields is in full agreement with the CFT results
of Refs. [41,42], but it goes beyond that, since it specifies the
expression of the scaling field also away from the critical point,
i.e., for μ �= 0.

B. Duality in the XY model

Duality transformations play an important role in Ising
systems, hence it is important to discuss duality in the XY

model [48,49]. An exact transformation can be defined for the
model with γ = 1. In this case, one should consider slightly
modified Hamiltonians with OBC. One can consider [49]

Hd1(J,g) = −J

L/2∑
x=−L/2+1

σ (1)
x σ

(1)
x+1 − g

L/2−1∑
x=−L/2+1

σ (3)
x , (59)

which differs from Hamiltonian (49) because of the absence
of the magnetic field on site L/2, or

Hd2(J,g) = −J

L/2∑
x=−L/2+1

σ (1)
x σ

(1)
x+1

− g

L/2∑
x=−L/2+1

σ (3)
x − Jσ

(1)
L/2, (60)

in which there is an additional magnetic field along the x direc-
tion at site x = L/2. For these Hamiltonians a transformation
U exists [49] such that

UH (J,g)U+ = H (g,J ) = gH (1,J/g). (61)

It follows that there exists an exact correspondence between
the energy levels for g > 1 and those for g < 1 (again we set
J = 1). The presence of a symmetry can be guessed from the
expression of E(k) [see Eq. (53)]. Indeed, for γ = 1 the energy
levels satisfy

E(k,g) = gE(k,1/g), (62)
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where we have written explicitly the g dependence. It is impor-
tant to note that exact duality holds only for Hamiltonians (59)
and (60). For different types of boundary conditions, boundary
terms break duality, hence there is no direct correspondence
between the states with g < 1 and those with g > 1.

It is interesting to understand physically why boundary
conditions break duality. This is due to the different nature of
the ground states for g > 1 and g < 1. Indeed, if g is large, we
expect the XY Hamiltonian to have a nondegenerate ground
state with the spins aligned in the z direction. On the other hand,
if g is small we expect a doubly degenerate ground state, with
the spins aligned either in the x direction or in the −x direction.
Since the degeneracy of the ground state is different for g > 1
and g < 1, there cannot be an exact duality symmetry. In order
to have exact duality, one must therefore change the model so
that (at least) the degeneracy of the ground state does not
depend on g. If we consider Hamiltonian (60), this condition
is realized by lifting the degeneracy of the ground state for
g < 1: The magnetic field along the x direction at site x = L/2
makes the ground state nondegenerate, with all spins pointing
in the +x direction. If we instead consider Hamiltonian (59),
duality is obtained at the price of making the ground state
doubly degenerate for any value of g. To show this, note that
[σ (1)

L/2,Hd1] = 0. Thus, the Hilbert space can be decomposed

into two subspaces H±, such that σ
(1)
L/2ψ± = ±ψ±. If we

restrict Hd1 to H+ we obtain Hamiltonian (60) for a chain of
length L − 1. Hence, the ground state in H+ is nondegenerate
for all values of g. If we restrict Hd1 to H− we obtain
UHd2U

+, where U = ∏L/2−1
x=−L/2+1 σ (3)

x , hence we obtain the
same spectrum as that of Hd1 restricted to H+. Thus, for
Hamiltonian (59) duality is obtained by making each state
doubly degenerate.

Finally, let us note that a remnant of duality is also present
for γ �= 1. This guarantees that the transition always occurs at
g = 1. Indeed, consider the transformation

μ = − μ′

1 + μ′/γ 2
. (63)

Then, we have

uμ(μ,γ ) = −uμ(μ′,γ ), c(μ) = 4γ 2

c(μ′)
, (64)

so that, at points that only differ by the sign of uμ, the
low-k behavior of E(k) is the same, apart from a change of
normalization.

C. Free energy

The free energy of the quantum XY model can be directly
related to the finite-size free energy of the 2D Ising model. If
we consider a strip of width M , the Ising free-energy density
is given by (we use K instead of β to avoid confusion with the
quantum case and write F = −TfIs) [50,51]

fIs(K,M) = 1

2
ln(2 sinh 2K) + 1

2

∫ 2π

0

dk

2π
ε(k)

+ 1

M

∫ 2π

0

dk

2π
ln[1 + e−Mε(k)], (65)

where

ε(k) = ln[ζ (k) +
√

ζ (k)2 − 1],
(66)

ζ (k) = cosh 2K coth 2K − cos k/2.

For large values of M , the leading behavior of the finite-size
correction term is obtained by expanding ε(k) for k → 0, since
ε(k) is positive and has an absolute minimum at k = 0. Close
to the critical point Kc = (1 + √

2)/2, if δ = Kc − K > 0
(paramagnetic phase), we obtain

ε(k) = 4(δ2 + k2/64)1/2. (67)

This expression allows us to rewrite

fIs(K,M) = Freg(K) − 2δ2

π
ln δ2 + δ2gIs(δM), (68)

where

Freg(K) = 2G

π
+ ln 2

2
− δ

√
2

+ 2

π
δ2(1 + ln 2 − π/2) + O(δ2), (69)

gIs(x) = 4

πx2

∫ ∞

0
dy ln{1 + exp[−4(x2 + y2)1/2]},

and G is Catalan’s constant. For the XY model we obtain a
similar result. Defining

FXY = −T ln Tr e−βH , β = 1/T , (70)

we obtain [16]

FXY (μ,T ,γ ) = −1

2

∫ π

−π

dk

2π
E(k)

− 1

β

∫ π

−π

dk

2π
ln[1 + e−βE(k)], (71)

where E(k) is given in Eq. (53). Also in this case the large
β behavior is obtained by expanding E(k) around k = 0, i.e.,
by using Eq. (54). At leading order, we reobtain Eq. (68) with
some different normalization constants:

FXY (μ,T ,γ ) = FXY,reg(μ,γ )

+ 2au2
μ

π
ln u2

μ − au2
μgIs(buμ/ut ), (72)

where ut = T/c, c defined in Eq. (55), and

a = c

16
, b = 1

4
. (73)

Note the presence of the logarithmic term, which is due to
a resonance between the identity operator of RG dimension
2 and the thermal operator of RG dimension 1 [14]. In
principle, logarithmic terms should appear in all observables
and both at leading and at subleading order. However, extensive
analyses of the 2D Ising model [19,34,52–59] have identified
logarithmic corrections only in a very few cases. Note also that
the regular function FXY,reg(μ,γ ) in Eq. (72) does not depend
on T as conjectured in Sec. II A 3.
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We wish now to compute the corrections to Eq. (72). For
this purpose we set λ = uμ/ut and consider the expansion of

B(x,λ,T ) = E(xut )

Ec(xut ,uμ)
, (74)

where Ec(x,uμ) = (x2 + u2
μ)1/2, in powers of ut , keeping x

and λ fixed. We obtain

1

c
B(x,λ,T ) = 1 + Bc(x,λ,T ) = 1 +

∑
n=2

un
t Bc,n(x,λ). (75)

Since βEc(xut ,uμ) = Ec(x,λ)/c is independent of ut and
Bc(x,λ,T ) ∼ u2

t , we can write

β

∫ π

0
dk ln(1 + e−βE(k))

=
∫ βπ

0
dx

{
ln[1 + e−Ec(x,λ)]

+ ln

[
1 − e−Ec(x)Ec(x,λ)Bc(x,λ,T )

1 + e−Ec(x,λ)
+ · · ·

]}
. (76)

Each term Bc,n(x,λ) of Eq. (75) increases as a power of x for
x → ∞. Therefore, the integrand vanishes exponentially as
x → ∞ order by order, and we can extend the upper limit of
integration to +∞, making an exponentially small error. The
second term in braces can then be expanded in powers of ut ,
proving that the free energy admits an expansion in powers of
ut at λ fixed.

Let us now compute the first correction of order u2
t .

Proceeding as discussed above, we obtain

β

∫ π

0
dk ln[1 + e−βE(k)]

=
∫ ∞

0
dx ln

[
1 + e−Ec(x,λ)

]
−u2

t

2
v1(μ,γ )

∫ ∞

0
dx

x4(x2 + λ2)−1/2

1 + exp
√

x2 + λ2
. (77)

Note that the corrections of order u2
t are proportional to

v1(μ,γ ). Hence, it is natural to identify this quantity as the
scaling field associated with the leading irrelevant operator.
We will confirm this conjecture in the next sections.

D. Scaling of the energy gap: Periodic and antiperiodic
boundary conditions

We wish now to compute the finite-size behavior of the
difference � between the energy of the lowest excited states
and that of the ground state, extending the results of Ref. [40].
For PBC we shall show that � admits an expansion of the form

�P = c(μ,γ )

2L

[
�P 0(w̃) + v1(μ,γ )

L2
�P 2(w̃) + O(L−4)

]
,

(78)

where

w̃ = uμL. (79)

An analogous expansion holds also for ABC. Such a result
confirms the identification of uμ and v1 as nonlinear scaling

fields. Note that, if

w ≡ μL

γ
(80)

is used as scaling variable and c is replaced by its leading
behavior 2γ , then we have

� = γ

L

[
�P 0(w) + 1

L
�P 1(w) + O(L−2)

]
. (81)

The corrections of order L−1, which vanish at the critical point
w = 0, are due to the expansion of the nonlinear scaling field
uμ and of the sound velocity c (in the general case, they would
be of order L−1/ν).

To compute the energy levels, we use the results of
Katsura [16]. They are obtained by using Eq. (52), with a
proper identification of the allowed values of k. The energy
levels can be divided in two sectors: the even one in which
k = 2mπ/L, m = 0, . . . ,L − 1, and the odd one in which k =
(2m + 1)π/L, m = 0, . . . ,L − 1. The corresponding ground-
state energies are

Eodd
0 = −1

2

L−1∑
m=0

E

(
2m + 1

L
π

)
,

(82)

Eeven
0 = −1

2

L−1∑
m=0

E

(
2m

L
π

)
,

where E(k) is given in Eq. (53). Note that, for γ �= 0, we
have Eodd

0 < Eeven
0 . Half of the states belong to the odd sector.

They can be written as a
†
k1

a
†
k2

. . . a
†
km

|odd〉, where k1,k2, . . . ,km

belong to the odd sector, m is even for PBC and odd for ABC.
The allowed states in the even sector can also be written as
a
†
k1

a
†
k2

. . . a
†
km

|even〉, but now m depends both on the boundary
conditions and on the value of g. For g � 1, m is odd (even)
for PBC (ABC). For g � 1 the opposite condition holds: m is
even for PBC, odd for ABC. For g = 1 the parity of m can
be chosen arbitrarily, obtaining the same spectrum in all cases
as a result of the fact that E(0) = 0. Therefore, for g > 1 and
PBC, the lowest energy states are

EP
0 = Eodd

0 ,

EP
1 = Eeven

0 + E(0), (83)

EP
2 = Eodd

0 + E(π/L) + E(π − π/L),

while for g � 1 we obtain

EP
0 = Eodd

0 ,

EP
1 = Eeven

0 , (84)

EP
2 = Eodd

0 + E(π/L) + E(π − π/L).

For ABC we have for g � 1

EA
0 = Eeven

0 ,

EA
1 = Eodd

0 + E(π/L) = Eodd
0 + E(π − π/L),

(85)
EA

2 = Eeven
0 + E(0) + E(2π/L)

= Eeven
0 + E(0) + E(π − 2π/L),
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while for g � 1

EA
0 = Eeven

0 + E(0),

EA
1 = Eodd

0 + E(π/L) = Eodd
0 + E(π − π/L), (86)

EA
2 = Eeven

0 + E(2π/L) = Eeven
0 + E(π − 2π/L).

Note that the first two excited states are doubly degenerate.
Then, � and �(2), the energy gaps for the first and second
excited state, respectively, are given by

�P = Eeven
0 − Eodd

0 + θ (g − 1)E(0),

�A = Eodd
0 − Eeven

0 + E(π/L) − θ (1 − g)E(0)

= −�P + E(π/L) + 2(g − 1), (87)

�
(2)
P = 2E(π/L),

�
(2)
A = E(2π/L) + θ (g − 1)E(0),

with θ (x) = 1 for x � 0, θ (x) = 0 for x < 0. The behavior of
these quantities in the FSS limit, in which μ = g − 1 → 0,
L → ∞ at μL fixed, was considered in Ref. [40]. We have
performed the calculation again, using the general method
discussed in Appendix B of Ref. [60]. We obtain

1

γ
Eodd

0 ≈ −L

γ
J + 1

L

[
π

3
− w − 4πG1(w/2π )

]
− w2

4πL

(
ln

w2

16π2
+ 2γE − 1

)
, (88)

1

γ
Eeven

0 ≈ −L

γ
J + 1

L

[
−π

6
+ 4πG1(w/2π ) − 2πG1(w/π )

]
− w2

4πL

(
ln

w2

π2
+ 2γE − 1

)
, (89)

where w = μL/γ , γE ≈ 0.577 215 7 is Euler’s constant,

J =
∫ π

0

dk

2π
E(k), (90)

and G1(x) is a remnant function [61]:

G1(x) =
∞∑

n=1

(√
n2 + x2 − n − x2

2n

)
. (91)

For x → 0, G1(x) ≈ −x4ζ (3)/8, while for |x| → ∞ we
have [60]

G1(x) = 1

12
+ x2

4

(
− ln

x2

4
+ 1 − 2γE

)
− |x|

2

− |x|
π

∞∑
n=1

1

n
K1(2πn|x|), (92)

where K1 is a modified Bessel function. Using these results
we obtain [62]

L�P /γ ≈ �P 0

= π

2
+ w + w2

π
ln 2

+ 2πG1(w/π ) − 8πG1(w/2π ), (93)

−4 −2 0 2 4
uμ Le

0

2

4

6

8

10

2Δ
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e
/c
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OBC
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FIG. 1. (Color online) We report the energy difference � be-
tween the lowest energy levels. We plot 2�Le/c versus w̃e = uμLe

in the scaling limit for PBC (Le = L for PBC), OBC, and for the
self-dual Hamiltonian (60).

L�A/γ ≈ �A0 = −�P 0 + 2w + 2
√

π2 + w2. (94)

These results are consistent with Eq. (78) since w̃ ≈ w and c ≈
2γ for μ → 0. The PBC curve is shown in Fig. 1. For w → 0,
Eqs. (93) and (94) give �P 0(w) = π/2 and �A0(w) = 3π/2,
in agreement with Ref. [47]. For |w| → ∞, using Eq. (92) we
obtain

�P 0 = w + |w| − 2
|w|
π

∞∑
n=1

1

n
[K1(2n|w|) − 2K1(n|w|)] ,

(95)

which shows that L�P ≈ 2μL for w → +∞ and L�P ≈ 0
for w → −∞, with exponentially small corrections. In the
same limit, L�A behaves as L�P , but corrections are now of
order w−2.

Let us now focus on the corrections. For this purpose, in
the PBC case we consider the combination

�̂P 2(w̃,L,γ ) = L2

v1(0,γ )

[
2L�P

c
− �P 0(w̃)

]
. (96)

If Eq. (78) is correct, such a combination should converge to
�P 2(w̃) as L → ∞ at fixed w̃. Moreover, the limiting curve
should be independent of γ . The results for γ = 0.4 and 0.8
shown in Fig. 2 are in full agreement, confirming Eq. (78) at
order L−3. These curves are obtained by computing � using
high-precision arithmetic for values of L in the range 103 �
L � 105 at fixed w̃. On the scale of the figures the results fall
on top of each other, providing the limiting scaling curve.

To verify that the neglected corrections in Eq. (78) decay
as L−4, we consider the case γ = γi = √

3/2, for which
v1(μ,γi) ≈ −μ/(12γ 2

i ), and compute

�̂P 4(w̃) = L4

[
2L�P

c
− �P 0(w̃) − w̃

12γiL3
�P 2(w̃)

]
.

(97)

If corrections are of order L−4, this quantity should have a
finite limit as L → ∞ at fixed w̃. If corrections are instead
of order L−3, this quantity should diverge linearly in L as
L → ∞. The results shown in Fig. 3 are consistent with a
finite limit, and hence confirm that corrections decay as L−4.

094516-10



FINITE-SIZE SCALING AT QUANTUM TRANSITIONS PHYSICAL REVIEW B 89, 094516 (2014)

−10 0
uμ L

−6

−4

−2

0

γ=0.4
γ=0.8 PBC

FIG. 2. (Color online) Plot of the correction �̂P 2 to the lowest-
energy spectral gap, as defined in Eq. (96), versus w̃ = uμL for
γ = 0.4 and 0.8. The two sets of data appear to follow a unique
curve.

E. Scaling of the energy gap: Open boundary conditions

Let us now consider the OBC case. This case is more
complex than the PBC one, since we must take into account
boundary irrelevant corrections and the fact that ul is a
nontrivial function of L. The latter type of corrections can be
taken into account by using an effective size Le. Boundary
irrelevant operators give rise to corrections of order L−2,
hence ωs = 2. The latter corrections are generally expected in
systems belonging to the 2D Ising universality class [63,64].
In practice, we will show that

� = c(μ,γ )

2Le

[
�0(w̃e) + 1

L2
�2(w̃e,γ ) + O(L−3)

]
, (98)

where

w̃e = uμLe. (99)
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L=1000
L=10000

FIG. 3. (Color online) To confirm the absence of terms of order
L−3 in the expansion (78), the combination �̂P 4 defined in Eq. (97)
is plotted versus w̃ for two values of L, L = 103 and L = 104. The
two sets of data are hardly distinguishable, showing that �̂P 4 has a
nontrivial finite large-L limit.

The function �2(w̃e,γ ) is not proportional to v1(0,γ ) (for
instance, it does not vanish for γ = γi = √

3/2), indicating
the presence of boundary contributions with ωs = 2. For γ = 1
the effective length Le is equal to L + 1/2. From the analysis
of the numerical data, we will conjecture a general expression
for Le, valid for all values of γ (see below).

We first consider the case γ = 1, for which we can use the
analytic expressions reported in Ref. [46]. The gap � is given
by E(k0), where k0 is the smallest (in absolute value) k that
satisfies the secular equation [46]

sin(L + 1)k

sin Lk
= 1

g
. (100)

In the scaling limit at fixed w = μL/γ , the solution of the
secular equation depends on w. For w > −1, we have

k0 = δ1

L
+ δ2

L2
+ O(L−3), (101)

where δ1 is the solution in ]0,π [ of the equation

δ1 = −w tan δ1, (102)

and δ2 is given by

δ2 = − δ1
(
δ2

1 + 2w2
)

2
(
δ2

1 + w + w2
) . (103)

For w < −1, we have instead

k0 = iδ1

L
+ iδ2

L2
+ O(L−3), (104)

where δ1 is the solution in ]0, + ∞[ of the equation

δ1 = −w tanh δ1, (105)

and

δ2 = − δ1
(
δ2

1 − 2w2
)

2
(
δ2

1 − w − w2
) . (106)

For w → +∞, we have δ1 ≈ π − π/w and δ2 ≈ −π +
2π/w; for w → 0, we have δ1 → π/2 and δ2 → −π/4; for
w → −1, δ1 and δ2 both vanish, while for w → −∞ we obtain
δ1 ≈ −w[1 + O(e−2|w|)] and δ2 ≈ w/4.

Using the expansion of k0 and Eq. (54) we obtain in the
limit L → ∞ at w fixed

L2�2

c2
= ±δ2

1 + w2 ± 2δ1δ2
1

L
, (107)

where the upper signs should be used for w > −1 and the lower
signs for w < −1. As in the PBC case, the gap δ1 vanishes as
w → −∞, while for w → +∞ we have L�/c ≈ w. The
resulting curve is reported in Fig. 1.

To get rid of the analytic corrections, we express L2�2/c2

as a function of w̃. Since w = w̃ + w̃2/(2L), we obtain

L2�2

c2
= ±δ2

1 + w̃2 ∓
(

δ2
1

(
δ2

1 + w̃
)

δ2
1 ± w̃(1 + w̃)

)
1

L
, (108)

where δ1 is now a function of w̃ and we used

dδ1

dw
= δ1

w + w2 ± δ2
1

. (109)
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The 1/L correction can be eliminated by rescaling the size L.
Indeed, if we define

Le = L + 1
2 , (110)

we obtain

L2
e�

2

c2
= ±δ2

1 + w̃2
e + O(L−2), (111)

where δ1 is now a function of w̃e = uμLe. Actually, the same
rescaling (110) eliminates the 1/L corrections for any energy
level. This result can be derived immediately if we rewrite the
secular equation in terms of uμ and Le:

w̃e

Le

= 2 cot(Lek) sin k/2

[1 − (sin2 k/2)(sin Lek)−2]1/2
. (112)

This equation is symmetric under Le → −Le and k → −k,
implying the k has an expansion in odd powers of 1/Le. No
even powers appear, confirming the absence of corrections of
order L−1

e in the expansion of the gap.
The previous analysis was restricted to the first correction.

It is important to stress that it is not possible to eliminate the
corrections of order L−3 in the expansion of k0 by redefining
Le = L + 1/2 + a/L, with a suitable a. Indeed, at the critical
point the secular equation gives k0 = 2π/(L + 1/2) exactly.
Therefore, for w̃ = 0, there are no L−3

e corrections only if
a = 0. But, if we take a = 0, corrections are present for w̃ �= 0.

Let us now consider the energy gap for γ �= 1. In the
absence of analytic results, we compute the difference � of
the two lowest energy levels numerically for L � 4096 and
for γ = √

3/2, 0.8, and 0.4. Also for these values of γ we find
that the leading scaling correction can be eliminated by using
an appropriate γ -dependent Le. An accurate numerical guess
for Le is

Le = L + 1

2
+ (γ + 2)(γ − 1)

2γ
. (113)

With this choice � has an expansion of the form

2Le�(μ,L,γ )

c
= �0(w̃e) + O(L−2). (114)

We can estimate the correction term by considering

�̂2 = 4

3

[
2Le1�(μ1,L,γ )

c(μ1)
− 2Le2�(μ2,2L,γ )

c(μ2)

]
, (115)

where Le1 and Le2 correspond to L and 2L, respectively, and
μ1 and μ2 are obtained by solving uμ(μ1,γ )Le1 = w̃e and
uμ(μ2,γ )Le2 = w̃e. The resulting quantity has a finite limit for
L → ∞ at fixed w̃e, reported in Fig. 4. Note that corrections
do not vanish for γi = √

3/2, where v1(0,γi) = 0, hence they
cannot be only due to the bulk subleading operator with ω = 2.
Moreover, there is no rescaling that allows us to obtain a
collapse of all data onto a single curve. Therefore the data
show the presence of corrections due to a boundary subleading
operator with exponent ωs = 2, in agreement with the RG
analyses of Refs. [63,64].

Finally, it is interesting to consider the self-dual Hamilto-
nian (60). The secular equation turns out to be particularly
simple. The allowed values of k are simply k = πn/(L + 1),
n = 1, . . . ,L for all values of g. Therefore, if we define

−6 −4 −2 0 2 4 6
uμ Le

−30
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γ = 0.4
γ = 0.8
γ = γi
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OBC

FIG. 4. (Color online) Leading correction �̂2 defined in
Eq. (115) versus w̃e = uμLe for OBC. Results for γ = γi = √

3/2,
γ = 0.8, 0.4, and γ = γs = √

3 − 1 (for γ = γs we have Le = L).

Le = L + 1, we have

L2
e�

2

c2
= π2 + w̃2

e + π4v1(μ,γ )

L2
e

+ O(L−4). (116)

The scaling function for L → ∞ is reported in Fig. 1. Note
that �1 does not vanish for w̃e → −∞, a consequence of
the fact that the degeneracy for g < 1 is lifted by the added
magnetic field. A second peculiarity of the result is the absence
of boundary corrections, once length scales are expressed in
terms of Le.

F. RG invariant ratios

In Secs. III C–III E we have shown that the data for the free
energy and energy gap are consistent with the assumption that
uμ and v1 are nonlinear scaling fields. Moreover, in the case
of OBC the leading boundary correction can be eliminated by
redefining L → Le.

We wish now to verify these conjectures by studying
different observables related to the correlation function of the
order parameter σ (1)

x . We consider the equal-time correlation
function

G(x,y) = 〈
σ (1)

x σ (1)
y

〉
, (117)

then we define

χ ≡
∑

x

G(0,x), (118)

ξ 2 ≡ 1

2χ

∑
x

x2G(0,x), (119)

and the RG invariant quantities

Rξ ≡ ξ/L, Rg ≡ ln[G(0,L/8)/G(0,L/4)]. (120)

We compute Rg for PBC and OBC, for several values of L

and w̃ (Le and w̃e in the OBC case) and extrapolate the results
to L → ∞. The results are reported in Fig. 5. Note that in
the scaling limit, all scaling variables are equivalent, i.e., w ≈
w̃ ≈ w̃e, but this is not true when considering the scaling
corrections. The value of Rg at the critical point for L → ∞
can be computed by using the exact expression of the two-point
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FIG. 5. (Color online) Plots of the RG invariant quantity Rg ,
defined in Eq. (120), versus w̃ = uμL for PBC (top) and versus
w̃e = uμLe for OBC (bottom). We report data for γ = 0.4, 0.8, and
γi = √

3/2. They approach a universal curve with increasing L. The
horizontal dotted lines correspond to the exact value at μ = 0. The
dashed lines show the asymptotic behavior Rg ≈ w/8 for w → ∞.

function at the critical point in the scaling limit. The numerical
values are reported in Appendix A. We can also predict the
large-w behavior by using the known expression of G(x) in
the infinite-volume limit for μ > 0. Since G(x) ∼ K0(xμ) for
γ = 1 [13], where K0(x) is a modified Bessel function, we
obtain Rg ≈ w/8 for w → ∞.

Let us now discuss the leading corrections in the PBC
case. According to the general analysis, in the limit L → ∞,
μ → 0 at fixed w̃, we expect corrections of order L−ω = L−2

due to the leading irrelevant operator and corrections due to
field mixings. We will show that the latter also scale as L−2,
obtaining an expansion of the form

Rg(μ,L,γ ) = Rg0(w̃) + 1

L2
Rg2(w̃,γ ) + O(L−3), (121)

with

Rg2(w̃,γ ) = v1(μ,γ )Rg21(w̃) + v2(μ,γ )Rg22(w̃), (122)

where v1(μ,γ ) is the nonlinear scaling field reported in
Eq. (57). To verify this expansion, we consider the combination

R̂g2(w̃,L,γ ) = 4L2

3
[−Rg(w̃,L) + 9Rg(w̃,2L)

− 8Rg(w̃,4L)]. (123)
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FIG. 6. (Color online) Plot of the leading correction R̂g2, defined
in Eq. (123), to the RG invariant quantity Rg versus w̃ = uμL for
PBC. We report data for γi = √

3/2, and some values of L. Data
clearly converge toward an asymptotic large-L curve.

If Eq. (121) holds, R̂g2(w̃,L,γ ) converges to Rg2(w̃,γ ) with
corrections of order L−2. If instead Eq. (121) does not hold and
corrections to the leading scaling behavior are of order 1/L,
R̂g2(w̃,L,γ ) diverges as L → ∞. In Fig. 6 we show the results
for γi = √

3/2 for which v1(0,γi) = 0. The combination
R̂g2(w̃,L,γ ) has a finite limit for L → ∞, confirming that
the leading scaling corrections decay as 1/L2.

Since v1(0,γi) = 0, the corrections we observe cannot be
due to the operator Q2

2 + Q̄2
2 which controls the leading scaling

correction for the free energy and the spectrum. Corrections
are instead a field-mixing effect. The lattice operator is a
combination of conformal fields:

σ
(1)
LAT = Oσ +

∑
i=1

Oσ,i , (124)

where Oσ is the primary CFT field and Oσ,i are the secondary
fields that belong to the σ family, the leading one being Oσ1 =
L−1|σ 〉 and yσ − yσ1 = 1. To provide additional evidence for
the validity of Eq. (121), we consider

R̂g21 = 4L2

3
[Rg(μ,L,γ ) − Rg(μ,2L,γ )]

− 4L2

3

v2(0,γ )

v2(0,γi)
[Rg(μ,L,γi) − Rg(μ,2L,γi)]. (125)

If Eq. (121) holds, then

R̂g21(μ,L,γ ) ≈ v1(0,γ )Rg21(w̃). (126)

Since v1(μ,γ ) is known, this relation gives us a recipe
to identify v2(0,γ ). We determine v2(0,γ ) by requiring
R̂g21(μ,L,γ )/v1(0,γ ) to be independent of γ . By using
numerical results for γ = 0.4 and γ = 0.8, we find that this
condition is satisfied by simply taking

v2(0,γ )/v2(0,γi) = 1. (127)

This is shown by the data in Fig. 7. The scaling field v2(μ,γ )
is independent of γ for μ → 0.
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FIG. 7. (Color online) Test of Eq. (121) for PBC. The ratio
R̂g21(μ,L,γ )/v1(0,γ )—the combination R̂g21(μ,L,γ ) is defined in
Eq. (125)—is plotted versus w̃ = uμL. We use Eq. (127). The data
for different values of γ appear to approach the same curve with
increasing L.

Let us now consider the scaling corrections in the OBC
case. In this case we find that scaling corrections of order
1/L are present even if the limit L → ∞ is taken at fixed w̃e.
Indeed, the numerical data are consistent with

Rg(μ,L,γ ) = Rg0(w̃e) + 1

L
Rg1(w̃e,γ ). (128)

To estimate the 1/L correction, we consider

R̂g1(L,w̃e,γ ) = 2L

3
[Rg(L,w̃e) − 13Rg(2L,w̃e)

+ 44Rg(4L,w̃e) − 32Rg(8L,w̃e)]. (129)

For L → ∞, we have

R̂g1(L,w̃e,γ ) → Rg1(w̃e,γ ) (130)

with corrections of order L−3 [65]. We have computed
R̂g1(L,w̃e,γ ) for 64 � L � 512, obtaining, for all values of
γ , a nonzero result. The function R̂g1(L,w̃e,γ ) for L = 512 (it
is essentially asymptotic) is reported in Fig. 8. Note that it has
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FIG. 8. (Color online) Plot of the 1/L correction R̂g1(L,w̃e,γ ),
defined in Eq. (129), versus w̃e = uμLe. OBC results for L = 512
and several values of γ (γs = √

3 − 1).
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FIG. 9. (Color online) Plot of Rξ ≡ ξ/L [ξ is defined in
Eq. (120)] versus w̃ = uμL for PBC (top) and versus w̃e = uμLe

for OBC (bottom). We report data for γ = 0.4, 0.8, and γi = √
3/2.

For both OBC and PBC the data for different values of γ approach
a universal curve with increasing L. The horizontal dotted lines
correspond to the exact value at μ = 0. The dashed lines show the
asymptotic behavior Rξ ≈ 1/(

√
2w̃) for w̃ → ∞ (for OBC we should

replace w̃ with w̃e).

a nontrivial dependence on γ : No rescaling exists that makes
the curves corresponding to different values of γ fall one on
top of the other. This implies that such correction cannot be
ascribed to a single subleading operator. We can also exclude
that the 1/L correction can be eliminated by using Le in the
definition of Rg , i.e., by defining

R′
g ≡ ln[G(0,Le/8)/G(0,Le/4)]. (131)

Indeed, for γ = γs = √
3 − 1, we have Le = L, hence Rg =

R′
g . But also in this case 1/L corrections are present. They

may be explained by the presence of field mixings with the
boundary operators.

Let us finally consider Rξ . Its behavior in the scaling limit
is shown in Fig. 9. The finite-size behavior of Rξ is more
complex, since one must also take into account the background
term which gives corrections of order L−2+z+η = L−3/4,
independent of the type of boundary conditions. For OBC
next-to-leading corrections are of order L−1, while for PBC, if
the scaling limit is taken at fixed w̃, they are of order L−7/4 and
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FIG. 10. (Color online) Plot of Rξ − R∗
ξ at μ = 0 vs L−3/4. The

dotted lines are fits to aL−3/4 + bL−1, while the dot-dashed one is
a fit to aL−3/4 only. Results for OBC and PBC and for γ = 0.4 and
0.8. R∗

ξ = 0.159622 . . . and R∗
ξ = 0.187790 . . . in the OBC and PBC

case, respectively (see Appendix A).

are due to the L dependence of the background term. These
predictions are well confirmed by the data shown in Fig. 10.

IV. FINITE-SIZE SCALING OF BIPARTITE
ENTANGLEMENT ENTROPIES

In a quantum system the reduced density matrices of
subsystems and, in particular, the corresponding entanglement
entropies and spectra, provide effective probes of the nature
of the quantum critical behavior (see, e.g., Refs. [66–70]).
Their dependence on the finite size of the system may be
exploited to determine the critical parameters of a quantum
transition [71–76].

The spatial entanglement of systems near their quantum
critical point can be quantified by computing von Neumann or
Rényi entanglement entropies of the reduced density matrix
of a subsystem. They generally satisfy the area law, with
some notable exceptions presenting logarithmic corrections,
such as free Fermi gases in arbitrary dimensions [68].
Moreover, in a homogeneous one-dimensional (1D) system
of length L whose quantum critical behavior is described
by a 2D CFT, the bipartite entanglement entropy S(lA,L)
increases logarithmically [77–80] with increasing the size lA
of the subsystem at the critical point, i.e., S ∼ ln lA, or with
increasing the spatial length scale ξ when approaching the
critical point, i.e., S ∼ ln ξ (if 1 � ξ � lA). In both cases the
coefficients of the logarithms are related to the central charge
of the corresponding CFT.

In this section we discuss the finite-size behavior of the
entanglement entropy of spatial bipartitions of the system.
We restrict the discussion to zero temperature and to one-
dimensional systems with an isolated quantum critical point
with z = 1 and central charge c. The general FSS behavior
is then compared with exact and numerical results for the XY
chain.

A. FSS in 1D systems at a quantum critical point

We consider a 1D lattice system, and divide it into two
connected parts A and B of length �A and �B = L − �A, and

consider the Rényi entropy

Sα(�A,L) = Sα(L − �A,L) = 1

1 − α
ln Tr ρα

A, (132)

where α is a positive constant, ρA is the reduced density matrix
of the subsystem A, i.e.,

ρA = TrBρ, (133)

and ρ is the density matrix of the ground state. For α → 1, the
Rényi entropy coincides with the von Neumann (vN) entropy

S1(�A,L) = S1(L − �A,L) = −Tr ρA ln ρA. (134)

The asymptotic behavior of bipartite entanglement entropies
is known at the critical point μ = 0 [77–80]. We have

Sα(�A,L) ≈ cq
1 + α−1

12
[ln L + ln sin(π�A/L) + eα] ,

(135)
where c is the central charge, q counts the number of
boundaries between the two parts of the system, thus, q = 2
and q = 1 in the PBC and OBC case, respectively. The
constant eα is nonuniversal and depends on the boundary
conditions [79–81].

The corrections to Eq. (135) may have various origins.
Beside the corrections discussed in Sec. II, there are additional
corrections. They are related to the operators associated
with the conical singularities at the boundaries between the
two parts, which appear in the α-sheeted Riemann surface
introduced to compute Tr ρα

A [17,18]. In the limit L,�A → ∞
at fixed �A/L, these new operators give rise to terms of order
L−ε/α in the case of OBC [17,18] and of order L−2ε/α in the
case of PBC [82,83]. Here ε > 0 is the RG dimension [17,18]
of the leading conical operator. The results for a number of 1D
models suggest that the energy operator plays a major role in
this respect [74,82–84], hence

ε = 1/ν. (136)

Moreover, the analysis of exactly solvable models shows the
presence of other corrections suppressed by integer powers of
L [82]. The general predictions are confirmed by the exact
results for the XY chain at the critical point, for both OBC and
PBC. They are summarized in Appendix B.

The asymptotic behavior of the bipartite entanglement
entropies is also known in the thermodynamic limit close to
the transition point [18,79], i.e., for L,�A � ξ , where ξ is
the length scale of the critical modes, such as that defined in
Eq. (39). One obtains [18,79,85]

Sα(�A,L; μ) ≈ cq
1 + α−1

12
ln ξ + aα, ξ � �A,L, (137)

where again q = 2 in the case of PBC and q = 1 in the case
of OBC, and aα is a nonuniversal constant. The corrections to
the asymptotic behavior (137) are expected to be [18] of order
ξ−ε/α , where ε is the same exponent controlling the finite-size
corrections at the critical point. Additional corrections of order
ξ−2 should also be present [86].

In the general FSS regime, the bipartite entanglement
entropy has been conjectured to satisfy the asymptotic scaling
equation [79]

Sα(�A,L; μ) − Sα(�A,L; 0) ≈ �α(�A/L,μL1/ν). (138)
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Consistency with Eqs. (135) and (137) implies

�α(�A/L,w) ≈ −νcq
1 + α−1

12
ln w (139)

for w → ∞. If we include the scaling corrections, we expect

Sα(�A,L; μ) − Sα(�A,L; 0)

≈ �α

(
�A/L,uμ/u

1/ν

l

)
+ bαu

ε/α

l �α,c

(
�A/L,uμ/u

1/ν

l

) + · · · , (140)

where the ellipsis corresponds to other corrections of order uω
l ,

u
ωs

l , . . ., which may be more relevant than the conical ones in
some cases.

Starting from the entanglement entropies, one can define
RG invariant quantities, which can be used to determine the
critical behavior in a finite volume. For this purpose, we
consider

Qα(X,Y ) = 12

q(1 + α−1)

[
Sα(XL,L,μ) − Sα(YL,L,μ)

ln sin(πX) − ln sin(πY )

]
(141)

with 0 < Y < X < 1. According to Eq. (135), at the critical
point μ = 0

lim
L→∞

Qα(X,Y ) = c. (142)

On the other hand, for μ �= 0 and ξ � L, since Sα(�A,L,μ) is
independent of �A in this limit, we have Qα(X,Y ) = 0.

The quantity Qα may be used to determine the transition
point and critical exponents, as the RG invariant quantities R

considered in Sec. II E. For any boundary condition, Eq. (140)
implies

Qα(μ,L) = Qα

(
uμu

−1/ν

l

) + bαu
ε/α

l Qα,c

(
uμu

−1/ν

l

) + · · ·
(143)

with Qα(0) = c, where the dependence on the interval co-
ordinates X,Y is understood. The scaling functions Qα and
Qα,c depend only on X,Y , and the boundary conditions, apart
from a trivial normalization of their argument, while bα is a
nonuniversal constant. In the PBC case, we have

Qα,c(0) = 0, (144)

since corrections decay as L−2ε/α at the critical point. Besides
the corrections of order L−ε/α , one should also consider the
standard corrections related to the usual bulk and boundary
irrelevant operators, and analytic corrections.

B. FSS in the XY chain

To verify the general FSS behaviors presented in Sec. IV A,
we consider again the XY chain. In this case ν = 1, so that
ε = 1. Therefore, for α > 1 the corrections associated with the
Rényi entanglement entropies of order L−1/α are stronger than
the standard ones discussed in the previous sections, which
scale as 1/L at least. We consider the quantity

Qα ≡ Qα(X = 1/2,Y = 1/4), (145)

i.e., we take X = 1/2 and Y = 1/4 in Eq. (141). In the fol-
lowing we present results for the Rényi and vN entanglement
entropies, for several values of γ , OBC, and PBC, and lattice
sizes up to L = O(104).
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L=800
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L=2264
L=3200
L=4528

γ = 0.4

OBC

FIG. 11. (Color online) The RG invariant quantity Q1, derived
from the vN entanglement entropy using Eqs. (141) and (145), for
γ = 0.4. We consider OBC and several values of L. The dotted lines
connecting the data corresponding to the same value of L are only
meant to guide the eye.

Figure 11 shows Q1 for γ = 0.4 and several values of L

for OBC. The curves show a maximum for μ < 0 and cross
each other approximately at μ = 0. Using Eq. (143), one can
easily establish that the crossing point μcross(L), defined by

Qα[μcross(L),L] = Qα[μcross(L),2L], (146)

approaches the critical point as

μcross = O(L−1/ν−1/α). (147)

This is confirmed by the results for Qα (see, e.g., Fig. 11).
Figures 12 and 13 show plots of Q1 and Q2, for OBC and

PBC, respectively, versus the scaling variable w = μL/γ for
γ = 0.4 and γ = 0.8. The data appear to approach universal
curves with increasing L, clearly supporting the universality
of the asymptotic function Qα(w) [cf. Eq. (143)], for both
OBC and PBC. Note that the maximum of the PBC scaling
curve is at w ≡ μL/γ = 0 and equals c = 1/2, while the OBC
maximum is larger than c = 1/2—we obtain Q1,max ≈ 0.9358
and Q2,max ≈ 1.248—and it is located in the region w < 0.
The scaling curves vanish exponentially for |w| → ∞. As
expected, scaling corrections appear larger for Q2 than Q1.

Let us now investigate the corrections to the leading term.
To begin with, we consider the Rényi entanglement entropies
for α > 1, whose leading corrections are expected to be due
to the conical singularities, i.e., the O(L−1/α) term explicitly
reported in Eq. (143). We use the asymptotic formulas reported
in Appendix B to derive the finite-size behavior of Qα at μ = 0.
We obtain

Qα = 1/2 + bαL−1/α + O(L−2/α) + O(L−1), (148)

where

bα = b̄αγ −1/α,
(149)

b̄α = 12(π/8)1/α�[1/2 + 1/(2α)](21/(2α) − 1)

(1 + α)�[3/2 − 1/(2α)] ln 2
.
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FIG. 12. (Color online) Scaling behavior of Q1 (bottom) and Q2

(top) for OBC vs w ≡ μL/γ , for γ = 0.4 and γ = 0.8. In both cases
the data for different values of γ approach a universal large-L curve.

In particular b̄2 = 0.925 049 . . . for α = 2. Instead, for PBC at
μ = 0, we find

Qα = 1/2 + pαL−2/α + O(L−4/α) + O(L−2),
(150)

pα = 3(α − 1)(π/4)2/α(21/α − 1)�[1/2 + 1/(2α)]2

α(α + 1)�[3/2 − 1/(2α)]2ln 2

for γ = 1. In particular p2(γ = 1) = 0.428 928 . . . .
The FSS limit is taken at fixed w̃e = uμLe for OBC and w̃ =

uμL for PBC [see Eqs. (56) and (113) for the definitions of
uμ and Le], to avoid analytic corrections due to the expansion
of the scaling fields. The numerical data of the α = 2 Rényi
entropy are in full agreement with Eq. (143): for both PBC
and OBC scaling corrections decay as L−1/2. Moreover, for
both OBC and PBC, the corrections are proportional to γ −1/2

as found at the critical point [cf. Eq. (149)]. This is clearly
demonstrated by the analysis of the large-L behavior of the
quantity

Q̂2,c ≡ 2(γL)1/2[Q2(w̃,L,γ ) − Q2(w̃,4L,γ )]. (151)

If corrections are of order (γL)−1/2, in the limit L → ∞ at
fixed w̃ or w̃e, Q̂2,c converges to a nontrivial γ -independent
scaling function, i.e., to the function Q2,c(w̃) appearing in
Eq. (143). Figures 14 and 15 show the extrapolation of Q̂2,c for
OBC and PBC, respectively. They are obtained by using results
for chains of length L � 4096. The resulting tiny differences
that are hardly visible in Figs. 14 and 15 are plausibly due
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FIG. 13. (Color online) Scaling behavior of Q1 (bottom) and Q2

(top) for PBC vs w = μL/γ , for γ = 0.4 and γ = 0.8. In both cases
the data clearly converge toward an asymptotic large-L curve which
is independent of γ .

to tiny numerical errors affecting the raw data and to the
extrapolation uncertainty. The curves for different values of γ

appear to approach a unique curve, thus supporting our general
scenario. Analogous results are expected for any α > 1.
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0

1

2
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γ=0.4
γ=0.8
γ=γi
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FIG. 14. (Color online) Check of the scaling of the corrections to
the asymptotic behavior of Q2 for OBC: Plot of the large-L limit of
Q̂2,c, defined in Eq. (151), versus w̃e = uμLe, for several values of
γ (γi = √

3/2). The different curves are hardly distinguishable: The
small differences are within the accuracy of the large-L extrapolation
of the data up to L = 1024.
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FIG. 15. (Color online) The large-L limit of Q̂2,c for PBC,
defined in Eq. (151), versus w̃ = uμL, for several values of γ . Here
γi = √

3/2. On the scale of the figure, the different curves are hardly
distinguishable. The small differences are within the extrapolation
errors. For w = 0 the numerical data are consistent with zero, i.e.,
with the absence of L−1/2 corrections, in agreement with the exact
results at the critical point.

The analysis of the leading corrections for the vN entan-
glement entropy is more complicated, essentially because, in
the limit α → 1, the leading corrections may have different
origins. This is already shown by the results at the critical point.
The asymptotic expansion of the vN entanglement entropy at
the critical point for OBC and γ = 1 is reported in Appendix B.
This allows us to derive

Q1(0,L) = 1/2 + bvNL−1 + O(L−2),
(152)

bvN = π (6
√

2 − 7)

8ln2
for γ = 1.

Note that bvN does not coincide with the α → 1 limit of the
coefficient bα appearing in Eq. (149). Thus, other corrections
contribute at order 1/L. To understand better the subleading
FSS behavior, we computed the corrections of order L−1 at
fixed w̃e = uμLe. They can be estimated by considering

Q̂1,c = 2L[Q1(w̃e,L,γ ) − Q1(w̃e,2L,γ )]. (153)

This quantity is constructed so that it approaches a nontrivial
function if the leading corrections are of order L−1. Figure 16
shows the large-L extrapolations [87] of Q̂1 for several
values of γ . We verify that the γ dependence cannot be
eliminated by rescaling Q̂1,c(w̃e,L,γ ) by a function of γ .
Hence, besides the conical contribution, there must be other
corrections due to the boundaries. They may be interpreted
as analytic corrections related to the length � of the domain.
Analogously to the nonlinear scaling field ul associated with
1/L which has an expansion in powers of 1/L [cf. Eq. (10)],
it is natural to introduce a scaling field u� associated with �,
with u� ≈ 1/� + a/�2. The expansion of u� would contribute
additional boundary corrections of order 1/L, when the limit
is taken at fixed �/L. This is confirmed by the asymptotic
behavior of the vN entanglement entropy at the critical point

−4 −2 0 2 4
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8

γ=0.4
γ=0.8
γ=γi
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γ=γs
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FIG. 16. (Color online) Scaling corrections for the vN entangle-
ment quantity Q1 for OBC: The large-L limit of Q̂1,c defined in
Eq. (153) is plotted versus w̃e = uμLe, for several values of γ . Here
γi = √

3/2 and γs = √
3 − 1.

(see Appendix B). Indeed, for γ = 1 it can be written as

S1(�,L) = 1

12

[
ln Le + ln sin

π�e

Le

+ e1

]
− π

16 sin(π�e/Le)

1

Le

+ O
(
L−2

e

)
, (154)

where Le = L + 1/2 and �e = � + 1/4, e1 is a constant, and
the term of order L−1 is the α → 1 limit of the corrections
of order L−1/α occurring for generic α > 1. Equation (154)
allows us to identify the origin of the correction terms: There
are conical corrections that give rise to the L−1

e term appearing
in Eq. (154), and boundary terms that can be eliminated by
introducing Le and �e.

In the case of PBC, the results of Appendix B at the critical
point lead to

Q1(0,L,γ ) = 1/2 + pvNL−2 + O(L−4),
(155)

pvN = π2

80 ln 2
for γ = 1.

The constant pvN is unrelated to the constant pα defined
in Eq. (150). Indeed, pα vanishes for α = 1. These results
apparently indicate that conical singularities are not related to
the L−2 corrections at the critical point. Let us now extend
the analysis away from the critical point, computing Q1 in the
FSS limit at fixed w̃. A detailed numerical analysis shows that
there are no scaling corrections of order 1/L. The function
Q1,c appearing in Eq. (143) vanishes identically: Corrections
for w̃ �= 0 decay as L−2 as occurs at the critical point. A
detailed analysis of the numerical data for several values of γ

shows that we can write

Q1(μ,L,γ ) = Q1(w̃) + L−2[Q1,c1(w̃) + v1(0,γ )Q1,c2(w̃)]

+O(L−3), (156)

where v1(μ,γ ), defined in Eq. (57), is the scaling field
associated with the leading bulk subleading corrections. Notice
that if we replace w̃ ≡ uμL with its linear approximation
w ≡ μL/γ in Eq. (156), the leading term does not change
but now the corrections are of order L−1. They are due to

094516-18



FINITE-SIZE SCALING AT QUANTUM TRANSITIONS PHYSICAL REVIEW B 89, 094516 (2014)

−10 10 0
uμL

−1

0

1
γ = 0.4
γ = 0.8 
γ = 1

PBC

FIG. 17. (Color online) Scaling corrections for the vN entangle-
ment quantity Q1 for PBC: The large-L limit of Q̂1,c2 defined in
Eq. (157) is plotted versus w̃ = uμL for several values of γ . The
data collapse onto a single curve; the apparent oscillations, which
are particularly visible for w̃ < 0 and γ = 0.8, are essentially due to
numerical errors in the computation of the raw data for L � 512.

the next-to-leading term appearing in the expansion of w̃ in
powers of w. To verify Eq. (156), we consider

Q̂1,c2(w̃,L,γ ) = L2

v1(0,γ )
[Q1(w̃,L,γ ) − Q1(w̃,L,γi)] ,

(157)
where γi = √

3/2 [we remind the reader that v1(0,γi) = 0]. If
Eq. (156) holds, Q̂1,c2(w̃,L,γ ) should converge to Q1,c2(w̃),
hence it should be independent of γ for large values of L.
As shown in Fig. 17, a straightforward extrapolation [87] of
data up to L = 4096 supports it. The second correction term in
Eq. (156) is associated with the bulk irrelevant operator. The
origin of the first term, which is independent of γ , is instead
less clear. As we have already discussed, at the critical point
the conical corrections of order L−2/α = L−2 vanish, hence
Q1,c1(0) can only be an analytic correction. It is natural to
conjecture that the same is true away from the critical point.
Indeed, if conical and analytic corrections were both present,
one would expect them to have different γ dependencies.
Hence, one would expect two different scaling functions with
different γ -dependent coefficients.

V. SUMMARY AND CONCLUSIONS

We study FSS at quantum zero-temperature transitions,
focusing on the corrections to the leading asymptotic behavior.
This issue is relevant for numerical and experimental studies
of quantum transitions, where the data are generally available
for a limited range of system sizes, which are often relatively
small. In these cases, the finite-size results show sizable cor-
rections with respect to the leading FSS asymptotic behavior.
Such corrections must be taken into account to obtain reliably
accurate estimates of the critical parameters and, if needed, to
identify the universality class of the transition.

We present a RG analysis of FSS at quantum zero-
temperature transitions of d-dimensional systems character-
ized by two relevant parameters μ and h, which are, respec-
tively, even and odd with respect to an assumed paritylike

symmetry. Well-known examples of such quantum transitions
are those occurring in quantum XY (Ising) systems and
general O(N )-symmetric spin models, superfluid or metallic
transitions in particle systems, etc. (see, e.g., Ref. [13]).

To characterize the scaling corrections, we generalize the
classical scaling ansatz [3,4,14] to quantum transitions. This
allows us to predict the type of subleading corrections that are
expected in finite systems and/or at finite temperature. First,
there are corrections associated with the bulk and boundary
irrelevant RG perturbations, that decay as L−κ , where κ is
generally a noninteger exponent. For example, in the case
of the quantum transitions of two-dimensional quantum Ising
and Heisenberg models, the leading bulk O(L−ω) corrections
have ω ≈ 0.8 (see, e.g., Ref. [5]). Then, one should consider
analytic corrections due to the regular backgrounds. Finally,
since the RG predictions are expressed in terms of the nonlinear
scaling fields, one should also consider the correction terms
arising from their expansion in powers of the Hamiltonian
parameters, the spatial size L, and the temperature T . We also
name these terms analytic corrections, since they arise from
the analytic dependence of the nonlinear scaling fields on the
system parameters, though, in general, they decay as L−ρ with
noninteger ρ.

To check the general predictions, we consider the quantum
XY chain in a transverse field, which is a standard theoretical
laboratory to understand issues concerning quantum transi-
tions. In particular, it is an ideal testing ground, since its
Hamiltonian can be exactly diagonalized [16], allowing us
to compute several interesting quantities either exactly or very
accurately by using numerical methods.

The analytic computation of the finite-size behavior of the
energy spectrum and of the free energy allows us to infer
the exact form of the nonlinear scaling fields associated with
the relevant Hamiltonian parameter μ ≡ g − 1 and with the
leading irrelevant operator with RG dimension −2. Moreover,
we can also determine the speed of sound c, which enters
the relation between the temperature T and the corresponding
scaling field. We provide a complete analysis of the asymptotic
FSS behavior of the energy gap � (i.e., the difference between
the energies of the two lowest levels) up to O(L−4) for PBC
and to O(L−2) for OBC [cf. Eqs. (78) and (98), respectively].
In the PBC case, we show that all terms up to L−4 are due to the
expansion of the nonlinear scaling field uμ associated with μ

and to the leading irrelevant RG perturbation. In the OBC case
the corrections of order L−1 in the expansion of � are due to the
L dependence of the nonlinear scaling field ul associated with
the spatial size L; they can be eliminated by introducing an
effective spatial size Le = L + l(γ ) [cf. Eq. (113)]. Instead,
the corrections of order L−2 show contributions associated
with boundary irrelevant RG perturbations of RG dimension
ỹ1 = −2. Then, we perform an analogous analysis for some
RG invariant quantities derived from the two-point function
of the order parameter, i.e., G(x,y) = 〈σ (1)

x σ (1)
y 〉, pointing out

the presence of further corrections, arising from mixings of
the operator σ (1)

x with other odd subleading operators. These
results for the XY chains are in full agreement with the general
RG framework put forward in Sec. II, which generalizes
Wegner’s scaling theory to quantum transitions.

Finally, we discuss the FSS behavior of bipartite entan-
glement Rényi and vN entropies in one-dimensional systems
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with an isolated quantum critical point with z = 1 and central
charge c. They present further peculiar corrections to the
asymptotic FSS behavior predicted by conformal field theory,
arising from operators associated with conical singularities
in the corresponding conformal mapping [17]. The FSS
predictions are compared with results for the XY chain. We
show that the leading FSS corrections for the Rényi entropies
with α > 1 [cf. Eq. (132)] are always of order L−1/α , for any
boundary conditions [see Eq. (140)]. In particular, in the PBC
case corrections are of order L−2/α only at the critical point
μ = 0. The behavior of the vN entanglement entropy is more
complex. In the OBC case, the leading correction of order L−1

is the sum of terms of different origin: we find contributions
from the conical operators and boundary corrections as well.
In the PBC case, the leading FSS corrections are of order
L−2 when the asymptotic scaling behavior is expressed in
terms of nonlinear scaling fields [cf. Eq. (156)]; otherwise, for
μ �= 0, corrections of order L−1/ν arise from the expansion of
the nonlinear scaling field w̃ in powers of the relevant model
parameters. Apparently, the O(L−2) corrections in Eq. (156)
are the sum of an analytic contribution and of a term due to
the bulk irrelevant RG operator.

In our FSS study of the entanglement properties we
introduce the RG invariant quantity Qα . It is defined in terms
of the Rényi entanglement entropy Sα [see Eq. (141)] in such
a way as to have a universal FSS behavior (in particular,
it approaches the central charge c at the critical point).
The quantity Qα may be useful to investigate 1D quantum
transitions exploiting entanglement properties.
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APPENDIX A: USEFUL CFT FORMULAS

The 2D Ising universality class is associated with a CFT
with central charge c = 1/2. CFT provides the asymptotic FSS
behavior of the two-point function at the critical point [43].
We report some useful CFT formulas for the critical two-point
function which are used in the paper. In the CFT (classical)
framework we consider strips L × ∞ with PBC and OBC, i.e.,
with coordinates −L/2 � x � L/2 and y ∈ R.

1. Open boundary conditions

Setting zi ≡ xi + L/2, and

Z± ≡ (z2 ± z1)/L, Y ≡ (y2 − y1)/L, (A1)

the critical two-point function on a strip for a classical system
with OBC in one direction reads [43,44]

GCFT(�r1,�r2) = (π/L)1/4

[sin(πz2/L) sin(πz1/L)]1/8

×
[ |sin π (Z+ + iY )/2|1/2

|sin π (Z− + iY )/2|1/2

− |sin π (Z− + iY )/2|1/2

|sin π (Z+ + iY )/2|1/2

]1/2

. (A2)

The two-point function G(x1,x2) of the quantum system at the
critical point is obtained by setting Y = 0. This result allows
us to exactly compute the universal large-L limit of the RG
invariant quantities Rξ ≡ ξ/L and Rg , defined in Eqs. (119)
and (120), respectively, at the critical point. We obtain the
critical values

R∗
g = 0.306 462 . . . , R∗

ξ = 0.159 622 . . . . (A3)

For the XY chain we may also consider the connected equal-
time two-point function of the operator σ (3)

x , i.e.,

Gn(x,y) = 〈
σ (3)

x σ (3)
y

〉 − 〈
σ (3)

x

〉〈
σ (3)

y

〉
. (A4)

For T = h = 0, we obtain

Gn(0,x) ∼ cos(πx/L)

L2 sin2(πx/L)
. (A5)

Note that Gn(0,x) ∼ x−2 for |x| � L.

2. Periodic boundary conditions

In the case of PBC we have

GCFT(�r1,�r2) = (π/L)1/4

|sin π (Z− + iY )|1/4
. (A6)

Again, setting Y = 0, we obtain the two-point function
G(x1,x2) at the critical point, from which we can compute

R∗
g = 0.153 493 . . . , R∗

ξ = 0.187 790 . . . (A7)

if ξ is defined as in Eq. (119). If instead the correlation length
is defined as

ξ 2 ≡ G̃(0) − G̃(kmin)

k2
minG̃(k)

, (A8)

where G̃ is the Fourier transform of G, and kmin = 2π/L, we
obtain R∗

ξ = 0.389 848 . . . .

APPENDIX B: SOME EXACT RESULTS FOR THE
ENTANGLEMENT ENTROPIES

In this Appendix we report some exact results for the
entanglement entropies of the XY chain at the critical point.
For this purpose, we also exploit known results for the XX

model,

HXX = −1

2

L∑
i=1

[
σ

(1)
i σ

(1)
i+1 + σ

(2)
i σ

(2)
i+1

]
, (B1)

and the exact relation [81]

SXY
α (�,L) = 1

2SXX
α (2�,2L) (B2)

between the entanglement entropies of the XY model (49)
with g = 1 and γ = 1, and those of the XX model (B1).

Some results for the corrections to the leading behavior for
OBC were already reported in Ref. [88]. Using also the results
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of Ref. [83] for the XX model, we can write the large-L
behavior of the Rényi entropy with α > 1 at fixed �/L as

Sα(�,L) = Cα [ln L + ln sin(πX) + eα(γ )]

− �[1/2 + 1/(2α)]

2α�[3/2 − 1/(2α)]

[
π

8γL sin(πX)

]1/α

+O(L−2/α) + O(L−1), (B3)

where

Cα ≡ c
1 + α−1

12
, c = 1/2, X ≡ �/L, (B4)

eα(γ ) = ln γ + ln(8/π ) +
∫ ∞

0

dt

t

[
6

1 − α−2

×
(

1

α sinh t/α
− 1

sinh t

)
1

sinh t
− e−2t

]
. (B5)

Note that scaling corrections are proportional to γ −1/α , a
property which also holds away from the critical point (see
Sec. IV B). Equation (B3) does not allow us to compute the
corrections for the vN entropy. Indeed, for α = 1, there are two
sources of L−1 terms: the conical corrections and the analytic
boundary corrections. For γ = 1 we have [88]

S1(�,L) = 1

12
[ln Le + ln sin πXe + e1(1)]

− π

16L sin(πX)
+ O(L−2), (B6)

where Le = L + 1/2, and Xe ≡ �e/Le with �e = � + 1/4.
Thus, after appropriately shifting � and L to �e and Le,

respectively, the remaining L−1 correction term turns out
to be equal to the limit α → 1 of the correction of order
L−1/α appearing in Eq. (B3). Therefore, at the critical point
the leading O(L−1) correction in the vN entropy shows
both conical and boundary contributions. However, the latter
can be reabsorbed by redefining both length scales L and
�. Actually, for γ = 1, replacing L → Le = L + 1/2 and
� → �e = � + 1/4 in Eq. (B3), we also obtain the O(L−1)
corrections for general Sα .

In the case of PBC, using the results for the XX model
reported in Refs. [37,82], we obtain for α > 1 and γ = 1,

Sα(�,L)|γ=1

= 2Cα [ln L + ln sin(πX) + ẽα(1)]

− (α − 1)
�[1/2 + 1/(2α)]2

4α2�[3/2 − 1/(2α)]2

[
π

4L sin(πX)

]2/α

+O(L−4/α) + O(L−2), (B7)

where ẽα(γ ) = eα(γ ) − ln 2. For the vN entropy we instead
obtain

S1(�,L)|γ=1 = 1

6
[ln L + ln sin(πX) + ẽ1(1)]

− π2

480L2 sin2(πX)
+ π2

144L2
+ O(L−4).

(B8)
Note that the limit α → 1 of the corrections of order L−2/α in
Eq. (B7) vanishes, hence in the PBC case the leading conical
singularities do not contribute at the critical point.
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Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev. B 16,
1217 (1977).

[31] D. J. Amit, Y. Y. Goldschmidt, and G. Grinstein, J. Phys. A 13,
585 (1980).

[32] M. Hasenbusch, J. Phys. A 38, 5869 (2005).
[33] A. Pelissetto and E. Vicari, Phys. Rev. E 87, 032105 (2013);

G. Ceccarelli, J. Nespolo, A. Pelissetto, and E. Vicari, Phys.
Rev. B 88, 024517 (2013).

[34] M. Caselle, M. Hasenbusch, A. Pelissetto, and E. Vicari, J. Phys.
A 35, 4861 (2002).

[35] A. Pelissetto and E. Vicari, Nucl. Phys. B 519, 626 (1998); ,540,
639 (1999).

[36] M. Campostrini and E. Vicari, Phys. Rev. A 81, 063614 (2010).
[37] P. Calabrese, M. Mintchev, and E. Vicari, J. Stat. Mech. (2011)

P09028.
[38] G. Ceccarelli, C. Torrero, and E. Vicari, Phys. Rev. A 85, 023616

(2012).
[39] K. Binder, Z. Phys. B 43, 119 (1981).
[40] M. Henkel, J. Phys. A 20, 995 (1987).
[41] P. Reinicke, J. Phys. A 20, 4501 (1987).
[42] P. Reinicke, J. Phys. A 20, 5325 (1987).
[43] C. Itzykson and J. M. Drouffe, Statistical Field Theory (Cam-

bridge University Press, Cambridge, 1989).
[44] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field

Theory (Springer-Verlag, New York, 1997).
[45] Reference [41] reports uμ ≈ |μ|/γ , a result which cannot be

correct since uμ must be an analytic function of the model
parameters. The absolute value is a consequence of an erroneous
term |z| appearing in Eq. (5.3) of Ref. [40]. The correct result
does not have the absolute value, hence uμ ≈ μ/γ .

[46] P. Pfeuty, Ann. Phys. 57, 79 (1970).
[47] T. W. Burkhardt and I. Guim, J. Phys. A 18, L33 (1985).
[48] E. Fradkin and L. Susskind, Phys. Rev. D 17, 2637 (1978).
[49] H. Nishimori and G. Ortiz, Elements of Phase Transitions and

Critical Phenomena, (Oxford University Press, Oxford, 2011),
Chap. 10.

[50] L. Onsager, Phys. Rev. 65, 117 (1944).
[51] A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185, 832 (1969).
[52] S. L. A. de Queiroz, J. Phys. A 33, 721 (2000).
[53] J. Salas, J. Phys. A 34, 1311 (2001).
[54] W. Orrick, B. Nickel, A. J. Guttman, and J. H. H. Perk, J. Stat.

Phys. 102, 795 (2001).
[55] N. Sh. Izmailian and C.-K. Hu, Phys. Rev. E 65, 036103 (2002).

[56] N. Sh. Izmailian and C.-K. Hu, Nucl. Phys. B 808, 613 (2009).
[57] Y. Chan, A. J. Guttman, B. Nickel, and J. H. H. Perk, J. Stat.

Phys. 145, 549 (2011).
[58] N. Sh. Izmailian, Nucl. Phys. B 854, 184 (2012).
[59] X. Wu, N. Izmailian, and W. Guo, Phys. Rev. E 86, 041149

(2012); ,87, 022124 (2013); arXiv:1308.2040.
[60] S. Caracciolo and A. Pelissetto, Phys. Rev. D 58, 105007 (1998).
[61] M. E. Fisher and M. N. Barber, Arch. Rat. Mech. Anal. 47, 205

(1972).
[62] Equation (93) is essentially in agreement with the results of

Ref. [40]; see his Eq. (5.3). The only difference concerns the
linear term, which is reported erroneously as |w|. This is most
likely due to the fact that the relevant states were incorrectly
identified for g < 1.

[63] J. L. Cardy, Nucl. Phys. 240, 514 (1984).
[64] B. Berche and L. Turban, J. Stat. Phys. 56, 589 (1989).
[65] More precisely, if Rg = ∑

anL
−n, we have R̂g1 = a1 +

15a4/(64L3) + · · · .
[66] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys.

80, 517 (2008).
[67] Entanglement Entropy in Extended Systems, edited by

P. Calabrese, J. Cardy, and B. Doyon, J. Phys. A 42, 500301
(2009).

[68] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277
(2010).

[69] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404 (2006).
[70] M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405 (2006).
[71] F. Igloi and Y.-C. Lin, J. Stat. Mech. (2008) P06004.
[72] A. Montakhab and A. Asadian, Phys. Rev. A 82, 062313 (2010).
[73] J. C. Xavier and F. C. Alcaraz, Phys. Rev. B 84, 094410 (2011).
[74] J. C. Xavier and F. C. Alcaraz, Phys. Rev. B 85, 024418 (2012).
[75] G. De Chiara, L. Lepori, M. Lewenstein, and A. Sanpera, Phys.

Rev. Lett. 109, 237208 (2012).
[76] L. Lepori, G. De Chiara, and A. Sanpera, Phys. Rev. B 87,

235107 (2013).
[77] C. Holzhey, F. Larsen, and F. Wilczek, Nucl. Phys. B 424, 443

(1994).
[78] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett.

90, 227902 (2003).
[79] P. Calabrese and J. Cardy, J. Stat. Mech. (2004) P06002.
[80] B.-Q. Jin and V. E. Korepin, J. Stat. Phys. 116, 79 (2004).
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