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Dissipation signatures of the normal and superfluid phases in torsion pendulum
experiments with 3He in aerogel
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We present data for the energy dissipation factor Q−1 over a broad temperature range at various pressures
of a torsion pendulum setup used to study 3He confined in a 98% open silica aerogel. Values for Q−1 above
Tc are temperature independent and have weak pressure dependence. Below Tc, a deliberate axial compression
of the aerogel by 10% widens the range of metastability for a superfluid equal spin pairing (ESP) state; we
observe this ESP phase on cooling and the B phase on warming over an extended temperature region. While
the dissipation for the B phase tends to zero as T → 0, Q−1 exhibits a peak value greater than that at Tc at
intermediate temperatures. Values for Q−1 in the ESP phase are consistently higher than in the B phase and are
proportional to ρs/ρ until the ESP to B phase transition is attained. We apply a viscoelastic collision-drag model,
which couples the motion of the helium and the aerogel through a frictional relaxation time τf . We conclude
that unless τf is an order of magnitude larger than expected, an additional mechanism to dissipate energy not
captured in the collision-drag model and related to the emergence of the superfluid order must exist. The extra
dissipation below Tc is possibly associated with mutual friction between the superfluid phases and the clamped
normal fluid. The pressure dependence of the measured dissipation in both superfluid phases is likely related to
the pressure dependence of the gap structure of the “dirty” superfluid. The large dissipation in the ESP state is
consistent with the phase being the A or the Polar with the order parameter nodes oriented in the plane of the cell
and perpendicular to the aerogel anisotropy axis.
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I. INTRODUCTION

Unconventionally paired Fermi systems exhibit strong
sensitivity in their transport properties to the presence of even
a small degree of nonmagnetic impurities [1–6]. For the oth-
erwise pure superfluid 3He, an elastic scattering mechanism,
in addition to the inelastic two-particle scattering processes, is
provided by porous silica aerogel “impurities” [7–10]. Since
the discovery of superfluidity of 3He in aerogel [11,12], the
analogy of this so-called “dirty” Fermi superfluid with “dirty”
unconventional superconductors has been investigated in the
literature. Transport measurements in the normal Fermi liquid
(spin [13,14], thermal conductivity [15,16], and viscosity [17])
reveal a crossover from an intrinsic inelastic quasiparticle-
quasiparticle (qp-qp) scattering rate at high temperatures to a
quasiparticle-impurity dominated relaxation mechanism when
the temperature is lowered.

In the 3He-aerogel composite system, the 3He is always
on the order of the zero-temperature coherence length away
from the aerogel strands. The zero-temperature coherence
length is defined to be ξ0 = �vF /2πkBTc. It is expected
that the superfluid order parameter is suppressed and surface
bound states exist near macroscopic surfaces and domain
walls [18–20]. However, the aerogel strands do not act as
conventional surfaces—else superfluidity would be entirely
suppressed. Instead, scattering from the aerogel leads to a
suppression of the superfluid gap. We expect a spectrum of
low energy excitations inside the gap to appear, which could
lead to a gapless superfluid state in which the density of states
is finite around the entire Fermi surface [9]. Evidence for such
states exists in thermal conductivity [21] and heat capacity [22]
measurements as T → 0, but the exact profile for the density
of states of the 3He in aerogel system and its dependence on
strong coupling effects is still not fully understood.

In order to probe the dynamics of the aerogel embedded
fluid, we have placed the experimental cell in the head of
a torsion pendulum. We track the frequency and the quality
factor (Q) of the pendulum as the temperature is changed.
Observing the frequency shift has proved instrumental in
studying the effects of disorder at the onset of superfluid
transition [11,23]. However, due to the close spacing between
the aerogel strands (of the order of 50 nm), even the small
impurity limited viscosity of the normal state 3He would be
sufficient to clamp the fluid at the audio frequencies (2.1 kHz)
corresponding to the torsional resonant mode we employ. In
order to probe the transport properties, we cannot rely on the
frequency shift data alone. Instead, in this paper, we focus on
the energy dissipation factor (Q−1) of the pendulum, which
should be sensitive to the Fermi surface excitations discussed
in the previous paragraph.

The aerogel sample is deliberately compressed along the
pendulum axis by 10%. It is generally accepted that the
aerogel anisotropy due to the axial compression should favor
the anisotropic, equal spin pairing (ESP) superfluid 3He-A
phase [24,25]. Previously, we would have also expected
that the � vector would preferentially align along the axis
of compression. However, recent pulsed NMR tip angle
measurements on axially compressed aerogel at moderate
magnetic fields (both along and perpendicular to the strain
axis) show that the � vector tends to be oriented in the plane of
the cell and perpendicular to the strain axis regardless of the
direction of the magnetic field [26]. Recent theoretical results
[27] also point to the possibility of a Polar phase (also an
ESP phase) with a line of nodes away from the strain axis.
In an earlier work, we observed that the superfluid fraction
in the ESP phase is less than that in the B phase [23]. If
� in the A phase (nodal direction in the Polar phase) was
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aligned perpendicular to the flow, we would instead observe
the superfluid fraction in the A phase exceeding that in the
B phase [28,29]. Thus consistent with the equal spin pairing
state realized in this experiment is either an A phase with �

randomly oriented along the plane of the cell or a Polar phase.
Lacking NMR data to identify the phase at zero magnetic field,
we refer to the intervening phase as ESP rather than the A/Polar
phase.

The metastable ESP phase is supercooled to temperatures
well below the equilibrium ESP to B phase boundary. On
the other hand, after completion of the ESP to B transition
by further cooling the cell, the superfluid B phase persists
on warming and the ESP phase only reappears in a region
of small temperature width very close to Tc. This results in
a significant range of temperatures over which we have ESP
phase on cooling and B phase on warming, and allows us to
make a direct comparison of the properties (ρs,Q

−1) of the
two superfluid phases.

In the following sections, we briefly outline experimental
details, and present the experimental data. Then we discuss a
model for the energy dissipation factor of the torsion pendulum
arising from the normal state fluid. Finally, we discuss the data
below Tc, where we observe additional dissipation intrinsic to
the superfluid. We relate our data to the presented theoretical
model and propose a possible mechanism that could account
for the observed behavior.

II. EXPERIMENTAL SETUP

A. Construction of the torsion pendulum

The torsion pendulum consisted of two hollow beryllium-
copper torsion rods: an upper one with a 1.27-mm outer
diameter, and a lower one with an outer diameter of 1.22 mm.
A 1-mm diameter hole, bored through both torsion rods, served
as a fill line for the fluid into the pendulum’s head. An epoxy
joint coupled the pendulum “head” to the upper torsion rod.

Two magnesium “wings,” electrically insulated from the
rest of the pendulum, were attached to the cylindrical mass
at the junction of the two torsion rods. Each of the wings
was maintained at 100-V bias with respect to closely spaced
adjacent electrodes. A function generator was connected to
one of the electrodes to drive the pendulum capacitively. The
resulting motion of the pendulum induced a small ac voltage
in the second electrode, which was amplified and sensed by a
dual phase lock-in amplifier.

The pendulum can be excited at two torsion resonance
modes: a symmetric mode in which the wings and the head
of the pendulum move in phase, and an antisymmetric mode
when they move out of phase. The latter mode provides greater
sensitivity to motion of the fluid in the head and lower noise
and was thus selected for this experiment.

The 98% open silica aerogel was grown directly into a
pillbox shaped stainless steel cavity consisting of a tightly
fitted lid, a base and a shim inserted between them. More
information about the physical properties and method of
growth of aerogel can be found in Ref. [30].

The aerogel was compressed by 10% along its main axis by
removing the shim and pressing the lid onto the base, bringing
the height of the cell to 400 μm. The height was chosen to be

FIG. 1. (Color online) (a) A schematic for the torsion pendulum
setup. (b) A cross-section of the torsion pendulum head. The cell
in which the aerogel was grown and compressed is shown with its
dimensions. Indicated are also the regions of bulk fluid in the cell.
Note that the gap between the cell and the epoxy cast around the cell’s
periphery is greatly exaggerated.

small enough to couple the aerogel well to the walls (though
aerogel displacement relative to the walls of the cell still needs
to be considered), but large enough to ensure fine resolution in
determining the fraction of superfluid. The moment of inertia
of the torsion head and aerogel filled cell is calculated to be
0.064 g cm2 and that of the helium at saturated vapor pressure
−5.85 × 10−5 g cm2, or about 1 part in 103 of the inertia of
the head.

The steel cavity was dry fitted into an already hardened
epoxy cast in order to reduce possible contamination of the
aerogel by any epoxy penetrating through holes in the stainless
pillbox. Despite careful machining of the epoxy cast, there
appeared to be empty regions around the periphery of the cell
occupied by 3He not embedded in the aerogel (bulk fluid).
In addition, we need to consider the bulk fluid within the fill
line inside the upper torsion rod in our subsequent analysis.
Appendix A describes how we modeled the contribution
coming from these two regions.

A schematic of the torsion pendulum setup along with
a detailed sketch of the head of the pendulum is shown at
Fig. 1. The locations of the inferred bulk fluid regions are also
indicated.

B. Thermometry and data acquisition

Thermometry was provided through a 3He melting curve
thermometer (MCT), which had a ∼ 30 min (dependent on
the temperature) time constant with respect to the 3He in the
aerogel. A quartz tuning fork immersed in the 3He fluid
allowed for a more immediate reading of the temperature
of the 3He in the torsion head. The fork was swept through
resonance every ten minutes, and its frequency and quality
factor recorded. These values were calibrated against the MCT
and provide secondary thermometry for the experiment.

After acquiring the resonance curve at a fixed temperature
(T0), we fitted the resonance and established the quality factor
at this temperature Q(T0). We also plotted the values of the
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quadrature (Y ) and in-phase (X) components of the signal
against each other. They formed a circle with a diameter equal
to the signal amplitude at resonance (A), centered at (A/2, 0).
Provided that we drove the pendulum within ±0.1 radian of
phase error with respect to resonance, we could deduce the
resonant frequency and Q of the pendulum using the following
relationships:

fres(T ) = fdrive(T )

[
1 + Y (T )

2Q(T )X(T )

]
, (1)

Q(T ) = Vdrive(T0)

Vdrive(T )

Q(T0)

A(T0)

X2(T ) + Y 2(T )

2X(T )
, (2)

where Q(T0), A(T0) were determined from the sweep. To avoid
driving the pendulum at a level away from its linear behavior,
the driving amplitude was also adjusted when it deviated more
than 3% from its target value. The amplitude of motion of the
pendulum’s wings was of the order of a few angstroms leading
to a peak velocity of about a few μm/s. The typical noise in
data obtained in this manner was 2.5 × 10−9 for the inferred
resonant frequency and 2.5 × 10−3 for the quality factor.

The additional energy dissipated by the fluid is determined
by subtracting the empty cell value for Q−1(T ) from the
values of Q−1(T ) when filled with 3He. The superfluid
fraction of the fluid [ρs/ρ (P,T )] can be found through the
relative reduction in the moment of inertia of the torsion
pendulum head as the temperature is lowered below Tc for
the fluid in the aerogel. From knowledge of the period
[p(P,T )=f −1

res (P,T )] of the torsion pendulum when the fluid
is fully locked to it [p0(P )] and the period when the cell
is empty (pempty), we can define the superfluid fraction as
ρs/ρ (P,T ) = [p0(P ) − p(P,T )]/[p0(P ) − pempty].

To map the temperature dependence of the empty cell
values for the period and dissipation, we took points at discrete
temperatures between 100 and 1 mK, waiting for a few hours
to reach equilibrium between points, before any 3He was

introduced in the cell. Plots for the empty cell data can be
found in Ref. [31]. Both the pendulum’s period and the quality
factor change very little below 5 mK. We attribute this to the
time dependent heat release from the epoxy [32]. By plotting
the data versus log10 (T ), we extrapolate the empty cell data
below 5 mK. We assign the uncertainty for Q−1 in the empty
cell to be ∼1 × 10−6. The relative uncertainty in the empty
cell period below 5 mK is also estimated to be ∼1 × 10−6, or
1 part in 1000 of (p0 − pempty).

Near Tc, the viscosity of bulk normal 3He ensures that
even at high pressures, the 3He is well locked to any cavities
smaller in size than ∼100 μm at kilohertz frequencies. Thus
the period of the pendulum at Tc would be p0(P ) apart from
a correction due to the fluid in the fill line, which can be
accurately calculated (see Appendix A).

III. DATA

A. Normal state

Figure 2 summarizes the data for the energy dissipation
factor due to 3He fluid versus temperature in the normal state
at four widely spaced pressures: 0.14, 2.6, 15.7, and 25.7 bar.
In each of these measurements, we changed the temperature in
discrete steps and waited until the signal for the frequency and
Q of the pendulum reached equilibrium. The wait time varied
with temperature and was of order two hours or less. The
calculated dissipation from the bulk fluid regions is shown as
solid and broken lines. Subtracting this contribution from the
data taken in the normal state, we observe a residual dissipation
of ∼(2.4 ± 0.6) × 10−6 that we attribute to the 3He liquid in
the aerogel. The uncertainty arises mainly from the need to
infer the geometries of the bulk fluid regions. It is important to
note that the dissipation does not have an obvious temperature
dependence and any pressure dependence cannot be discerned
from the plot in Fig. 2.

FIG. 2. (Color online) Experimental data for Q−1 vs temperature for four pressures after empty cell data are subtracted (open (blue) circles).
Shown also are the fits for the bulk fluid contribution to the Q−1 for two components: bulk fluid contained in the fill line [solid (black) line]
and the bulk fluid around the periphery of the cell, modeled as a channel of thickness 28 μm [dashed (red) line]. After subtracting off the
two bulk fluid contributions, the dissipation due to the 3He and aerogel combination is shown as the open (black) triangles. The dissipation of
∼2.4 × 10−6 is essentially temperature and pressure independent within the scatter in the normal state data (∼±0.6 × 10−6).
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FIG. 3. (Color online) Data for Q−1 vs ρs/ρ at six different pressures are plotted. We note slow mode resonance crossings for ρs/ρ < 0.015.
ESP-phase (cooling-blue solid circles) and B-phase (warming-red open triangles) coexistence regions are shown in the insets at lower pressures.
The dissipation is larger in the ESP-phase compared to the B phase. The higher dissipation associated with the ESP phase is especially evident
at higher pressures and close to the ESP to B transition. Bulk fluid contributions have been subtracted, assuming bulk B phase. The discontinuity
in the 31.9-bar data on cooling is due to the bulk A to B transition.

B. Superfluid state of 3He in aerogel

Data were taken on both cooling and warming in the
superfluid state at a number of different pressures, maintain-
ing a constant cooling (warming) rate (∼30 μK/hr). From
knowledge of the bulk superfluid fraction and viscosity, we
subtracted contributions due to the bulk regions in order to
determine the corresponding values for the 3He in the aerogel.
In particular, we note that bulk fluid Q−1 is at most ∼4 × 10−6

near Tc and rapidly decreases at lower temperatures, and is thus
unable to account for the measured dissipation. A summary of
the data for Q−1 versus (ρs /ρ)aerogel at six different pressures
is shown in Fig. 3.

Standing wave modes of the fourth-sound like “slow mode”
(in which the superfluid moves out of phase with the normal
fluid; normal fluid is clamped to the nonrigid aerogel) cross
the torsional oscillator frequency, as the slow mode’s velocity
evolves, between 0 � (ρs /ρ)aerogel � 0.015. We can identify the
resonance crossings in Fig. 3 as a number of closely spaced
“loops.” These resonance effects [33–37] will be ignored in
our subsequent discussions.

The superfluid transition temperatures and precise phase
diagram for this sample were identified in our previous
publication [23]. Below the superfluid transition, we enter the

superfluid ESP phase on cooling. At lower temperatures, we
observe a continuous phase transition between the ESP and the
B phases (extended over a temperature interval of ∼70 μK).
It is thought that this width is due to the strong pinning of
the phase interface by the aerogel. On warming, we stay in
the B phase until just below the critical temperature. The
reappearance of the ESP phase is very pressure dependent.
This strongly hysteretic behavior allows us to probe ESP and
B phase properties over an extended temperature window,
especially at elevated pressures.

The pressure dependence of Q−1 against (ρs/ρ)aerogel and
(1 − T/Tc) is shown in Fig. 4. In the B phase, we observe
a broad peak in the dissipation [Fig. 4(a)]. Below Tc the
dissipation rises, even though the impurity limited normal fluid
viscosity should be constant. The dissipation in the ESP phase
rises even faster than in the B phase [Fig. 4(b)]. This is in sharp
contrast with experiments in the bulk, where the viscosity is
seen to drop sharply below Tc and scale as e−�/kBT in the
finite size regime [38]. Q−1(T ) scales well with ρs/ρ and not
(1 − T/Tc), as shown in Figs. 4(a) and 4(c). Since ρs/ρ ∝
�2, this implies that Q−1 and the energy gap � are related.
The anomalous dissipation of the ESP phase scales almost
linearly with ρs/ρ [Fig. 4(b)], and exceeds the corresponding
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FIG. 4. (Color online) (a) A plot of Q−1 in the B phase vs ρs/ρ for all the data sets in Fig. 3 combined in one plot. We note the consistent
pressure dependence of Q−1 with ρs/ρ. Strong coupling effects enhance the anomalous superfluid dissipation. (b) A plot of Q−1 in the ESP
phase vs ρs/ρ for all the data. The pressure dependence of Q−1 is seen to arise mainly due to the larger extent in temperature of the ESP phase
at high pressure; the Q−1 scales well with ρs/ρ. Discontinuities in the data are due to the bulk A → B transition on cooling. (c) and (d) Plots
of Q−1 vs 1 − T/T

aerogel
c in the B and ESP phases, respectively. Much of the scaling behavior is lost in this view compared to that seen in (a)

and (b).

value of Q−1 at the same ρs/ρ (and T/Tc) in the B phase. As
pressure is increased, Q−1 measured in the ESP phase rises
considerably above the values for Q−1 in the B phase. This
effect is emphasized further since the width of temperature
region in which the ESP phase is stable on cooling increases
with pressure.

IV. COMPARISON TO EXPERIMENTS
WITH UNCOMPRESSED AEROGEL

Previous torsion pendulum experiments with uncompressed
aerogel [11,39] used significantly larger aerogel samples and
had much lower Q’s. Thus no direct comparison with previous
torsion pendulum experiments can be made. However, we can
relate the Q−1 reported here (in the superfluid state) to the Q

of the slow mode of 3He in uncompressed aerogel samples
in the ESP (Ref. [40]) and the B (Ref. [41]) phases . Results
for the B-phase ultrasound dissipation can also be found in
Ref. [55]. The qualitative behaviors described in these
references (increased ESP- and B-phase dissipation as the
temperature is lowered near Tc, Q−1

ESP > Q−1
B ) are similar to

what we observe. Thus apart from allowing the ESP state
to persist on cooling to much lower temperatures, the aerogel
compression is probably not a significant factor in the observed
results.

V. COLLISION DRAG MODEL
IN A TORSION PENDULUM GEOMETRY

A starting point in the model for the dynamics of the helium-
aerogel system is to map out the angular velocity profiles of
the fluid and the aerogel across the flow channel. We expect
the fluid to be in a Drude flow regime [10,17], where the

angular velocity of the fluid with respect to the aerogel is
constant across the channel, with the exception of a small
region of size δd = √

(ητf /ρ) away from the edges [17,41].
The frictional relaxation time τf is related to the friction force
per unit volume coupling the helium with the aerogel matrix
[42–44]:

F(vl,va) = ρ

τf

(vl − va), (3)

where vl and va are, respectively, the velocities of the normal
3He and the aerogel. The frictional force can be related to
the average change of momentum a quasiparticle experiences
upon scattering from an aerogel impurity.

In Ref. [44], τf is given by

τf = τ̃(
1 − ρ0

s

ρ

) [
1 + F 1

s

3

(
1 − ρ0

s

ρ

)] (4)

with F 1
s being a Landau parameter. The bare superfluid density,

ρ0
s is related to the measured superfluid density stripped of

Fermi-liquid effects through:

1 − ρs

ρ
= m∗

m

1 − ρ0
s

ρ

1 + F 1
s

(
1 − ρ0

s

ρ

) . (5)

In the normal state, τ̃ is the transport relaxation time
equal to the quasiparticle mean free path divided by the
Fermi velocity [45]. In the superfluid state, however, τ̃ is
temperature dependent. Reference [44] defines τ̃ in terms of
integrals of quasiclassical Keldysh Green’s functions, but no
direct relationship between τ̃ and conventional experimental
observables in the superfluid state is shown. Instead, the values
for τ̃ are numerically calculated in the different scattering
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limits for various degrees of Tc suppression by the aerogel. It
is evident from the plots for τ̃ (T ) given in in Ref. [44] that
τ̃ in the superfluid state could be somewhat larger that τ̃ in
the normal state, before τ̃ (T ) eventually approaches zero as
T → 0.

The quasiparticle mean free path can be estimated from
the suppression of the superfluid transition as discussed in
Ref. [23] using a model proposed by Abrikosov and Gorkov in
Ref. [46] and refined into the isotropic inhomogeneous scat-
tering model (IISM) described in Refs. [7,47–49]. Assuming
a Fermi velocity of 30 m/s, the value of the normal state τf

inferred from the 155-nm mean free path used to fit the Tc

suppression is ≈5 × 10−9 s.
The sound velocity in the aerogel sample is expected to be

in the range of c ∼ 30–50 m/s [33,50]. For a frequency of
2.1 kHz, we expect a compressional sound mode wavelength
of a few millimeters, an order of magnitude larger than the
height of the cell. Yet, there will be a small displacement of
the aerogel in the interior of the cell relative to the motion of the
adjacent wall. The normal helium is well locked to the aerogel;
the aerogel and helium form a composite medium exhibiting a
velocity profile largely determined by the viscoelasticity of the
aerogel. Through numerical calculations, we predict a ∼ 1%
difference in the angular velocity in the middle of the cell and
the wall. This angular velocity profile gives rise to dissipation
in the cell. In addition, there is a small velocity difference
between the entrained fluid and the aerogel itself that arises
due to the finite value of τf .

To solve for the angular velocity profiles of the helium and
the aerogel, we write the Navier-Stokes and wave equations,
coupled by the collision drag force:

ρ
̇l = η
∂2
l

∂z2
− ρ

τf

(
l − 
a), (6)

ρa
̇a = i
μ

ω

∂2
a

∂z2
+ ρ

τf

(
l − 
a), (7)

where 
l(z) and 
a(z) are the angular velocity profiles of the
helium liquid and the aerogel across the channel, respectively.
The shear modulus of the aerogel is μ, which we can deduce
from the aerogel sound velocity. The viscosity of the helium
η equal to that of the bulk liquid at high temperatures, but
reaches an impurity limited value at about 10 mK, leading to
η � 0.01 Poise.

Having solved for the angular velocity profiles, we find the
induced torque on the walls of the cell due to the motion of the
helium liquid (Nl) and the aerogel (Na). With the assumption
that the angular velocities of the liquid and the aerogel at the
walls are equal to the angular velocity of the cell wall, i.e.,

l(a)(±z/2) = θ̇ , we obtain

Nl = −πR4η

(
∂
l

∂z

)
z=h/2

, Na = −iπR4 μ

ω

(
∂
a

∂z

)
z=h/2

.

The empty cell Q−1 shows a nonzero value when extrap-
olated to T = 0. Yet, a purely elastic aerogel should not be
dissipative. A previous iteration of this experiment used an
aerogel sample (grown in a different process) with a height of
≈4 mm. The otherwise identical torsion pendulum containing
that sample had a Q ≈ 100× lower than the one described

here. We can expect a h2 dependence of the dissipation, with
h being the height of the cell. Furthermore, there have been a
number of experiments on silica aerogels (though on samples
denser compared to ours and at room temperature [51–53]),
that report a complex elastic modulus, which would lead to
dissipation effects associated with the plastic deformations of
the aerogel. We write the shear modulus of the aerogel as
μ = μre − iμim.

Accounting for the complex shear modulus, we obtain

Q−1(T ) = −Re(Na + Nl)

I0ωθ̇

≈ Ia

I0

[
1 + ρn(T )

ρ

ρ

ρa

]2
ρaω

3h2

12μ2
re

[
η(T ) + μim

ω

]

+ ρn(T )

ρ

Il

I0
ωτf . (8)

More details about the exact solution to the equations of
motion and how we derive the result for Q−1 can be found in
Appendix B.

VI. DISCUSSION

There are three terms in Eq. (8) that contribute to the normal
state dissipation. The first one is proportional to the normal
fluid viscosity η(T ) and is due to the aerogel flexure modifying
the angular velocity profile of the liquid and causing extra
dissipation. Using η ∼ 0.01 Poise, this term accounts for a
contribution to Q−1 of the order of ∼10−8. In order to match
the experimental value of Q−1 = 2.4 × 10−6, we need η to be
two orders of magnitude larger, which we consider unphysical.

The third term in Eq. (8) contains contributions to Q−1

arising from the frictional relaxation time τf . For this term
to have a large enough contribution to match the experimental
data for Q−1, we need τf ∼ 10−7 s. However, the quasiparticle
mean free path in a 98% open aerogel has been shown to
be �200 nm [13,15,21–23,54]. Assuming a Fermi velocity of
30 m/s and effective mass m∗/m ∼ 3–5, we find that τf above
Tc can at most be a few nanoseconds.

We suggest that the large temperature independent normal
state dissipation could be due to the intrinsic dissipative nature
of the aerogel, characterized by the ratio μim/μ2

re. The reason
we are sensitive to the aerogel intrinsic dissipation term is the
low-resonant frequency of the torsion pendulum. Since this
term depends on μim/ω [Eq. (8)], its contribution would be less
significant at the higher frequencies employed in ultrasound
attenuation experiments [17,55]. To obtain Q−1 of the order of
10−6, we need μim/μre ∼ 0.1. Such a large loss tangent could
be due to the fractal nature of the aerogel or could be related
to the expected presence of a few monolayers of solid 3He on
the surface of the aerogel strands.

Figure 5 shows the pressure dependent values for Q−1 at
T bulk

c with the contributions from bulk fluid and the empty
cell subtracted plotted versus [1 + ρ(P,T bulk

c )/ρa]2 − 1 [see
Eq. (8)]. The transition temperature as a function of pressure
is well known as are the density and the viscosity of the bulk
fluid at Tc allowing us to accurately subtract the bulk fluid
contributions and reveal the pressure dependence of Q−1 in
the normal state. If our assumption that the main contribution
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FIG. 5. (Color online) A plot of Q−1 measured at Tc for 0.14,
3, 15.2, 18.5, 20.1, 21.9, 24.3, 25.7, 27.5, and 29.1 bar (pressure
increases as we go from left to right) with the bulk fluid and empty
cell dissipation subtracted versus (1 + ρs/ρaerogel)2 − 1. A linear
regression line is shown, with a slope of ∼2.4 × 10−7 and y intercept
of ∼3.1 × 10−7.

to the dissipation in the normal state comes from the lossy
aerogel, we would expect a linear relationship. A linear fit to
the data is shown in Fig. 5, providing an evidence in support
of this model. The y intercept of ∼3.1 × 10−7 could be due to
the uncertainty of the empty cell data.

Assuming that energy dissipation of the torsion pendulum
due to the interaction of the normal state excitations and the
aerogel scales as [1 + (1 − ρs

ρ
) ρ

ρa
]2, then such a contribution

will decrease as the cell is cooled below Tc and deeper in
the superfluid state. This cannot explain the dissipation we
measure in both the ESP and B phase superfluid states.

We subtract the normal fluid contribution (using parameters
from the linear fit in Fig. 5) and consider the residual
dissipation. If we allow its origin to be due to the ρn(T )

ρ

Il

I0
ωτf (T )

term, we can plot the so-inferred τf (T ) as a function of
the temperature. Figure 6 shows this for the 29.1-bar data
along with the data from Ref. [41]. We find good agreement
between the two experiments, implying that the observed
dissipation in the 50-kHz sound attenuation experiment and

FIG. 6. (Color online) A plot for τf as a function of temperature
assuming that the τf term in Eq. (8) is responsible for all of the
extra dissipation we observe in the B phase. The data plotted are for
29.1 bar. We also show the data from Ref. [41], which are deduced in
a similar way.

the torsion pendulum Q−1 in the superfluid B phase probably
have a similar origin. As discussed in the previous section,
the relaxation time τ̃ in Eq. (4) can be shown to increase as
we enter the superfluid state due to the rapid opening of the
superfluid gap, before τ̃ eventually diminishes to near zero at
extremely low temperatures [44]. In addition, the denominator
in Eq. (4) should also decrease as ρs/ρ grows. These two
effects combined could produce a temperature dependence of
τf with a similar shape to what we observe in Fig. 6. We can
expect an enhancement of τf in the superfluid state up to a
factor of ten compared to its value at Tc. However, in order to
produce a peak τf of order 0.15 μs, we need τf (Tc) � 10 ns,
a value which is higher than the few nanoseconds that would
be consistent with the Tc suppression measurements. Thus
temperature variation of the frictional relaxation time cannot
solely produce the observed data. Therefore we conclude
that there is an additional mechanism to dissipate energy not
captured in the collision-drag model presented in Sec. IV and
related to the emergence of the superfluid order.

One way superfluid currents can dissipate energy is through
interactions with bound states pinned to the boundary with the
normal fluid at the vortex cores [56]. This leads to a mutual
friction term, which can be shown to be proportional to [57]

ρs

ρ

ρn

ρ
(vs − vn).

Such a term would produce a peak in the dissipation similar
to what we observe in our data for the B superfluid phase.
However, no evidence for vortex states has been found in our
experiment. The velocity amplitude of the superfluid current is
small, much smaller than the velocities the fluid is driven at in
typical experiments observing vorticity [57,58]. We also do not
detect a noticeable increase in Q−1 as we drive the pendulum
harder. While the vortex dynamics model may not be applica-
ble to our experiment, one can imagine that regions of normal
fluid with the size of a typical vortex core (coherence length)
exist, bound to denser regions of the aerogel. Such bound states
will allow for lower energy excitations to interact with the su-
perfluid flow and provide a mechanism for energy dissipation.

An object (in this case an aerogel strand) moving through
bulk superfluid with velocity v should feel a force that scales as
e−�/kbT v, as shown in Ref. [59]. Assuming that the nodes of the
ESP state order parameter tend to orient in the plane of the flow,
then we would expect that the ESP state should be associated
with higher dissipation than the B phase. However, this
argument does not explain the different functional dependence
of the dissipation in the ESP phase in terms of ρs/ρ compared
to the dissipation in the B phase.

Experiments with samples of aerogel attached to vibrating
wire resonators immersed in 3He show that flow tends orient
the ESP state orbital texture along the flow [60]. Such an effect
is clearly demonstrated for velocities significantly larger than
the velocities of the fluid in our experiment, but alignment of
the � vector is possibly realized also at lower velocities, albeit
with a smaller magnitude. Changing the direction of the �

vector will damp the flow due to the orbital viscosity of the su-
perfluid [61,62] and manifests itself as the extra dissipation of
the pendulum observed in the ESP state. A similar (but smaller)
effect has been shown for the B phase if the order parameter
is slightly anisotropic [63]. Further, a previous experiment
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studying superfluid flow through a small orifice (18-μm
diameter) shows large dissipation in the A phase, linearly
increases with velocity until a critical velocity is attained [64].

Finally, we note that the pressure dependence of the
observed dissipation could be related to the degree of gap
suppression in both ESP and B superfluid phases. Dissipation
is higher at high pressures, where the gap suppression is less
severe, and lower at lower pressures where the superfluid gap
tends to be less pronounced and the density of states at lower
energies increases.

VII. CONCLUSION

We presented torsion pendulum Q−1 data for a compressed
aerogel sample filled with 3He in both normal and superfluid
states. We developed a model for the normal fluid dynamics as
embedded in the viscoelastic aerogel. We assert that frictional
relaxation time is not large enough to account for either normal
or superfluid Q−1 data. Instead, we propose that dissipation
features of the data below the superfluid transition originate
from the superfluid state.
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APPENDIX A: BULK FLUID CONTRIBUTION

We expect the normal state helium liquid to be well locked
to the strands of the aerogel. In the normal state, any change
in the resonant frequency compared to that of a cell with a
fully locked fluid should originate from the bulklike fluid
regions of the cell. Figure 7 shows data for the fraction
of the moment of inertia not coupled to the walls of the
cell at the four experimental pressures that were shown in
Fig. 2 (0.14, 2.6, 15.2, and 25.7 bar). The decoupled fluid
fraction and dissipation show temperature dependent behavior
characteristic of two distinct bulk fluid regions (two peaks
in the normal state dissipation data, two “shoulders” in the
normal state decoupled fraction data).

The effective length and diameter of the fill line in the
torsion rod and the cast epoxy cell are 6 and 1 mm, respectively.
The bulk fluid column amounts to 0.8% of the inertia of the
fluid in the cell and is designated as bulk fluid region 1. In order
to calculate the contribution to dissipation and period shift
coming from the fluid in the fill line, we start by calculating
the angular velocity profile 
θ (r) by using the Navier-Stokes
equation in a tall cylindrical geometry, which leads to

∂2


∂r2
+ 3

r

∂


∂r
+ iωρ

η

 = 0 (A1)

with 
(radius of the cylinder) = 
cell.
Solving for 
 we find the torque exerted by the fluid:

N = 2πR3hη

(
∂


∂r

)
r=R

= β1 + iωβ2, (A2)

FIG. 7. (Color online) The fraction of fluid decoupled from
the pendulum vs temperature for four pressures after background
subtraction (open circles). Also shown are the fits for the bulk fluid
contribution for two components: region 1, fluid in the fill line, a
1-mm diameter, 6-mm long cylinder comprising 0.8% of the total
fluid moment of inertia [solid (black) line], and region 2, fluid at the
periphery of the cell, modeled as a cavity of height 28 μm [dashed
(red) line] comprising 3.2% of the moment of inertia. The dash-dotted
(green) line shows the sum of the contributions from the two bulk fluid
components.

where β1 contributes to the damping of the pendulum and β2

to the moment of inertia. Temperature dependence of these
values is determined by the temperature dependence of the
viscosity of the fluid, η(T ).

Near Tc, we expect the normal state bulk viscosity to scale
as T −2. Above T > 10 mK the viscosity deviates from the
Fermi liquid T −2 behavior and we use the following relations
between the thermal conductivity (κ), heat capacity (CV ), and
the viscosity (η) to calculate higher temperature values for η:

κ = 1

3
CV v2

F τκ, (A3)

η = 1

5

m∗

m
ρv2

F τη, (A4)

CV = m∗ π2kB

�2

(
V

3π2N

)2/3

RT . (A5)
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FIG. 8. (Color online) Values of viscosity in the normal state at
the four experimental pressures.

Assuming that density and molar volume do not change in the
temperature range 1–100 mK, and assuming τη ∝ τκ , we can
infer that η ∝ κ . To find the exact values for the viscosity in the
normal state, we use the values for η(Tc) given in Refs. [65,66],
and κ(Tc) in Ref. [67] and divide the two values to find the
proportionality factor. We then multiply κ(T ) from Ref. [67]
by this factor for each of the pressures we are interested and
we find η(T ) up to 100 mK. The values for the viscosity
for the four experimental pressures we used to calculate bulk
fluid contribution in the normal state are shown in Fig. 8. In the
superfluid state, experimental values for the superfluid fraction
are taken from Ref. [68] and for the viscosity from Ref. [38]

Numerically solving Eq. (A1), we can calculate the
contribution from the bulk fluid in the fill line. This
contribution is shown with a solid (black) line in Figs. 2 and 7.
It is evident in Fig. 7 that there is bulk fluid within the cell we
have not yet accounted for.

The steel cavity containing the aerogel was dry fitted in
the epoxy cast to prevent epoxy running in. We believe this
resulted in small pockets of bulk fluid existing around the
periphery of the cell. While we cannot do an exact calculation
for the effects of these regions the same way as we did for
the fluid in the torsion rod, we can still use the uncoupled
moment of inertia data (Fig. 7) to estimate the contribution to
the pendulum’s dissipation. We assume that the relationship
between the real and the imaginary part of the torque arising
from the cell periphery bulk fluid is the same as that of a
uniform thickness film encompassing all of the cell. For a thin
film of fluid with a thickness h and inertial contribution Iper,
the torque exerted is N = β1 + iωβ2, with

β1 = ωIper
δ

h

sin(h/δ) − sinh(h/δ)

cos(h/δ) + cosh(h/δ)
, (A6)

β2 = Iper
δ

h

sin(h/δ) + sinh(h/δ)

cos(h/δ) + cosh(h/δ)
, (A7)

where δ = √
2η/ρω is the viscous penetration depth of the

fluid. Fitting to the dissipation data in Fig. 2, we find h =
28 μm and Iper = 0.032If , where If is the moment of inertia
of all the helium in the torsion pendulum head. These values
are consistent with our expectations. The accuracy to which the
epoxy cast and stainless steel cell are machined is within one-
thousand of an inch, i.e., 25 μm, and a film of that thickness
around all of the cell surface amounts to 0.05If . Since the bulk
fluid is more likely coming from a few separate regions around
the periphery, rather than from a continuous film, we would
expect that Iper � 0.05If . We also use these values and the
viscosity of 3He to obtain the fraction of decoupled fluid from
the periphery (region 2) which we plot as the dashed (red) line
in Fig. 6.

At the lowest experimental pressures (0.14, 2.6, and 4 bar),
the liquid in the aerogel does not transition to a superfluid
state. At these pressures, the resonance period shift below Tc

originates from the bulk fluid regions. In addition to the bulk
fluid decoupling, we observe fourth sound resonance crossings
effects, which occur at specific values of the sound velocity and
therefore ρs/ρ

bulk. We obtain a good fit to these data using the
model described in this appendix, which gives an independent
confirmation that bulk fluid effects are fully accounted for.
More information about these effects can be found in the
supplementary material of Ref. [23].

APPENDIX B: DYNAMICS OF NORMAL 3HE IN AEROGEL

We start by rewriting Eqs. (6) and (7) as

∂2
a

∂z2
+ aa
a − ba
l = 0, (B1)

∂2
l

∂z2
+ al
l − bl
a = 0, (B2)

where we have defined the coefficients a and b as

aa = i
ρω

μ
ba = aa

(
1 − iωτF

ρa

ρ

)
, (B3)

al = − ρ

ητF

, bl = al (1 − iωτF ) . (B4)

Solving the coupled differential equations, we arrive at


a(z) =
[
D − al−aa

2 − ba

2D

cos(k1z)

cos(k1h/2)

+ D + al−aa

2 + ba

2D

cos(k2z)

cos(k2h/2)

]
θ̇ , (B5)


l(z) =
[
D − aa−al

2 − bl

2D

cos(k1z)

cos(k1h/2)

+ D + aa−al

2 + bl

2D

cos(k2z)

cos(k2h/2)

]
θ̇ , (B6)

where D =
√

( al−aa

2 )2 + blba and k1,2 =
√

al+aa

2 ± D.
To obtain a qualitative picture of the angular velocity

profiles, we can explore the fact that ωτf � 1 and ηω/μ � 1.
The coefficients (D ± al−aa

2 ± ba,l)/2D and the values of k1,2

in Eqs. (B5) and (B6) are approximated to the lowest order.
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This approximation gives us the z dependence of the angular
velocity of the aerogel, 
a(z), and that of the fluid 
l(z):


a(z) ≈ θ̇
cos

[√ (ρ+ρa )ω2

μ
z
]

cos
[√ (ρ+ρa )ω2

μ
h
2

] , (B7)


l(z) ≈ θ̇

⎧⎨
⎩

cos
[√ (ρ+ρa )ω2

μ
z
]

cos
[√ (ρ+ρa )ω2

μ
h
2

] − iωτf

cosh
[

z
δd

]
cosh

[
h

2δd

]
⎫⎬
⎭ , (B8)

where δd = √
ητf /ρ � h is the “dirty” fluid penetration

depth, i.e., the length scale over which the velocity of the
helium fluid deviates from the Drude flow regime with respect
to the aerogel velocity. We observe that the shape of both
aerogel and fluid velocity profiles is largely set by the elastic
modulus of the aerogel, μ. The relative velocity difference
between the aerogel and the helium fluid is of the order of
ωτf � 1 of the total velocity.

Equations (B7) and (B8) present a qualitative picture for the
differences in the velocities of the flow and the aerogel, but we
need to include higher-order terms in the expressions above to
estimate the dissipation factors associated with the aerogel and
the fluid in the cell. Importantly, we also allow the possibility
of the elastic modulus of the aerogel to be a complex number,
μ = μre − iμim, with μim/μre � 1. Then for k1,2 we have

k1 ≈
√

(ρ + ρa) ω2

μre

×
{

1 + i

[
ωη

2μre
+ μim

μre
+ ωτf

2

ρ

(ρ + ρa)

]}
, (B9)

k2 ≈ i

δd

[
1 − i

(
ωη

2μre
+ ωτf

2

)]
. (B10)

As for the coefficients in Eqs. (B5) and (B6):

C1 = D − al−aa

2 − ba

2D
≈ 1, (B11)

C2 = D + al−aa

2 + ba

2D
≈ (ωτf )

(
ηω

μre

)
, (B12)

C3 = D − aa−al

2 − bl

2D
≈ 1 + iωτf , (B13)

C4 = D + aa−al

2 + bl

2D
≈ −iωτf

(
1 + i

ηω

μre

ρ + ρa

ρ

)
. (B14)

The expressions for the induced torque by the aerogel (Na)
and the helium liquid (Nl) can be written as

Na = iωIa

2μ

ρaω2h

[
C1k1 tan

(
k1

h

2

)
+ C2k2 tan

(
k2

h

2

)]
θ̇ ,

(B15)

Nl = Il

2η

ρh

[
C3k1 tan

(
k1

h

2

)
+ C4k2 tan

(
k2

h

2

)]
θ̇ . (B16)

Further, the expressions for the tangents can be approximated
as

tan

(
k1

h

2

)
≈ k1

h

2
+

(
(ρ+ρa )ω2h

4μre

)3/2

3 −
(

(ρ+ρa )ω2h

4μre

) + i

[
(ρ+ρa )ω2h

4μre

]3/2

1 −
[

(ρ+ρa )ω2h

4μre

]

×
(

ηω

μre
+ μim

μre

ωτf

2

ρ

ρ + ρa

)
, (B17)

tan

(
k2

h

2

)
≈ i, (B18)

where we used the following relation:

tan(α + iβ) ≈ α

(
1 + α2

3 − 3α2

)
+ iβ

(
α2

1 − α2

)
, (B19)

which is true in the case of β � α and α � 0.1. For the
expression for tan(k2h/2), we use the fact that |k2h/2| ∼
h/δd 	 1 and that Im(k2h/2) 	 Re(k2h/2).

Putting all of these expressions together, we arrive at

Nind = Na + Nl

≈ −
[

(Ia+Il)ω
ξ

3 − ξ

(
ηω

μre
+μim

μre

)
+ Ilω

2τf

3 − ξ

3 − 3ξ

]
θ̇

+ iω
3 − 2ξ

3 − 3ξ
(Ia + Il)θ̇ , (B20)

where ξ = (ρ+ρa )ω2h2

4μre
and we have ignored terms containing

δd/h � 1. We can simplify further, since ξ ∼ 10−2:

Nind ≈ −
[

(Ia + Il)
(ρ + ρa)ω4h2

12μ2
re

(
η + μim

ω

)
+ Ilω

2τf

]
θ̇

+ iω(Ia + Il)θ̇ . (B21)

Using this expression for the induced torque, we arrive at the
expression for Q−1 in Eq. (8).
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