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We analyze the ground-state properties of mixtures consisting of scalar bosons and spin- 1
2 fermions using a

mean-field treatment of the local boson-fermion interaction on a simple cubic lattice. In the deep superfluid limit
of the boson sector and the BCS regime of the fermion sector, we derive BCS-type equations to determine the
phase diagram of the system. We find a competition between a charge density wave and a superconducting phase.
In the opposite limit, we study the Mott-insulator-to-superfluid transition of the boson sector in the presence of a
staggered density-induced alternating potential provided by the fermions, and determine the mean-field transition
line. In the two-superfluids phase of the mixture, we restrict to nearest-neighbor-induced interactions between the
fermions and consider the extended Hubbard model. We perform a mean-field analysis of the critical temperature
for the formation of boson-assisted s-, extended s−-, d-, and p-wave pairs at fermionic half-filling. We compare
our results with a recent dynamical mean-field study [P. Anders et al., Phys. Rev. Lett. 109, 206401 (2012)].
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I. INTRODUCTION

Bose-Fermi mixtures are ubiquitous in nature. In particle
physics, fermions are the constituents of matter interacting
via boson-mediated forces. In conventional superconductors,
electrons feel an effective attraction due to the retarded interac-
tion with phonons. In 3He-4He mixtures, the magnitude of the
interactions between the two isotopes is similar to the one of
the interisotope interactions, which makes it hard to establish a
hierarchy of energy scales. Cold-atom systems [1] allow for a
remarkable control over the interaction strengths and hopping
matrix elements which can be fine tuned to achieve quantum
simulation of all these effects. A profound theoretical treatment
of Bose-Fermi mixtures at similar interaction energies and
length scales is not feasible at the moment.

Spin-polarized Bose-Fermi mixtures have recently
been realized experimentally using cold bosonic 87Rb and
fermionic 40K atoms in three-dimensional (3D) optical lattices.
Pioneering experiments [2] in the presence of a fixed attractive
background scattering length found a decrease in the bosonic
visibility upon increasing the lattice depth, suggesting a shift in
the Mott-insulator-to-superfluid (MI-SF) transition. Possible
explanations for this effect include self-trapping [3–6], adia-
batic heating [7–9], or corrections due to higher bands [5,10].
Another experimental study found an asymmetry between the
strongly repulsive and attractive interspecies interactions by
analyzing the 87Rb momentum distribution function [2].

Theoretically, thermodynamic properties of the dilute Bose-
Fermi mixture have been investigated perturbatively, including
calculation of the ground-state energy, the bosonic momentum
distribution function, and the superfluid and normal fractions.
It was proposed that by varying the mass ratios and the
scattering lengths of the species, it is possible to sup-
press the bosonic momentum distribution function for small
momenta [11].

The phase diagram of Bose-Fermi mixtures with spin-
polarized fermions has been investigated in the case of mass

and density imbalance between the species both using dia-
grammatic methods [12] and the fixed-node diffusion Monte
Carlo method [13]. A first-order quantum phase transition
has been found from a polaronic to a molecular state with
increasing the boson-fermion scattering length. In the presence
of a fixed attractive interspecies interaction, the phase diagram
has been studied in the continuum analytically using field-
theory methods [14]. It was shown that a strong boson-fermion
attraction allows for the formation of molecules containing
atoms of either species. Mixtures consisting of spinless
fermions and scalar bosons have also been addressed with
quantum Monte Carlo simulations in one dimension, studying
the phase diagram at double half-filling [15] later found to be
in reasonable agreement with a random phase approximation
(RPA) study [16] and the destruction of the Mott insulator at
unit bosonic density [17]. The supersymmetric point is exactly
solvable and was studied in Ref. [18].

Other works, interested in modeling superconductivity,
focused on the boson-mediated interaction induced between
the fermions. It was shown that an effective interaction
potential can be obtained using the T -matrix formalism,
and the corresponding s-wave scattering length has been
calculated with the help of field-theoretical methods [19].
The frequency dependence of the induced interaction is
responsible for retardation effects. However, when the bosonic
sound velocity is sufficiently greater than the Fermi velocity,
the frequency dependence can safely be neglected, and the
resulting interaction is always attractive. As in conventional
superconductors, a weak repulsive fermionic interaction can
be overcome in favor of an attractive effective one, leading to
a Cooper instability in the s-wave channel [11,20].

In this paper, we present a self-consistent mean-field
(MF) treatment of the spinful Bose-Fermi mixture. The MF
decoupling of the boson-fermion density-density term enables
us to study the effects of the interspecies interaction on
the properties of the bosonic and fermion sectors to first
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order. We identify parameter regimes where a charge density
wave is formed, in the presence of which staggered potential
modifications to the fermionic chemical potential can be of
similar order of magnitude as superconducting fluctuations.

We do not restrict our analysis to the s-wave channel alone
and explore the formation of s-, extended s−-, d-, and p-wave
pairs on a simple cubic (s.c.) lattice at finite temperature.
We work in the limit of short-ranged boson-induced inter-
actions only in the phase where bosons and fermions are
both superfluid, without considering a charge density wave.
Interestingly, we find approximate analytical expressions for
the s- and extended s−-wave critical temperatures in very
good agreement with numerical solutions of the mean-field
equations. Our approximation is equivalent to studying the
extended Hubbard model, which has been analyzed in two
dimensions in a similar way in Ref. [21] where the gap
equations have been solved numerically.

Before starting with the discussion, let us make a few
comments on the two-dimensional study by Büchler and
Blatter [22,23], who likewise were interested in Bose-Fermi
mixtures and the possible stability of a supersolid phase. Their
fermions were, however, spin polarized, and they studied the
competition between a density-wave instability (in combina-
tion with superfluid bosons) and phase separation driven by
poles in the Lindhard response function, and related to van
Hove instabilities in the density of states. Here, the phase tran-
sitions will have a mean-field nature instead of being driven by
instabilities in the density of states. The word supersolid will in
this paper be used as follows: it is a phase in which each subsys-
tem is superfluid or superconducting and there is a charge den-
sity wave (CDW). The density-wave instability in combination
with superfluid bosons will hence not be called a supersolid.

This paper is organized as follows. We first introduce
the model in Sec. II and the decoupling of the Bose-Fermi
interaction term in Sec. III. In Sec. IV, we analyze the physics
of the Bose-Fermi mixture in the deep superfluid limit of
the boson sector. The latter is treated with a generalized
Bogoliubov approximation to account for the presence of the
fermion-induced staggered potential. We study the CDW-SF
transition in the fermion sector in the weakly interacting BCS
limit using the mean-field equations to determine the phase
boundary. In Sec. V, on the other hand, we assume that the
fermions are deep in the BEC limit whose only effect is to
create a periodic potential for the bosons. We determine the
MI-SF phase boundary in the (Ubf ,tb) plane. Section VI is
devoted to a mean-field analysis of unconventional superflu-
idity in the two-superfluids phase of the mixture where we
derive approximate equations for the critical temperature of
s-, extended s−-, d-, and p-wave pairing. Finally, we conclude
in Sec. VII and compare our mean-field results to a recent
dynamical mean-field theory (DMFT) study.

II. MODEL

The system is described by the Hamiltonian

H = Hb + Hf + Hint,

Hb = −tb
∑
〈ij〉

b
†
i bj − μb

∑
i

ni + Ubb

2

∑
i

ni(ni − 1),

Hf = −tf
∑
〈ij〉,σ

c
†
iσ cjσ − μf

∑
i

mi + Uff

∑
i

mi↑mi↓,

Hint = Ubf

∑
i

nimi. (1)

The operator b
†
i (c†iσ ) creates a boson (fermion of spin σ =

↑,↓) at the lattice site i, and the chemical potential μb (μf )
is used to fix the lattice filling. The hopping matrix element
between nearest-neighbor sites for the bosons (fermions) is
tb (tf ). The number operator on lattice site i is denoted
by ni for bosons, and mi = mi↑ + mi↓ for fermions. The
bosons are subject to an onsite repulsion Ubb > 0, while we
take attractive onsite interactions for the fermions Uff < 0.
The density of the bosons will be put to unity. The density
of the fermions is fixed at half-filling, in which case the
sign of the onsite boson-fermion interaction Ubf is irrele-
vant. This can be seen from a particle-hole transformation.
Therefore, without loss of generality, we assume a repulsive
interspecies interaction Ubf > 0 throughout the rest of this
paper [24]. As energy unit, we set tf = 1 unless otherwise
written.

At these densities, the ground-state phase diagrams of
the pure bosonic and pure fermionic models are as follows.
The bosonic model undergoes a quantum phase transition
from a superfluid to a Mott insulator at a critical value of
the ratio Ubb/tb = 5.8z in mean-field theory [1,25], where
z = 2d is the lattice coordination number. The superfluid
extends also to finite temperature, unlike the Mott insulator.
At higher temperature, a normal liquid phase is found.
The Fermi-Hubbard model at zero temperature is always
in a molecular charge density wave (CDW) phase with
equally strong superconducting fluctuations due to the SU(2)
pseudospin symmetry [26]. One can distinguish between the
BCS limit for weak interactions and the BEC limit for strong
negative interactions 6tf /|Uff | � 1 [27–29]. This phase can
exist also at finite temperature, but when temperature is
sufficiently increased it undergoes a phase transition to a
Fermi liquid [30]. In the absence of bosons, the sign of Uff is
irrelevant at half-filling due to the Lieb-Mattis transformation.
However, when the fermions are coupled to the bosons, the
SU(2) pseudospin symmetry is broken to U(1), and the sign of
Uff becomes relevant.

III. HARTREE DECOUPLING OF THE BOSE-FERMI
INTERACTION

In a recent DMFT study [31], the calculation was set up
in such a way that the global symmetry could be broken
spontaneously to the following phases, whose order param-
eters are given in parentheses: SFb+f [both species superfluid:
〈bk=0〉 ∼ O(N ),

∑
i〈c†i↑c

†
i↓〉 �= 0], CDW + SFb [charge den-

sity wave and superfluid bosons: 〈bk=0〉 ∼ O(N ), 〈bk=π 〉 ∼
O(N ),

∑
i(−1)i〈mi〉 �= 0], CDW + SFf [charge density wave

and superfluid fermions:
∑

i(−1)i〈ni〉 �= 0,
∑

i(−1)i〈mi〉 �=
0,
∑

i〈c†i↑c
†
i↓〉 �= 0], and SS [supersolid-CDW and both species

superfluid: 〈bk=0〉 ∼ O(N ), 〈bk=π 〉 ∼ O(N ),
∑

i(−1)i〈mi〉 �=
0,
∑

i〈c†i↑c
†
i↓〉 �= 0]. Here, N =∑i ni is the total number of

bosons [32].
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It is unknown how severe the local approximation in the
DMFT is. Also, the role of the retardation is not clear. For
bosons it was found not to matter at all [31,33], except in
the close vicinity of a bosonic superfluid-to-Mott-insulator
phase transition. In this work, we investigate what aspects of
the phase diagram can be recovered by a static and quadratic
mean-field theory, which does not require solving an impurity
problem as in DMFT.

We therefore perform a mean-field decoupling in the boson-
fermion interaction which allows us to keep track of a possible
CDW present in the ground state:

nimi ≈ ni〈mi〉 + 〈ni〉mi − 〈ni〉〈mi〉,
〈mi〉 = m − (−1)iα, (2)

〈ni〉 = n + (−1)iη,

where the numbers n (m) give the lattice filling of the
bosons (fermions), and η (α) denote the bosonic (fermionic)
CDW amplitude. In doing so, we implicitly assume that the
fluctuations in the expectation values of the two number
operators ni and mi are small. Notice the different sign of
the amplitudes due to the repulsive interspecies interaction
assumed. Also note that DMFT can treat local but nonquadratic
terms such as n2

i and nimi exactly.
Applying the back-action mechanism [10] to obtain second-

and higher-order corrections due to the interspecies interac-
tion becomes computationally involved in three dimensions.
Therefore, our MF analysis in its present form is incapable
of self-consistently tracking down phases including nonvan-
ishing density-density correlators, such as 〈nimiσ 〉, which are
predicted to influence the large-Ubf physics [14].

In the present approximation, the two sectors of the
Bose-Fermi mixture (BFM) couple to one another only
via the corresponding density-induced alternating mean-field
potentials:

H = H ′
b + H ′

f + H ′
int,

H ′
b = Hb + Ubf

∑
i

[m − (−1)iα]ni,

H ′
f = Hf + Ubf

∑
i

[n + (−1)iη]mi, (3)

H ′
int = −Ubf

∑
i

[n + (−1)iη][m − (−1)iα]

︸ ︷︷ ︸
= L3(mn−ηα]

,

where L denotes the system size. The coupling between the
bosonic and the fermion sectors is realized by the dependence
of the two CDW amplitudes on one another. We may, therefore,

choose η(α) as a function of α, to be determined by the solution
of the mean-field equations. The two subsystems can now
be diagonalized separately. Finally, we iterate the numerical
solution of the gap equations until convergence is reached.

IV. BCS LIMIT

Applying the mean-field approximation (3), it is convenient
to first consider the regime where the bosons are deep in
the superfluid phase, and boson-boson interactions can be
treated in the Bogoliubov approximation (cf. Appendix A).
Any phase transition driven by the fermions takes places in a
superfluid background provided by the bosons. The fermions
themselves are assumed to be interacting such that BCS theory
applies [30]. More precisely, for a s.c. lattice, the parameter
regime is |Uff |/6tf � 1 [28].

Due to the instantaneous density-density boson-fermion
interaction, if by some means charge order is attained, it will
appear in both sectors. Therefore, keeping in mind that the
bosons merely provide the background, we define three pairing
order parameters:

α = 1

L3

∑
k∈BZ,σ

〈c†k+π,σ ck,σ 〉 = 1

L3

∑
i,σ

(−1)i〈c†i,σ ci,σ 〉,

�0 = Uff

L3

∑
k∈BZ

〈c†k,↑c
†
−k,↓〉 = Uff

L3

∑
i

〈c†i↑c
†
i↓〉, (4)

�π = Uff

L3

∑
k∈BZ

〈c†k+π,↑c
†
−k,↓〉 = Uff

L3

∑
i

(−1)i〈c†i↑c
†
i↓〉.

The s-wave gap function �0 detects the appearance of
Cooper pairs. The amplitude of the fermionic CDW α mea-
sures the strength of the periodic modulation of the fermionic
density. It is related to the CDW gap by α = 2�c/|Uff |. The
nonuniformity of the s-wave gap function is measured by
the order parameter �π . It can be shown that �π vanishes
identically in the case of half-filling due to particle-hole
symmetry [34]. Away from half-filling, however, it is in general
nonzero and the state of the fermion sector is usually referred to
as a staggered superconductor [29] (�π �= 0). The supersolid
found at half-filling in Ref. [31] is characterized by α �= 0,
�0 �= 0, and �π = 0.

Treating the bosons in the extended Bogoliubov approxima-
tion results in a quadratic theory. Similarly, a generalized MF
theory for the Fermi-Hubbard model in an alternating potential
can be derived along the lines of Refs. [35,36]. The resulting
quadratic theories are then solved in momentum space (cf.
Appendices A and B). The thermodynamic potential of the
BFM in this approximation is given by

� = �b + �f + �int,

�b

L3
= n0(−ztb cos 2θ − μb + mUbf − αUbf sin 2θ ) + Ubb

2
n2

0(1 + 4 sin2 2θ )

+ 1

2L3

∑
k∈BZ′,s

[
E

(b,s)
k − μb + Ubf + 2n0Ubb − 1

β
ln

1 + coth
(

β

2 E
(b,s)
k

)
2

]
,
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�f

L3
= 1

|Uff |
[( |Uff |

2
α

)2

+ |�0|2 + |�π |2
]

− 1

L3

∑
k∈BZ′,s

[
E

(f,s)
k + (μf − nUbf ) + 2

β
ln

1 + tanh
(

β

2 E
(f,s)
k

)
2

]
,

�int

L3
= −Ubf [mn − αη(α)] , (5)

where θ determines the population fraction of the k = 0 and
the π condensates (cf. Appendix A). The reduced Brillouin
zone is defined by BZ′ = {k ∈ BZ :

∑
i cos(ki) � 0}. The

presence of the CDW reduces the translational symmetry of
the system, which leads to a larger unit cell and a reduced first
Brillouin zone, comprising two bands denoted by the index
s = 1,2. Their dispersion relations E

(b,s)
k ,E

(f,s)
k are given in

Eqs. (A4) and (B3), respectively.
To determine the phase boundary, we apply the following

procedure. First, using the Bogoliubov approximation we solve
the Bose-Hubbard model in a staggered field whose strength
is set by a parameter α. We can extract the dependence of
the induced bosonic CDW η(α) and the total condensate
fraction n0(α) on the staggering field strength αUbf from
the thermodynamic potential �b. Recalling that (μb,n) and
(η,αUbf ) are conjugate variables, we have n = −1/L3∂μb

�b

and η(α) = −1/L3∂αUbf
�b which yield

n = n0(α) − 1

2L3

∑
k∈BZ′,s

[
1 − ∂E

(b,s)
k

∂μb

coth

(
β

2
E

(b,s)
k

)]
,

η(α) = n0 sin(2θ ) − 1

2L3

∑
k∈BZ′,s

∂E
(b,s)
k

∂(αUbf )
coth

(
β

2
E

(b,s)
k

)
.

(6)

At a fixed bosonic density n, the first equation is a self-
consistency equation for the total Bose condensate fraction
n0(α) (the chemical potential μb being already fixed, cf.
Appendix A), while the second equation determines the CDW
amplitude η(α). Solving these equations is equivalent to
integrating out the boson sector.

Solving the Fermi-Hubbard model in the presence of a
staggered field of magnitude η(α) due to the bosons [cf.
Eq. (3)], we derive self-consistent MF gap equations for �0,
�π , and α:

m = 1

2L3

∑
k∈BZ′,s

[
1 + ∂E(f,s)

∂μf

tanh

(
β

2
E

(f,s)
k

)]
, (7)

|�0| = −Uff

2L3

∑
k∈BZ′,s

∂E(f,s)

∂|�0| tanh

(
β

2
E

(f,s)
k

)
, (8)

|�π | = −Uff

2L3

∑
k∈BZ′,s

∂E(f,s)

∂|�π | tanh

(
β

2
E

(f,s)
k

)
, (9)

α = 1

L3

∑
k∈BZ′,s

(
∂E(f,s)

∂α

)
η(α)

tanh

(
β

2
E

(f,s)
k

)
. (10)

The signs of the gap functions in the above equations are
valid for filling m < 1. The case m > 1 can be dealt with
using particle-hole symmetry (cf. Appendix B). The value of

the fermionic chemical potential is determined by the number
equation (7). At half-filling (m = 1), it reads as μf = Ubf n.

Finally, we calculate numerically the free energy of the
entire mixture for the available candidate states, and the lowest
one determines the ground state for a given set of the model
parameters. It follows directly from the system of MF gap
equations above that a supersolid phase is not possible at half-
filling within the current approximation. This is most easily
seen in the T = 0 case, where Eqs. (8) and (10) assume the
form

α = 2

Ns

∑
k∈BZ′

−Uff α

2 + η(α)Ubf√(
εf
k

)2 + |�0|2 + (−Uff α

2 + η(α)Ubf

)2 ,

(11)

|�0| = −Uff

Ns

∑
k∈BZ′

|�0|√(
εf
k

)2 + |�0|2 + (−Uff α

2 + η(α)Ubf

)2 .

(12)

The above system has only two nontrivial solutions aside from
the normal phase (α = 0, �0 = 0). This can be shown in the
following way: suppose that we are in a phase where �0 �= 0.
We can use the second equation and plug it in the first one
to obtain α = − 2

Uff
(−Uff

2 α + η(α)Ubf ). Simplifying, we are
left with η(α) = 0, whose only solution is α = 0 since η(α) is
a monotonically increasing function [37]. The other solution
is found at �0 = 0. Hence, the resulting phase can either be
a SF or a CDW, but not a superposition. Notice that the same
argument holds for T > 0 as well.

The phase diagram at half-filling (�π = 0) and T = 0 is
given in Fig. 1. Starting from low values of Ubf , the system
prefers to be in a state where the bosons have the CDW + SFb

order while the fermions display only the insulating CDW
order. Increasing the boson-fermion interaction leads to an
at first sight paradoxical phase transition, in which the CDW
order is completely lost while the fermions become superfluid.
This interplay can be explained by the observation that the
boson sector has a higher energy when the CDW is present
due to the nonuniformity of the many-body wave function.
On the other hand, the fermions can lower their energy when
their CDW amplitude increases since the CDW gap �c ∼ α

becomes larger. Taking into account this competition results
in a phase transition from a CDW + SFb state to a SFb+f state
at intermediate values of Ubf .

In the large tb/tf limit, where the bosonic CDW amplitude
is negligibly small, the boson and fermion sectors effectively
decouple from one another. We expect this to happen when
ztb ∼ αUbf /[1 + n0Ubb/(αUbf )] [37], with z the coordination
number. Furthermore, a comparison with DMFT [31] shows
that at small values of tb/tf one needs to take into account
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FIG. 1. (Color online) Zero-temperature phase diagram of the
BFM in the (Ubf ,tb) plane in the presence of a superfluid bosonic
background. We see a first-order transition where the CDW is lost
and the fermions pair into a superfluid. The color bar gives the
difference in the grand energies �(SFb+f) −�(CDW + SFb). The
model parameters read as n = 1, m = 1, T/tf = 0, Uff /tf = −4,
and Ubb/tf = 2.

higher-order corrections to the density-density decoupling,
such as the boson-mediated attraction. They could influence
the functional behavior of the free energy on the order param-
eters and ultimately alter the slope of the phase boundary.

Away from half-filling, the insulating CDW state for
the fermions is no longer found because the Fermi surface
no longer exhibits perfect nesting. This has recently been
investigated for a fermionic system in Ref. [34], where a
staggered superconducting state (characterized by an alter-
nating nonvanishing gap function, i.e., �π �= 0) was induced
by applying an external alternating potential. Based on this
analysis, it follows that a transition occurs between the
staggered superconductor and a pure SF state at high values
of Ubf . This is in agreement with earlier work on the extended
Hubbard model [29] where the staggered superconductor is
stabilized by repulsive nearest-neighbor interactions.

Finite but small temperatures (see Fig. 2) do not change the
physics of the transition, although they modify the values of
the order parameters, and hence the position of the transition
line. It follows from the gap equations (10) and (8) that
�0 � �c due to the presence of the CDW. The difference in
the two gaps is due to the boson-induced potential, and enters
the equation as a negative additive correction −Ubf

dη

dα
|α=0

to the fermion-fermion interaction [37]. Taking this and the
exponential dependence of the critical temperature on the
inverse interaction strength in BCS theory [30] into account,
we have at half-filling

T CDW
c

T SF
c

=
exp

(− 1
N0[|Uff |+Ubf η′(0)]

)
exp

(− 1
N0(|Uff |)

) � 1, (13)

with equality only for Ubf = 0. Here, N0 denotes the density
of states at the Fermi surface. Physically, this means that a
larger gap requires a higher temperature to close. Hence, it
follows that the SF order in the fermion sector vanishes first
at some T (1)

c when increasing the temperature. Therefore, for
T � T (1)

c , the fermions can either stay in an insulating CDW
state for large values of Ubf /tf , in which case the BFM is

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

CDW + SFb

SFb+f

SFb +Nf

T/tf

U
bf

/t
f

FIG. 2. (Color online) Finite-temperature phase diagram of the
BFM valid when bosons condense at a much higher temperature
at which no signs of fermionic ordering can be seen. For small
temperatures, the fermion sector can be found in either a SF or a CDW
state, depending on the value of Ubf /tf . With increasing temperature,
the system is found either in a CDW + SFb or in a SFb+Nf state
where the fermions constitute a Fermi liquid, while the bosons are
still superfluid. Beyond a critical curve, the CDW order vanishes
completely and only the Nf+SFb state remains. The parameters are
Ubb/tf = 2, tb/tf = 1.25, and Uff /tf = −4.

found in the CDW + SFb state, or make a transition to a Fermi
liquid for small values of Ubf /tf so the mixture is found in
the SFb+Nf state. It is the boson sector which determines the
phase of the fermions: a strong CDW is energetically penalized
by the delocalized bosons at high Ubf as long as temperature
allows for a nonzero gap �0. Beyond a certain critical line,
the CDW gap also closes, meaning that the fermions are found
in the normal Fermi-liquid phase Nf only, while the bosons
are still superfluid. Finally, another critical temperature T (2)

c

determines the SF-normal transition of the boson sector, above
which the BFM leaves the quantum degeneracy regime (not
shown).

In this treatment, we tacitly assumed that a transition to a
SF or a CDW in the fermion sector is not destroying the SF
order of the bosons. Indeed, a coexistence of two superfluids
is stable due to the uniformity of the average density profiles.
A strong CDW, on the other hand, may cause a localization
of the bosons on a single sublattice, thereby destroying the
SF background. However, we find that a CDW state with
large density modulations is penalized at large Ubf /tf , as
it inevitably increases the kinetic energy of the total system
compared to the two-SF state.

V. BEC LIMIT

In this section, we turn our attention to the regime where
the bosons are undergoing a superfluid-to-Mott-insulator
transition. A recent DMFT study [31] suggests that the fermion
sector provides a CDW background in this parameter regime.
To model this, we assume that the fermions are deep in the
BEC limit (|Uff |/6tf � 1) and form locally bound tight
molecules sitting on alternating sites, which effectively creates
a staggered potential term. We set α = 1 for simplicity. This,
along with the possibility that the fermion sector be in the
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superfluid state, may affect the precise position of the transition
line. However, we show here that the transition line is driven
by the bosons alone. Our aim is to derive a generalization to
the MI-SF phase boundary of the boson sector in the presence
of the fermion-induced staggered potential.

By using a cumulant expansion in the bosonic hopping
parameter, the phase boundary can be obtained perturba-
tively from field-theoretical methods [38,39]. We write the
Hamiltonian as H ′

b = H0 + H1 where the perturbation H1 =
−tb

∑
〈ij〉 b

†
i bj , and H0 is local and diagonal in the Fock

basis. Ignoring retardation effects, it suffices to determine the
zero-frequency Green’s function of the unperturbed system
G

(0)
A/B(iω = 0) = G

(0)
A/B(0) on each of the sublattices A and B:

G
(0)
A (0) = 1

Z0
A

∞∑
n=0

e−βfA(n)

×
[

2Ubf − Ubb − μb(
2Ubf − Ubb

2 − μb + Ubbn
)2 − (Ubb

2

)2
]
,

G
(0)
B (0) = 1

Z0
B

∞∑
n=0

e−βfB (n)

×
[ −μb − Ubb

(−μb + Ubbn)(−μb − Ubb + Ubbn)

]
, (14)

where Z0
A/B is the partition function with respect to the

local Hamiltonian H0 on sublattices A and B, and the grand
energies fA/B are given by fA(n) = (2Ubf − μb)n + Ubb

2 n(n −
1) and fB(n) = −μbn + Ubb

2 n(n − 1). The finite-temperature
effective potential ignoring retardation effects (ω = 0) takes
the form [38]

[ψ] = L3ψ2

2

(
1

G
(0)
A (0)

+ 1

G
(0)
B (0)

)
− ψ2ztbL

3 + O(ψ4).

(15)

For a detailed discussion on the Bose-Hubbard related models
at finite temperature, see Ref. [38].

At this place we assumed that the effect of the staggered
density on the order parameter is negligible in the immediate
vicinity of the transition line as approached from within the
SF phase. In principle, one would need to distinguish between
the values the order parameter takes on the sublattices A and
B. To argue that this is a subdominant effect, notice that there
is indeed a coupling of the form ψ2

Aψ2
B , but it is of fourth

order, and hence can be safely neglected for ψ near the phase
boundary.

To find the phase boundary for a second-order transition,
we need to set the coefficient in front of the quadratic term to
zero. At T = 0 this yields

2ztb
!= 1

G
(0)
A (0)

+ 1

G
(0)
B (0)

= −2μ2
b + 2μb(2n − 1)Ubb − (n − 3)nU 2

bb

μb + Ubb

− n(n + 1)U 2
bb

μb + Ubb − 2Ubf

+ 2Ubf . (16)

0 0.5 1 1.5
0

2

4
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 t
b
/t

f

 |U
bf

|/t
f

CDW + MI
b

CDW + SF
b

FIG. 3. (Color online) Modification of the bosonic MI-SF tran-
sition line in the presence of an alternating potential. The model
parameters are n = 1, m = 1, Ubb/tf = 20, and T/tf = 0. The
alternating chemical potential is generated by freezing locally paired
fermions in a CDW. This order will be picked up by the bosons for
all finite interactions and hopping amplitudes.

For Ubf = 0, the expression reduces to the well-known
result [25]. The condition for unit filling is approximately
satisfied with the choice of μb ≈ Ubb

2 + Ubf . Hence,

Ubf |critical ≈ Ubb

2

√
6ztb − Ubb

2
3ztb − Ubb

. (17)

The phase boundary for T = 0 is shown in Fig. 3. For
tb = 0, the value Ubb/2 is special since increasing Ubf beyond
it makes it energetically favorable for the static bosons to form
an insulating CDW with a double occupancy on every other
site. At any finite tb, the bosons delocalize. On the contrary, for
Ubf < Ubb/2, a uniform density minimizes the energy of the
system to lowest order. At any small but finite tb, the bosons
remain insulating. For Ubf = 0, we recover the MI to SF
transition at Ubb/ztb = 6. Equation (17) is in good agreement
with the location of the second-order phase boundary found
by DMFT [31]. Therefore, we have strong arguments that the
corresponding phase transition is solely initiated by the bosons,
while the (possibly also superfluid) fermions merely provide
the staggered potential background.

VI. UNCONVENTIONAL SUPERFLUIDITY
IN BOSE-FERMI MIXTURES

In the last section of this work before the conclusions,
we investigate the different fermionic unconventional pairing
mechanisms that can be induced by superfluid bosons in
mean-field theory. The main question of interest is under
what conditions a d-wave superfluid can be stabilized. A
similar analysis but in a different context was carried out
in Refs. [21,40]. We restrict our analysis to half-filling for
the fermions and unit filling for the bosons and consider
low enough temperatures to ensure superfluidity in the boson
sector. The bosons can then be treated in the Bogoliubov
approximation. In perturbation theory, they generate to lowest
order an additional density-density interaction between the
fermions which scales as Vind ∼ −U 2

bf /Ubb. Notice that if the
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following analysis were carried out in a staggered background,
one would have had to take into account the boson-induced
alternating potential which also goes as Ubf η ∼ U 2

bf /Ubb. This
procedure results in an effective fermionic Hamiltonian

Heff =
∑
k,σ

(
εf
k − μf

)
c
†
kσ ckσ + 1

2L3

∑
σσ ′

k1,k2,Q

V eff
σσ ′(k1 − k2)

× c
†
k1,σ

c
†
−k1+Q,σ ′c−k2+Q,σ ′ck2,σ , (18)

where the fermionic lattice dispersion reads as εf
k =

−2tf [cos(kx) + cos(ky) + cos(kz)] = −tf γk . The effective in-
teraction is given by

V eff
σσ ′(k,ω) = Uffδσ,−σ ′ + Vind(k,ω). (19)

Here, Vind(k,ω) is the induced part of the potential obtained
in perturbation theory from the bosonic part of the Hamilto-
nian [40]. In the fast-phonon limit, when the phonon velocity
cph = √

2nUbbtb is much larger than the Fermi velocity vF =
∂εf

k/∂k|k=kF , the frequency dependence of Vind(k,ω), and thus
any retardation effects, can safely be neglected. This gives

Vind(k) = − U 2
bf

Ubb

1

1 + ξ 2(6 − γk)
, (20)

with ξ = √
tb/2nUbb the bosonic healing length. In this limit,

the bosons induce a purely attractive potential for the fermions
that can lead to pairing even when the latter have initially been
free, i.e., for Uff = 0. Moreover, fermions of the same spin σ

are now also interacting, allowing for the formation of exotic
bound states, such as p-wave pairs.

Due to the momentum dependence of the potential, the gap
function needed for the investigation of the unconventional
pairing mechanisms will also exhibit a nontrivial dependence
on the momentum k, a feature not present in the simplest
BCS theory. Since for a general k dependence no exact
analytic results can be obtained, owing to the complexity
of the gap equation, we choose to investigate the limit of
small bosonic healing length ξ � 1. In Ref. [40] it was argued
that this condition can be realized by controlling the bosonic
filling fraction n, and experimental realizations for Bose-Fermi
mixtures of 40K-23Na and 40K-87Rb atoms have been proposed.
We expand the potential as follows:

Vind(k) ≈ − U 2
bf

Ubb

(
1

1 + 6ξ 2
+ ξ 2

(1 + 6ξ 2)2
γk

)
= −W0 − W1γk, (21)

with the shorthand notation W0 = U 2
bf/Ubb(1 + 6ξ 2)−1 > 0,

and W1 = U 2
bf/Ubbξ

2(1 + 6ξ 2)−2 > 0. It is useful to define the
singlet pairing effective potential strength as V = Uff − W0.
Hence, in this approximation, the effective fermionic model
is equivalent to the extended Hubbard model with nearest-
neighbor interactions of strength W1.

The gap equation for a generic k-dependent gap function
�Q,σσ ′(k) = L−3∑

q V eff
σ,σ ′ (k − q)〈c†q,σ c

†
−q+Q,σ ′ 〉 is given by

�Q,σσ ′(k) = − 1

2L3

∑
q

V eff
σ,σ ′ (k − q)

�Q,σσ ′(q)

Eq

tanh

(
βEq

2

)
,

(22)

where Ek =
√

(εf
k)2 + �2

Q,σσ ′(k). The spin indices σ,σ ′ are
merely a handy notation to keep track of which parts of V eff

σ,σ ′ (k)
enter the gap equation. Below, we use a separate notation to
distinguish between singlet and triplet pairing and, therefore,
drop them. We note in passing that the momentum sums in this
section are always over the first Brillouin zone [−π,π ]3. The
gap functions �0 and �π used in Sec. IV are obtained from
�Q,σσ ′(k) in the special cases of V eff

σσ ′(k − q) = Uff δσ,−σ ′ for
Q = 0 and π , respectively.

In the following, we choose Q = 0 and distinguish between
singlet (s-, extended s−- and d-wave) and triplet (p-wave) pair-
ing characterized by order parameters obeying the following
symmetries [41,42]:

s-wave: �(k) = �s

√
8π3

, (23)

s−-wave: �(k) = �s− γk√
48π3

, (24)

dx2−y2 -wave: �(k) = �x2−y2 ηk√
32π3

, (25)

p-wave: �d(k) = �p

√
4π3

(sin kx, sin ky, sin kz). (26)

Notice that the gap function amplitudes �s , �s−
, �x2−y2

,
and �p are c numbers, while their momentum dependence
is separated out. The normalization prefactors assure that the
functions on the right-hand side [γk = 2(cos kx + cos ky +
cos kz),ηk = 2(cos kx − cos ky), and sin kx] are orthonormal
within the first Brillouin zone. The extended s−-wave order
parameter still preserves the full rotational symmetry of the
gap function, but allows for several nodes on the Fermi surface
compared to the conventional s-wave one. We only need to
consider either the dz2 or the dx2−y2 wave gap function since
they lead to degenerate transition temperatures [42], while it
can be shown [37] that the gaps of the dyz, dyx , and dxz channels
vanish identically in the approximation for the interaction
potential of Eq. (21).

Following the discussion in Ref. [21], we define the function
Fk(β) = tanh(βEk/2)

Ek
, where β = 1/T . The gap equations can be

calculated as

s-wave: 1 = −V ϕ1(β), ϕ1(β) = 1

2L3

∑
k

Fk(β), (27)

s−-wave: 1 = W1

6
ϕγ (β), ϕγ (β) = 1

2L3

∑
k

γ 2
k Fk(β),

(28)

d-wave: 1 = W1

3
ϕη(β), ϕη(β) = 1

2L3

∑
k

η2
kFk(β), (29)

p-wave: 1 = 2W1ϕp(β), ϕp(β) = 1

2L3

∑
k

sin2 kxFk(β).

(30)

At the inverse critical temperature βc the corresponding
gaps vanish. For βctf � 1, we first evaluate the functions
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ϕi(βc) in the thermodynamic limit (cf. Appendix C), leading
to

ϕ1(βc) ≈ N0

[
9

2
ln 2 ln

(
12eC

π
βctf

)
+ κ1

]
, (31)

ϕγ (βc) ≈ N0

[
−3π2 ln 2

16

1

(βctf )2
+ κγ

]
, (32)

ϕη(βc) ≈ N0

[
π2

4

(
ln 2

4
− 1

)
1

(βctf )2

+ 3(9 ln 2 − 1) ln

(
12eC

π
βctf

)
+ κη

]
, (33)

ϕp(βc) ≈ N0

4

[
π2

12

1

(βctf )2

+ (9 ln 2 + 1) ln

(
12eC

π
βctf

)
+ κp

]
, (34)

where N0 = 1/(2π2tf ) and C ≈ 0.557 is the Euler constant.
The nonuniversal, lattice- and dimension-dependent constants
read as κ1 = −1.90, κγ = 5.47, κη = −3.78, and κp = −6.96.

The gap equations for s wave and s− wave can be solved
algebraically:

T s
c

tf
= 12eC

π
exp

[
− 2

9 ln 2

(
−κ1 + 1

N0|V |
)]

, (35)

T s−
c

tf
=
√

16

3π2 ln 2

(
κγ − 6

N0W1

)
. (36)

We recover the expected exponential decay in the critical
temperature from BCS theory for negative interaction in-
cluding the numerical prefactors for a simple cubic (s.c.)
lattice. The extended s−-wave critical temperature is clearly
nonperturbative. Furthermore, it follows from Eq. (36) that
there can not be any extended s−-wave pairing for W1 <

6/(κγN0) on a s.c. lattice. This law qualitatively explains the
behavior of the corresponding numerical curve calculated for
the extended s−-wave critical temperature of the extended
Hubbard model in two dimensions [21].

The d- and p-wave pairing functions ϕη and ϕp, however,
contain both algebraic and logarithmic terms. Therefore,
inverting their gap equations to obtain analytical expressions
for the critical temperatures is possible only numerically. For
p-wave pairing, Ref. [43] predicted exponential decay of the
critical temperature for a Bose-Fermi mixture in the continuum
using a similar expansion technique for the gap function.
Hence, the effect of the lattice structure for p-wave pairing
can be traced back to the appearance of an algebraic term
in ϕp(βc) ∝ 1/(βctf )2, and the value of the corresponding
constant κp.

A direct comparison between the pairing instabilities for
extended s−-, d-, and p-wave pairing is possible since
their critical temperatures depend on the parameter W1 only.
Figure 4(b) shows that d- and p-wave pairing are possible
also for small values of W1, while extended s−-wave pairing
is completely suppressed. In Fig. 4, we also compare the
quality of the approximations made to the gap equations (30)

(a)

(b)

FIG. 4. (Color online) (a) Mean-field critical temperature for s-
wave pairing (empty squares) as a function of the nearest-neighbor

interaction parameter N0W1 = N0
U2

bf

Ubb

ξ2

(1+6ξ2)2 . (b) In the special case
of Uff = 0, one can compare it to the critical temperatures for
unconventional pairing: s− (empty stars), d (empty circle), and p

wave (empty triangles). The solid lines represent full numerical
solutions of the mean-field equations (27)–(30), while the nearby
dashed lines are according to our approximate analytical results taking
Eqs. (21) and (C1) into account.

with a full numerical evaluation of these equations and find
a very good agreement. At very high transition temperatures
T/tf ∼ 1, the temperature dependence of the gap equation for
energies in the upper part of the band (interval [1,3]) is no
longer negligible (cf. Appendix C). The ratio tb/Ubb = 0.22
used is consistent with the assumption that the boson sector
is superfluid and this choice was motivated by the parameters
used in Fig. 4 of Ref. [31].

The situation becomes more involved if we also take
s-wave pairing into account since the s-wave interaction V =
Uff − W0 contains both a generic (Uff ) and an induced part
(W0). Any direct comparison between all critical temperatures,
therefore, depends on a fixed value of Uff . For Uff = 0,
the validity of our approximation requires W1 � W0, and
hence the d-wave pairing is strongly suppressed by the s-wave
pairing: cf. Fig. 4(a). This result agrees well with the obser-
vation of Ref. [40], according to which the unconventional
pairing mechanisms are mostly pronounced for ξ ∼ 1. We
note in passing that 40K-23Na is an interesting mixture to
observe nonconventional pairing [40]. Figure 4 shows the
critical temperatures for all the pairing mechanisms in the
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case Uff = 0. The s-wave pairing is clearly the dominating
one [notice the relative factor between the horizontal axes of
Figs. 4(a) and 4(b)], followed by d-, p-, and the s−-wave
pairing. The s−-wave pairing is suppressed for small values of
N0W1, following Eq. (36).

An interesting situation shows up when the bare fermionic
interaction is positive and approximately equal in magnitude
to the induced one: Uff ≈ |W0| > 0. This could be achieved
using Feshbach resonances in systems of ultracold atoms. In
this case, the boson-induced attraction compensates exactly
for the fermion-fermion repulsion, thereby closing the s-
wave channel completely, and leaving d-wave pairing as the
dominant pairing mechanism. This, in turn, opens up the
possibility to observe exotic d-wave pairs. We remark that
dominant d-wave pairing has already been predicted in a
two-dimensional (2D) Bose-Fermi mixture on an isotropic
square lattice using a renormalization group approach [44].

VII. CONCLUSION

We obtained the finite- and zero-temperature phase di-
agrams of the Bose-Fermi-Hubbard model in a mean-field
approximation. Treating the boson-fermion interaction along
the lines of mean-field theory couples the bosonic and fermion
sectors via their CDW amplitudes. One then finds both
the Bose- and Fermi-Hubbard models in the presence of
a staggered potential, whose strength is determined by the
expectation value of the onsite density of the opposite species.
This scheme allows us to look for exotic states, characterized
by a simultaneous superfluid and crystalline long-range order.

As a solution to the self-consistency equations of the
fermion sector in the limit of superfluid bosons, we recover the
familiar SF and CDW phases. We find that a supersolid phase is
not possible at half-filling in the present MF description. This
is related to the difference in the values of the CDW and SF gap
induced by the staggered potential. The ultimate ground state
of the BFM is determined by comparing the total mean-field
free energies of the candidate ground states. We find that MF
supports both the CDW + SFb and the SFb+f phases for small
and large values of Ubf , respectively. We also successfully
calculated a very similar transition line to the one observed in
DMFT for the CDW + SFf to CDW + SFb transition [31], as a
consequence of the bosonic MI-SF transition in the presence
of a staggered potential.

In the SFb+f phase, higher-order corrections due to the
boson-fermion interaction lead to an induced long-range
attractive potential between the fermions. Truncating the latter
to nearest neighbors and assuming half-filling, we derive the
gap equations for s-, extended s−-, d-, and p-wave pairing. The
corresponding critical temperatures are obtained as a special
case of vanishing gap parameters. This leads to transcendental
equations, except for the cases of s- and extended s−-wave
pairing where very good analytical approximations to the
mean-field gap equations have been developed in the limit
T/tf � 1.

For s wave, we recover the exponential decay expected from
BCS theory with the appropriate prefactor in the mean-field
approximation. For extended s− wave, we find a nonpertur-
bative square-root dependence Tc/tf ∼ √1 − 6/(κγ W1N0).
Hence, extended s−-wave pairing is possible only starting from

a critical value W c
1 = 6/(κγN0). Among the extended s−-,

d-, and p-wave instabilities, the dominant one is the d wave.
Taking s-wave pairing into account, we identify two interesting
scenarios: either one can use the bare fermionic interaction Uff

to effectively sweep the effective s-wave interaction parameter
V up to zero closing the s-wave channel, so that the s-wave
instability succumbs to the d-wave one, or one can consider
Uff = 0, in which case we recover the observation of Ref. [40]
that conventional s-wave pairing dominates.

When comparing our results with the DMFT phase diagram
of Ref. [31], there remain some striking differences, most
notably the absence of a supersolid in the present treatment.
The corresponding orders were quite robust in the DMFT
study, making it unlikely that a numerical artifact has caused it.
We also do not think that the retardation is responsible for the
difference in phases. Most likely, the crucial difference is in the
treatment of the local boson-boson and boson-fermion density
interactions, which go beyond the Hartree-type decoupling of
the Bose-Fermi interaction term performed here. In DMFT,
these local correlations are treated exactly, and they are
important in localized, commensurate phases such as Mott
insulators [31,33], while they are completely missing in our
approximate quadratic theories. It may be interesting in future
work to address the question as to whether an extended
mean-field theory [45] or a variational cluster approach [46]
can be developed in which local density-density correlations
are represented by a variational parameter within one unit cell
and if such a theory can reproduce the same shape of the phase
diagram as DMFT. Close to half-filling, it is also worth noting
that both treatments agree and are able to find a supersolid
phase.
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A. Muramatsu for valuable discussions. This work is supported
by the Excellence Cluster NIM, FP7/Marie-Curie Grant No.
321918 (FDIAGMC), FP7/ERC Starting Grant No. 306897
(QUSIMGAS), and by a grant from the Army Research Office
with funding from DARPA.

APPENDIX A: BOSE-HUBBARD MODEL IN A
STAGGERED POTENTIAL: THE SF LIMIT

In this appendix, we present the Bogoliubov treatment of
the Bose-Hubbard model subject to an alternating chemical
potential. For a more-detailed discussion, see Ref. [37]. The
Hamiltonian in momentum space is given by

H =
∑

k

(
εb
k − μb + Ubf

)
b
†
kbk − αUbf

∑
k

b
†
k+πbk

+ Ubb

2L3

∑
k1,k2,k3,k4

b
†
k1

b
†
k2

bk3bk4δk1+k2,k3+k4 . (A1)

In the absence of interactions, the bosons would undergo
a BEC occupying macroscopically the modes k = 0 and
k = π = (π,π,π ) since the alternating potential couples
directly the modes k and k + π . Thus, in the presence of
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interactions, one has to modify the Bogoliubov approximation
accordingly,

bk −→ bk +
{

cos θ
√

N0δk,0, k ∈ BZ′

sin θ
√

N0δk+π,0, k ∈ BZ \ BZ′.
(A2)

Here, N0 denotes the superfluid fraction, and θ =
θ (tb,αUbf ,Ubb) parametrizes the occupation number fraction
of the k = 0 and π condensates: fk=0 = n0 cos2 θ , fk=π =
n0 sin2 θ , n0 = fk=0 + fk=π . The reduced Brillouin zone is
defined by BZ′ = {k ∈ BZ : εk � 0}. To make a clear distinc-
tion, we also define αk = bk , for k ∈ BZ′, and βk = bk , for
k ∈ BZ \ BZ′.

One then follows the standard procedure: plugging Eq. (A2)
in Eq. (A1) and collecting terms to order N0 yields a
Hamiltonian quadratic in the bk operators. Setting the linear
terms in b0 and bπ to zero ensures stability and results in a
system of equations that fixes μb and θ :

(−ztb − μb + Ubf ) cos θ − αUbf sin θ

+ n0Ubb cos θ (1 + sin2 θ ) = 0,

(ztb − μb + Ubf ) sin θ − αUbf cos θ

+ n0Ubb sin θ (1 + cos2 θ ) = 0, (A3)

where z = 2d is the coordination number. The quadratic part is
a generalization of the Bogoliubov Hamiltonian in the absence
of a staggered potential. It is useful to introduce the abbrevi-
ations εb

k = −2tb
∑d

i cos(ki), u = Ubbn0, w = Ubbn0 sin 2θ ,
v = 2w − αUbf , and μ̃ = μb − Ubf − 2u. We can now reduce
the Brillouin zone defining αk = (αk,βk,α

†
−k,β

†
−k)t to arrive

at HBog = const + 1
2

∑
k∈BZ′ α

†
khkαk. The 4 × 4 matrix hk is

given by

hk =

⎛
⎜⎜⎜⎜⎝

εb
k − μ̃ v u w

v −εb
k − μ̃ w u

u w εb
k − μ̃ v

w u v −εb
k − μ̃

⎞
⎟⎟⎟⎟⎠ .

This Hamiltonian is canonically diagonalized using a pseu-
dounitary transformation [37], and the two energy bands

labeled by s = 1,2 are given by

E
(b,s)
k = (

v2 − u2 − w2 + ε2
k + μ̃2

± 2
√

(vμ̃ + uw)2 + (μ̃2 − w2)ε2
k

)1/2
. (A4)

As expected, the lower energy band is linear for |k| → 0,
and there is a band gap at |k| = |π |. Taking into account the
constant terms including those resulting from the commutation
relations, it is straightforward to find the thermodynamic
potential �b [cf. Eq. (5)].

APPENDIX B: FERMI-HUBBARD MODEL IN A
STAGGERED POTENTIAL: THE BCS LIMIT

This appendix deals with the Fermi-Hubbard model in a
staggered potential in the BCS regime. Allowing for CDW
and SF order in the ground state, Wick’s theorem yields the
following mean-field decoupling for the interaction part of the
Hamiltonian [35–37]:

Uff

∑
i

mi↑mi↓ ≈ �c

∑
k,σ

c
†
k+π,σ ck,σ

+
∑

k

(�0c−k,↓ck,↑ + H.c.)

+
∑

k

(�πc−k,↓ck+π,↑ + H.c.)

− L3

Uff

(
�2

c + |�0|2 + |�π |2) , (B1)

where the CDW and s-wave pairing order parameters are,
respectively, defined in Eqs. (8)–(10), and α = 2�c/|Uff |.

As for bosons, we reduce the Brillouin zone and define
the operators αk = ck , for k ∈ BZ′, and βk = ck , for k ∈ BZ \
BZ′. Defining a Nambu spinor αk = (αk↑,βk,↑,α

†
−k↓,β

†
−k↓)t

valid in the reduced Brillouin zone, one can write the
full mean-field Hamiltonian, including the staggered poten-
tial and the kinetic energy, as H = const +∑k∈BZ′ α

†
khkαk ,

where

hk =

⎛
⎜⎜⎜⎜⎜⎝

εf
k − μ �c + ηUbf |�0| |�π |

�c + ηUbf −εf
k − μ |�π | |�0|

|�0| |�π | −εf
k + μ −�c − ηUbf

|�π | |�0| −�c − ηUbf εf
k + μ

⎞
⎟⎟⎟⎟⎟⎠ , (B2)

where εf
k = −2tf

∑d
i cos(ki) and μ = μf − Ubf n (n is the bosonic filling). Here, we used that for fermionic filling m � 1, �0

and �π can be assumed real and positive, which is not a restriction due to particle-hole symmetry [34]. The band structure reads as

E
(f,s)
k = (

(�c + ηUbf )2 + |�0|2 + |�π |2 + (εf
k

)2 + μ2 ± 2X
)1/2

,
(B3)

X = (
[|�0||�π | + μf (�c + ηUbf )]2 + (εf

k

)2 (|�π |2 + μ2
f

) )1/2
.

As in the bosonic case, the grand potential �f [cf. Eq. (5)] can now be calculated if one includes the constant terms coming
from commutator relations.
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APPENDIX C: CALCULATION OF THE FUNCTIONS ϕi

In this appendix, we give the details of the calculation of the
auxiliary functions ϕi , which enter the gap equations (30). The
essence of our approximation can be summarized as follows:

(1) We pass to the thermodynamic (TD) limit.
(2) We make use of a logarithmic approximation to the 2D

density of states (DOS) N2D(ε) to define the 3D DOS N3D(ε)
via

N3D(2tf γ ) = 1

π

∫ min{2,γ+1}

max{−2,γ−1}
dw

N2D(2tf w)√
1 − (γ − w)2

.

(3) Due to the structure of N3D(ε), we use suitable
approximations to Fp(βc) to divide the dimensionless half
bandwidth interval (to be integrated over) in two pieces:
[0,3] = [0,1] ∪ [1,3].

(4) We keep the full temperature dependence of Fp(βc)
in the interval [0,1] where exact results for the 3D DOS can
be obtained, while putting βctf � 1 in [1,3], thus replacing
tanh(βcε/2) ≈ 1. Hence, we ignore the temperature contribu-
tion of the complicated part of N3D(ε) in the interval [1,3]
evaluating the resulting integral to a nonuniversal constant.

Let us now be specific: the 2D DOS can be approximated to a
very good accuracy by a logarithm:

N2D(ε) = 2

Dπ2
K

(√
1 −

(
ε

D

)2)
≈ 2

Dπ2
ln

∣∣∣∣4
√

2D

ε

∣∣∣∣,
(C1)

with K(x) the complete elliptic integral of the first kind and
D = 4tf the half bandwidth. Within the same accuracy, the
3D DOS reads as

N3D(ε) ≈

⎧⎪⎨
⎪⎩
N0

9
2 ln 2, 0 � γ � 1

N0
π

∫ 2

γ−1
dw

ln
∣∣ 8

√
2

w

∣∣√
1−(γ−w)2

, 1 � γ � 3

where ε = 2tf γ , and N0 = 1/(2tf π2).
Now we are ready to proceed towards the calculation of

ϕ1. At the critical temperature, the gap closes and we have
Ek =

√
ε2
k + �2

k = εk . Using this, we compute

ϕ1(βc) = 1

2L3

∑
k

Fk(βc)
TD-limit−→ 1

2

∫
BZ

d3k

(2π )3
Fk(βc)

= 1

2

∫ 6tf

−6tf

dε N3D(ε)
tanh

(
βcε

2

)
ε

=
∫ 3

0
dγ N3D(2tf γ )

tanh(βctf γ )

γ

= N0

[ ∫ 1

0
dγ ln(16

√
2)

tanh(βctf γ )

γ
+
∫ 3

1
dγ

N3D(2tf γ )

N0

tanh(βctf γ )

γ

]

= N0

[
9

2
ln 2

∫ 3

0
dγ

tanh(βctf γ )

γ
+
∫ 3

1
dγ

(
N3D(2tf γ )

N0
− 9

2
ln 2

)
tanh(βctf γ )

γ︸ ︷︷ ︸
≈ 1

γ

]

u=tf βcγ= N0

[
9

2
ln 2

∫ 3βctf

0
du

tanh u

u
+
∫ 3

1
dγ

(
N3D(2tf γ )

N0
− 9

2
ln 2

)
1

γ︸ ︷︷ ︸
=κ1=−1.90

]

≈ N0

[
9

2
ln 2 ln

(
12eC

π
βctf

)
+ κ1

]
, (C2)

with C ≈ 0.577 the Euler-Mascheroni constant. Notice the low-T approximation we did in the last step, as well as the way the
nonuniversal constant κ1 arises. We use the same method to calculate the function ϕγ since γ ∼ ε.

To evaluate the functions ϕη and ϕp, we use a trigonometric trick since the symmetry factors η2 and sin2 kx can not be
directly written as a function of γ . Define a measure dμ(k) = d3k

2(2π)3 Fk to integrate over the first Brillouin zone. Now, observe
that for any fixed i and any function f = f (ki) we have

∫
dμ(k)f (ki) = ∫ dμ(k)f (kj ) for any i,j ∈ {x,y,z} since Fk = F (γk),

γk = 2
∑

i cos ki , and ki ∈ [−π,π ]. Then, we have

3ϕη + ϕγ =
∫

BZ
dμ(k)3η2

k + γ 2
k

=
∫

BZ
dμ(k)4(4(cos2 kx + cos2 ky) + cos2 kz − 4 cos kx cos ky + 2(cos kx cos kz + cos ky cos kz))

ki↔kj=
∫

BZ
dμ(k)36 cos2 kx = 36(ϕ1 − ϕp), (C3)
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where the underlined terms cancel each other out due to
the aforementioned symmetry property. Hence, we see that
ϕp and ϕη can be related using ϕ1 and ϕγ and one only

needs to calculate ϕp. This is done along the same lines as
Eq. (C2), to arrive at Eqs. (31)–(34). For more details, see
Ref. [37].
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Nature (London) 415, 39 (2002).

[2] T. Best, S. Will, U. Schneider, L. Hackermüller, D. van Oosten,
I. Bloch, and D.-S. Lühmann, Phys. Rev. Lett. 102, 030408
(2009).

[3] S. Ospelkaus, C. Ospelkaus, O. Wille, M. Succo, P. Ernst,
K. Sengstock, and K. Bongs, Phys. Rev. Lett. 96, 180403 (2006).

[4] D.-S. Lühmann, K. Bongs, K. Sengstock, and D. Pfannkuche,
Phys. Rev. Lett. 101, 050402 (2008).

[5] S. Tewari, R. M. Lutchyn, and S. Das Sarma, Phys. Rev. B 80,
054511 (2009).

[6] S. Will, T. Best, S. Braun, U. Schneider, and I. Bloch, Phys. Rev.
Lett. 106, 115305 (2011).
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