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Improved tetrahedron method for the Brillouin-zone integration applicable to response functions
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We improve the linear tetrahedron method to overcome systematic errors due to overestimations (underesti-
mations) in integrals for convex (concave) functions, respectively. Our method is applicable to various types of
calculations such as the total energy, the charge (spin) density, response functions, and the phonon frequency, in
contrast with the Blöchl correction, which is applicable to only the first two. We demonstrate the ability of our
method by calculating phonons in MgB2 and fcc lithium.

DOI: 10.1103/PhysRevB.89.094515 PACS number(s): 71.15.Dx, 71.45.Gm, 74.25.Kc

I. INTRODUCTION

In calculations of periodic systems on the basis of density
functional theory (DFT) [1], integrals of matrix elements over
the Brillouin zone (BZ) are evaluated to obtain various physical
quantities of solids including the total energy, the electron
(spin) density, the density of states, response functions, and
the phonon frequency. Since this integral with respect to the
Bloch wave vector k is replaced with a summation over a range
of points described by a discrete variable k, approximation
schemes employed for this summation can significantly affect
the accuracy and computational costs. Accurate integration
using a modest number of k points is even more important
for hybrid-DFT [2] and GW approximations [3], because
in these cases the computational cost is proportional to the
square of the number of k points, whereas standard semilocal
approximations have a linear dependence.

There are two kinds of schemes to perform such an inte-
gration over the k points, namely, the broadening method [4]
and the tetrahedron method [5]. In the broadening method, we
replace the delta function with a smeared function which has
a finite broadening width; we have to check the convergences
about both the broadening width and the number of k points to
obtain accurate results. In the tetrahedron method, we perform
analytical integration in tetrahedral regions covering the BZ
with the piecewise linear interpolation of a matrix element.
Unlike the broadening method, we have to check the con-
vergence only about the number of k points. The tetrahedron
method is applied to calculations of susceptibility [6], phonon
frequency [7], phonon line width [8], and the local Green’s
function as part of the dynamical mean field theory in the
Hubbard model [9].

However, the tetrahedron method has a drawback: if a
matrix element Ak is a convex (concave) function of k,
this method systematically overestimates (underestimates)
its contribution to the integral due to the linear interpo-
lation involved. Although this can be avoided by using
the quadratic interpolation, we cannot perform analytical
integration straightforwardly in such a case. The Blöchl
correction [10] was invented to overcome this issue by
utilizing the following two facts: (i) the difference be-
tween the linear interpolation integration and that using the
quadratic interpolation is approximately proportional to the
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second derivative of Ak integrated over the occupied region;
(ii) although ∂2Ak/∂k2 cannot be evaluated within the frame-
work of linear interpolation, we can perform the volume
integral by replacing it with the Fermi surface integration of
the first derivative of Ak (which can be evaluated by linear
interpolation) using the Gauß theorem. Using this method
we can reduce the number of k points to obtain converged
results for total energies and charge densities. However, in
the calculation of response functions or phonon frequencies,
the integral

∫
εk<εF

d3kAk/(εF − εk) appears, where Ak is an
arbitrary function of k. In this case, the Blöchl correction is
inapplicable because we cannot perform the Fermi surface
integration when ∂(Ak/(εF − εk))/∂k is singular.

In this work, we develop a newly improved tetrahedron
method that is applicable to calculations involving integrations
of functions with singularities on the Fermi surfaces. It is
constructed by means of a higher order interpolation and
the least-squares method. We apply our method to the BZ
integration in calculations of phonon frequencies based on
density functional perturbation theory (DFPT) [11]. Following
that we successfully calculate the frequency of phonons
in MgB2 and fcc Li. In contrast, it is difficult to achieve
convergence in this calculation using conventional methods
because the phonons in these materials couple strongly with
electrons in the vicinity of Fermi surfaces [12,13]. In Sec. II,
we describe our new tetrahedron method in detail after
summarizing the conventional linear tetrahedron method and
the Blöchl correction. Section III shows how our method
improves the convergence about the number of k points in the
calculation of phonons, followed by the conclusion in Sec. IV.

II. METHOD

In this section, we introduce our new tetrahedron method;
we begin with the standard linear tetrahedron method and
the Blöchl correction to explain why these methods are not
necessarily efficient in calculating response functions such as
phonon frequencies.

A. The linear tetrahedron method and its drawbacks

We overview the general procedure of the tetrahedron
method and its drawbacks. We calculate the integral∫

d3kAkB(εk), (1)
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FIG. 1. (Color online) Subcell division into six tetrahedra and
numbering of the tetrahedron corners; the red lines in the rightmost
tetrahedron are the edges of the subcell.

on the basis of the linear tetrahedron method, where B(εk)
is a function of the orbital energy such as θ (εF − εk), δ(εF −
εk), or θ (εF − εk)/(εF − εk). Here, θ (x) is the Heaviside step
function. First, we divide a subcell into six tetrahedra (Fig. 1);
this subcell is partitioned with the uniform k-point mesh; for
convenience, we number the corners of each tetrahedron from
1 to 4 along specific edges of the subcell (see Fig. 1). The
contribution of this tetrahedron (T ) to the integral (1) is

6VT

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dzAT (s)B[εT (s)], (2)

where s = (x,y,z), and

AT (s) ≡ AkT
1 (1−x−y−z)+kT

2 x+kT
3 y+kT

4 z, (3)

εT (s) ≡ εkT
1 (1−x−y−z)+kT

2 x+kT
3 y+kT

4 z, (4)

where kT
i is the k point of the ith corner of T . In the linear

tetrahedron method, we approximate AT and εT with linear
functions:

A1
T (s) = A1(1 − x − y − z) + A2x + A3y + A4z, (5)

ε1
T (s) = ε1(1 − x − y − z) + ε2x + ε3y + ε4z, (6)

where Ai and εi are the matrix element and the orbital
energy at the ith corner, respectively. The integration (2) with
formulas (5) and (6) is performed analytically.

However, linear interpolation has a drawback: if the matrix
element AT (s) is a convex function within the tetrahedron T ,
the interpolated function A1

T (s) becomes A1
T (s) � AT (s) in T ;

hence, the integral is systematically overestimated. If AT (s) is
a concave function, the sign of the inequality is reversed [see
Fig. 2(a)].

B. The Blöchl correction and its limitation

In the special case that the integral (1) becomes∫
d3kAkθ (εF − εk), (7)

we can overcome the drawback of the linear tetrahedron
method by considering the curvature of Ak within the frame-
work of the linear interpolation [10]; this type of integration
appears in the calculations of total energies or charge (spin)
densities. In this case, we can evaluate the difference between
the integral (7) with the linear interpolation of Ak (Alin) and
that with the quadratic interpolation (Aquad) as follows. First,

FIG. 2. (Color online) Two kinds of approximations of the matrix
element. True and approximated matrix elements AT are depicted as
black dash-doted lines and red solid lines, respectively; the black
points indicate the matrix elements Ak for a given value of k; the
dashed lines indicate the boundaries of the tetrahedra. (a) The liner
interpolated function A1

T is always smaller (larger) than the true
function AT in the case of a convex (concave) function. (b) The
leveled linear function is a better approximation of the true function.

we write this difference as

�A ≡ Aquad − Alin =
εk�εF∑

T

∑
ij

CT
ij

〈
∂2Ak

∂ki∂kj

〉
T

, (8)

where CT
ij is the form factor describing the shape and the

orientation of the tetrahedron as follows,

CT
ij = 1

40

[
4∑

l=1

(
kT

l

)
i

4∑
m=1

(
kT

m

)
j
− 4

4∑
l=1

(
kT

l

)
i

(
kT

l

)
j

]
, (9)

and 〈· · ·〉T indicates an integration in the tetrahedron T . Now,
we replace ∂2Ak/∂k2 with ∂Ak/∂k because the former cannot
be evaluated in the framework of the linear interpolation, but
the latter can be. We assume that the form factor is a constant
over the entire BZ (CT

ij ≈ Cij ), and then we apply the Gauß
theorem:

�A ≈
∑
ij

Cij

∫
εk<εF

d3k
∂2Ak

∂ki∂kj

=
∑
ij

Cij

∫
εk=εF

d2k
(∇kεk)i
|∇kεk|

∂Ak

∂kj

≈
Fermi surface∑

T

∑
ij

CT
ij

〈
(∇kεk)i
|∇kεk|

∂Ak

∂kj

〉
T

. (10)

However, when we calculate an integral such as∫
d3kAk

θ (εF − εk)

εF − εk
(11)

(this kind of integration appears in the calculations of response
functions and phonon frequencies), the difference associated
with the two kinds of interpolation becomes

�A =
εk<εF∑

T

∑
ij

CT
ij

〈
∂2Ak

∂ki∂kj

〉
T

G(εk,∇kεk), (12)

where G(εk,∇kεk) is a complicated function of εk and ∇kεk;
therefore, we cannot apply the Blöchl correction because we
cannot replace ∂2Ak/∂k2 with ∂Ak/∂k as before. This is due
to the presence of the energy denominator; hence, we have to
start with another concept to overcome this issue.
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TABLE I. Points for constructing a third-order interpolation
function.

Nearest-neighbor points on extended lines
of each edge of T (green balls in Fig. 3).

k5 = 2k1 − k2 k9 = 2k1 − k3 k13 = 2k1 − k4

k6 = 2k2 − k3 k10 = 2k2 − k4 k14 = 2k2 − k1

k7 = 2k3 − k4 k11 = 2k3 − k1 k15 = 2k3 − k2

k8 = 2k4 − k1 k12 = 2k4 − k2 k16 = 2k4 − k3

Remaining corners of tetrahedra
that share surfaces with T (blue balls in Fig. 3).

k17 = k4 − k1 + k2 k18 = k1 − k2 + k3

k19 = k2 − k3 + k4 k20 = k3 − k4 + k1

C. A newly improved tetrahedron method applicable
to response functions

The systematic error of the tetrahedron method is a result of
the linear interpolation. Although we can avoid this problem
if we use higher order interpolation, the integral (2) becomes
unsolvable analytically. The real question is, how can we
improve the linear approximation of the matrix elements? The
answer is to employ leveling rather than interpolating [see
Fig. 2(b)]. The procedure is explained below.

(1) We construct the N th polynomial AN
T (s) from Ak and

k using the corners of a tetrahedron T and some additional
surrounding points for sampling.

(2) We fit a linear function

ALSM
T (s) = Ā1(1 − x − y − z) + Ā2x + Ā3y + Ā4z (13)

into AN
T (s) through the least-squares method (LSM); that is to

say, we solve

∂

∂Āi

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

×∣∣AN
T (s) − ALSM

T (s)
∣∣2 = 0. (14)

(3) We apply the same procedure to εk, and obtain εLSM
T (s).

(4) We evaluate integral (2) replacing AT (s) and εT (s) with
ALSM

T (s) and εLSM
T (s), respectively.

(5) We repeat the above steps for all tetrahedra.
Although the approximated matrix element ALSM

T (s) is dis-
continuous at boundaries of tetrahedra [see Fig. 2(b)], it is of
no concern because we are interested only in the integrated
value.

D. Implementation

We use a third-order polynomial A3
T (s) as AN

T (s) in our
implementation. The sampling points used to construct A3

T (s)
are the corners of the tetrahedron T (4 points) and the other 16
points given in Table I and Fig. 3. As a result, A3

T (s) becomes

A3
T (s)= A1

2
u(u + 1)(2 − u) + A2

2
x(x + 1)(2 − x) + A3

2
y(y + 1)(2 − y) + A4

2
z(z + 1)(2 − z) − u2x

6
(2A5 + A14)

− x2y

6
(2A6 + A15) − y2z

6
(2A7 + A16) − z2u

6
(2A8 + A13) − u2y

6
(2A9 + A11) − x2z

6
(2A10 + A12)

− y2u

6
(2A11 + A9) − z2x

6
(2A12 + A10) − u2z

6
(2A13 + A8) − x2u

6
(2A14 + A5) − y2x

6
(2A15 + A6) − z2y

6
(2A16 + A7)

+ (A2 + A4)xz(u + y) + (A1 + A3)uy(x + z) −
(

A17 + A10 + A12

2
+ A5 − A14

6
+ A13 − A8

6

)
xzu

−
(

A18 + A9 + A11

2
+ A6 − A15

6
+ A14 − A5

6

)
xyu −

(
A19 + A10 + A12

2
+ A7 − A16

6
+ A15 − A6

6

)
xyz

−
(

A20 + A9 + A11

2
+ A8 − A13

6
+ A16 − A7

6

)
yzu, (15)

where u = 1 − x − y − z. By substituting it into (14), we
obtain ALSM

T (s):

Āi =
20∑

j=1

PijAkj
, (16)

where

P = (P(1),P(2),P(3),P(4),P(5)), (17)

P(1) = 1

1260

⎛
⎜⎜⎝

1440 0 30 0
0 1440 0 30

30 0 1440 0
0 30 0 1440

⎞
⎟⎟⎠, (18)

P(2) = 1

1260

⎛
⎜⎜⎝

−38 7 17 −28
−28 −38 7 17

17 −28 −38 7
7 17 −28 −38

⎞
⎟⎟⎠ = tP(4), (19)

P(3) = 1

1260

⎛
⎜⎜⎝

−56 9 −46 9
9 −56 9 −46

−46 9 −56 9
9 −46 9 −56

⎞
⎟⎟⎠, (20)

P(5) = 1

1260

⎛
⎜⎜⎝

−18 −18 12 −18
−18 −18 −18 12

12 −18 −18 −18
−18 12 −18 −18

⎞
⎟⎟⎠. (21)
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FIG. 3. (Color online) Points for constructing a third-order inter-
polation function (parallel stereogram). Red points denote the corners
of T . The blue and green points are explained in Table I.

We go through the same procedure for the orbital energy εk.
We can consider this procedure in a different way: when we

calculate the contribution from a tetrahedron, we use the linear
tetrahedron method after we have replaced matrix elements
and orbital energies with those given in (16). Using this idea,
we represent the integration (1) as

∫
d3kAkB(εk) =

∑
k

Akwk, (22)

where wk is calculated as follows:
(1) We divide the BZ into tetrahedra.
(2) We calculate effective orbital energies as

ε̄i =
20∑

j=1

Pij εkT
j

(23)

for the corners of each tetrahedron.
(3) We calculate the effective weight w̄T

i using the stan-
dard linear tetrahedron method with the effective orbital
energy (23).

(4) wk is calculated as

wk =
∑
T

4∑
i=1

20∑
j=1

Pij w̄
T
i δ

(
k − kT

j

)
. (24)

III. COMPARISON WITH OTHER INTEGRATION
SCHEMES FOR ACTUAL CALCULATIONS

We implement our method in an ab initio electronic
structure calculation code QUANTUM ESPRESSO [14] which uses
plane waves to represent Kohn-Sham (KS) orbitals. Then, we
test the effectiveness of the method through calculations of
phonons in two systems, MgB2 [15] and fcc lithium at a high
pressure (20 GPa), based on DFPT [11] (Appendix A).

Magnesium diboride has the highest TC (about 40 K)
out of the known phonon-type superconductors. Many ab
initio studies have been performed since it was discovered
[12,16–19], revealing that the high TC is a result of the
strong interaction between intralayer vibrations of B atoms
and their covalent bonding orbitals (σ bands) (Fig. 4). This
strong coupling also softens phonon frequencies due to the
screening of the ion-ion interaction; this screening occurs due
to linear responses of σ electrons in the vicinity of the Fermi
surfaces. We have to evaluate these responses accurately to
determine the phonon frequencies precisely. Lithium exhibits
a monatomic fcc structure at pressures between 7.5 and
39 GPa [20]. In this phase it becomes a superconductor. Its
TC increases with pressure up to 30 GPa [21–23] because
of the growth of the electron-phonon interaction. The lower
transverse acoustic mode at q ≈ −→

�K couples with electrons
most strongly in this material [13]. In this test, we consider the
phonons of fcc Li at a pressure of 20 GPa.

We use norm-conserving pseudopotentials [24] in calcu-
lations of MgB2; the cutoff energy of plane waves is set
to 50 Ry. In the calculations of fcc lithium, we use an
ultrasoft pseudopotential [25]. We treat the electrons in the 1s

orbitals as valence electrons [26] and employ a cutoff energy
of 80 Ry. In both of these applications, we use the GGA-
PBE functional [27] and the first-order Hermite-Gaussian
function [4,28] for broadening. We apply our method to the
calculation of the frequency of the intralayer vibrational mode
of B atoms at the A point in the BZ (Fig. 5, top left). The
result of the improved tetrahedron method converges faster
than that of the linear tetrahedron method; it converges with
approximately 123 k points. If we use a broadening method
with a small broadening width (0.01 Ry), the result converges
at an unrealistically large number of k points (about 503 k

FIG. 4. (Color online) Left: The Mg-centered Wigner-Seits cell of MgB2. Green and purple spheres indicate Mg and B atoms respectively.
The σ orbital (blue and red isosurfaces of opposite signs) and the displacement pattern of the intralayer vibrational mode of the B atoms with
wave number q at the A point (arrows) are also depicted. Right: Schematic illustration of the Fermi surfaces of the σ bands; the red arrow
indicates the momentum vector of a phonon at the A point which connects occupied (O) and unoccupied (U) regions in the vicinity of the
Fermi surface.
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FIG. 5. (Color online) Left: k convergences of the frequencies of
the intralayer vibrational mode of the B atoms at the A point in the
BZ for MgB2 (top) and the lower transverse acoustic mode at the
K point in the BZ for fcc Li at 20 GPa (bottom) with a different
k integration method. The upward-pointing and downward-pointing
triangles with red and green solid lines are the results of the linear and
improved tetrahedron methods; the plus signs, multiplication signs,
squares, and diamonds with blue, purple, cyan, and black dashed lines
denote the results of the broadening method for widths of 0.01, 0.03,
0.05, and 0.06 Ry, respectively. Lines are guides for the eyes. Right:
The frequency of these modes converged about the number of k at
each broadening width (circles with orange line); the green solid lines
indicate the converged value obtained by our method.

points). On the other hand, using large broadening widths (0.03
Ry and 0.06 Ry), convergence occurs at a lower number of k
points. However, results are far away from the one converged
about the broadening width; the complicated dependence of the
convergence on the broadening width is shown in the top-right
panel of Fig. 5. The result cannot be represented by a simple
function, so it is difficult to extrapolate to a broadening width
of zero.

The bottom left panel of Fig. 5 shows the k convergence of
the lower transverse acoustic mode at the K point in the BZ
for fcc Li at 20 GPa calculated with the different integration
schemes. Our method achieves convergence very quickly; it
requires only 163 k points. In this system, the result of the
broadening method is very sensitive to the broadening width;
the error due to broadening is more than 25% at a width of

0.05 Ry; hence, the broadening method is not suitable for this
calculation.

We will show how the accuracy of the phonon calcula-
tions affects the prediction of the superconducting transition
temperature within the framework of the following McMillan
formula [29,30]:

TC = ωln

1.2
exp

[ −1.04(1 + λ)

λ − μ∗(1 + 0.62λ)

]
. (25)

Here,

λ =
∑

qνknn′

2

D(εF)ωqν

×∣∣gqν

nkn′k+q

∣∣2
δ(εnk − εF)δ(εn′k+q − εF) (26)

and

ln(ωln) = 1

λ

∑
qνknn′

2

D(εF)ωqν

ln(ωqν)

×∣∣gqν

nkn′k+q

∣∣2
δ(εnk − εF)δ(εn′k+q − εF), (27)

where ωqν is the phonon frequency with the wave number
q and the branch ν, εnk is the KS eigenvalue with the wave
number k and the band index n, and D(εF) is the density
of states per spin at the Fermi energy. The electron-phonon
coupling constant g

qν

nkn′k+q is written in the form

g
qν

nkn′k+q =
∑
τα

(ηqν)τα√
Mτωqν

〈
n′,k + q | δvS

δRτα(q)
| n,k

〉
, (28)

where Mτ is a mass of an ion, (ηqν)τα is the unit displacement
pattern of the phonon (q,ν), |n,k〉 is the KS orbital, and
δvS/δRτα(q) is the linear response of the KS potential with
respect to the distortion of the wave number q; τ and α

are indices of an ion in the unit cell and a direction in the
Cartesian coordinate, respectively. Although there are more
precise methods to calculate TC such as density functional
theory for superconductors [31,32], we use this simple formula
because we are only interested in changes in the results due to
the k integration in the phonon calculations.

To evaluate the integrals in (26) and (27), we use the linear
tetrahedron method with a q grid of 6 × 6 × 4 (8 × 8 × 8)
and a k grid of 24 × 24 × 18 (32 × 32 × 32) for MgB2 (fcc
Li), respectively. Additionally, we calculate each ωqν and
δvS/δRτα(q) with different k grids and different k integration
schemes.

Figure 6 shows the result of λ, ωln, and TC from McMillan’s
formula (μ∗ = 0.1); in both the MgB2 and Li cases, we obtain
very fast k convergence using our method. Comparing the
k converged result of our method to that of the broadening
method with a width of 0.05 Ry, we can see a large overestimate
of the phonon frequencies occurs when the broadening method
is used, resulting in an underestimated λ and an overestimated
ωln. Moreover, speeds of convergences about the broadening
width for calculations of the λ and ωln are very slow; these
results have not reach the convergence even for the broadening
width of 0.01 Ry; if we use smaller broadening width (such as
0.005 Ry), we need an unrealistic number of k points to obtain
the k-converged result.
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FIG. 6. (Color online) The k convergences of λ (top), ωln (mid-
dle), and TC from McMillan’s formula (bottom) of MgB2 (left) and
fcc Li (right) calculated using ωqν and δvS/δRτα(q) with different k
integration schemes; the upward-pointing and downward-pointing
triangles with red and green solid lines are the results of the
linear and improved tetrahedron methods; the diamonds, plus signs,
multiplication signs, squares, and circles with gray, blue, purple,
black, and cyan dashed lines denote the results of broadening methods
of widths 0.01, 0.02, 0.03, 0.04, and 0.05 Ry respectively. Lines are
guides for the eyes.

IV. CONCLUSION

We introduced an improvement to the tetrahedron method
based on the third-order interpolation and the least-squares
method that reduces the number of k points required to
obtain converged results of the BZ integrations. Our method is
applicable to various kinds of k integration; in particular, it is
efficient for calculations of phonons and response functions
because the associated computational costs are large and
the Blöchl correction is not applicable to these calculations.
We demonstrated this effectiveness through calculations of
phonon frequencies in MgB2 and fcc Li.
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APPENDIX A: CALCULATION OF WEIGHTS FOR DFPT

The integration weights for the DFPT calculations of
phonon frequencies are different from those of the total energy,
θ (εF − εnk), or the density of states, δ(ε − εnk). They are

W
(1)
nn′k = θ (εn′k+q − εF)θ (εF − εnk)

εnk − εn′k+q

, (A1)

W
(2)
nn′k = θ (εF − εnk)θ (εnk − εn′k+q). (A2)

In integrations with weights that contain products of two
step functions, only regions where both Heaviside functions
become 1 contribute to the results; therefore, we divide the
tetrahedra two times to cut out these regions (Fig. 7). We will
explain how to calculate W

(1)
nn′k .

(1) We divide a subcell into six tetrahedra.
(2) We cut out one or three tetrahedra T ′ where θ (εF −

εnk) = 1 from tetrahedron T and evaluate εnk,εn′k+q at the
corners of T ′′ as

εT ′i =
4∑

j=1

Fij (εF − εT 1, . . . ,εF − εT 4)εTj , (A3)

through linear interpolation (Appendix B). Here εT 1, . . . ,εT 4

and ε′
T 1, . . . ,ε

′
T 4 are εnk and εn′k+q , respectively, on the corners

of T , where εT 1 � εT 2 � εT 3 � εT 4.
(3) We cut out one or three tetrahedra T ′′ where θ (εn′k+q −

εF) = 1 from tetrahedron T ′. The orbital energies are calcu-
lated as

εT ′′i =
4∑

j=1

Fij (ε′
T ′1 − εF, . . . ,ε

′
T ′4 − εF)εT ′j . (A4)

(4) The weights of the corners of T ′′ are (Appendix C)

W
(1)
T ′′i = −VT ′′

4∑
j=1,j 	=i

d2
j

( ln dj −ln di

dj −di
dj − 1

)
∏4

k=1,k 	=j (dj − dk)
, (A5)

where di = ε′
T ′′i − εT ′′i .

FIG. 7. (Color online) Flow of the calculation of weights. We
divide the tetrahedra two times to cut out regions where two Heaviside
functions become one.
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FIG. 8. (Color online) How to divide a tetrahedron in the case of
ε1 � 0 < ε2 (left), ε2 � 0 < ε3 (center), and ε3 � 0 < ε4 (right).

(5) We calculate the weights of the corners of T ′ from
those of T ′′:

W
(1)
T ′i =

4∑
j=1

Fji(ε
′
T ′1 − εF, . . . ,ε

′
T ′4 − εF)W (1)

T ′′j . (A6)

(6) We calculate the weights of the corners of T from those
of T ′:

W
(1)
T i =

4∑
j=1

Fji(εF − εT 1, . . . ,εF − εT 4)W (1)
T ′j . (A7)

(7) Finally, we sum up the contributions from all tetrahe-
dra:

W
(1)
nn′k =

6Nk∑
T =1

4∑
i=1

WT i. (A8)

APPENDIX B: HOW TO DIVIDE A TETRAHEDRON

We will explain how to cut out tetrahedra T ′ in the case of
θ (ε) = 1 from tetrahedron T . We represent εnk at the corners
of T as ε1, . . . ,ε4, where ε1 � ε2 � ε3 � ε4. We define aij =
−εj /(εi − εj ). In all cases

VT ′ = VT | det(F )|. (B1)

(1) 0 � ε1. We cut out no tetrahedra because θ (ε) becomes
1 over the entire tetrahedron in this case:

F =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠. (B2)

(2) ε1 � 0 < ε2. Three tetrahedra are cut out (Fig. 8, left):

(a) F =

⎛
⎜⎝

a12 a21 0 0
a13 0 a31 0
a14 0 0 a41

0 0 0 1

⎞
⎟⎠, (B3)

(b) F =

⎛
⎜⎝

a12 a21 0 0
a13 0 a31 0
0 0 1 0
0 0 0 1

⎞
⎟⎠, (B4)

(c) F =

⎛
⎜⎝

a12 a21 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠. (B5)

(3) ε2 � 0 < ε3. Three tetrahedra are cut out (Fig. 8,
center):

(a) F =

⎛
⎜⎝

a13 0 a31 0
a14 0 0 a41

0 a24 0 a42

0 0 0 1

⎞
⎟⎠, (B6)

(b) F =

⎛
⎜⎝

a13 0 a31 0
0 a23 a32 0
0 a24 0 a42

0 0 0 1

⎞
⎟⎠, (B7)

(c) F =

⎛
⎜⎝

a13 0 a31 0
0 a23 a32 0
0 0 1 0
0 0 0 1

⎞
⎟⎠. (B8)

(4) ε3 � 0 < ε4. One tetrahedron is cut out (Fig. 8, right):

F =

⎛
⎜⎝

a14 0 0 a41

0 a24 0 a42

0 0 a34 a43

0 0 0 1

⎞
⎟⎠. (B9)

APPENDIX C: CALCULATION OF W (1)
T ′′

We represent the matrix elements at the corners of the
tetrahedron as f1, . . . ,f4. We evaluate the integral〈

A

d

〉
T ′′

=
∫

T ′′
d3k

Ak

dk
(C1)

using linear interpolation to obtain

AT ′′ ≈ 6V ′′
∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
dz

×A1 + (A2 − A1)x + (A3 − A1)y + (A4 − A1)z

d1 + (d2 − d1)x + (d3 − d1)y + (d4 − d1)z

≡
4∑

i=1

AiWT ′′i , (C2)

where

WT ′′i = 6V ′′
∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3

∫ 1

0
dx4

×xiδ(x1 + x2 + x3 + x4 − 1)

d1x1 + d2x2 + d3x3 + d4x4
. (C3)

This in turn yields (A5).
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