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The total and magnetically resolved Compton profiles are analyzed within the combined density functional
and dynamical mean-field theory for the transition-metal elements Fe and Ni. A rather good agreement between
the measured and computed magnetic Compton profiles of Fe and Ni is obtained with the standard local
spin-density approximation (LSDA). By including local but dynamic many-body correlations captured by
dynamical mean-field theory (DMFT), the calculated magnetic Compton profile is further improved when
compared with experiment. The second moment of the difference of the total Compton profiles between the LSDA
and DMFT, along the same momentum direction, has been used to discuss the strength of electronic correlations in
Fe and Ni.
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I. INTRODUCTION

The single-particle momentum density of an interacting
electronic system can be measured rather directly by high-
energy Compton scattering experiments [1]. These experi-
ments in metals provide direct information about the occupied
momentum states and the Fermi surface. Although the mo-
mentum density is a relatively simple function it incorporates
in a nontrivial way the many-body aspects of the interactions
between the electrons of the system.

For several transition-metal elements discrepancies be-
tween measured and computed Compton profiles are found in
the low-momentum region (Fe, Ni, V, Cr) [2–7]. The Compton
profile represents a directional property of the investigated
system; therefore, measurements with pz aligned with various
crystallographic directions (K) provide information related to
their structure and the Fermi surface through the Compton
profile anisotropy. Although the computed anisotropy or
difference profile, i.e., the difference between two Compton
profiles taken along different directions (for example K =
[110] and K′ = [100])

�J struc(p) = J110(p) − J100(p), (1)

has in general a trend similar to the experimental spectra, it
often displays larger amplitudes of oscillations in comparison
with the measured profiles. The amplitudes of the character-
istic oscillations are determined by details of the fine struc-
tures of the momentum densities. Therefore, the structural
anisotropies expressed by Eq. (1) are related to some specific
features of the Fermi surface topology. In order to address these
discrepancies, Lam and Platzman [8,9] introduced a correction
related to the difference between the occupation function for
a noninteracting electron gas nfree(k) and a homogeneous
interacting electron gas nint(k). This correction takes the form

of

�J LP(p) =
∫

ρ(r)(J int(p)[ρ] − J free(p)[ρ])d3r. (2)

The Lam-Platzman correction Eq. (2) acts in the low-
momentum region and for some cases it reduces the differences
between experiment and theory. Nevertheless, the theoretical
values still overestimate the amplitude with respect to the
experiment in the low-momentum region and in addition
the residual differences appear anisotropic, contradicting the
isotropic correction of Lam and Platzman. Later on it was
suggested by Bauer [10,11] that inclusion of electron-electron
correlation effects may improve the theoretical difference
profiles with respect to the experimental measurements. The
anisotropic effects were modeled for V and Cr by introducing
an energy-dependent occupation function for the d orbitals
[12]. While such corrections brought the theoretical profile in
better agreement with the experiment, one has to stress that this
was achieved by incorporating the corrections empirically into
the calculations. Obviously, the occupation number density
in the presence of the electronic correlations is nonunity below
the Fermi level; the step at EF is reduced and becomes nonzero
above EF . Kubo [13] computed the occupation number density
within the GW approximation and discussed the corrections
to the Compton profile for the principal directions, concluding
that the strong directional differences are due to the d bands.

In this paper we analyze the magnetic Compton profiles
obtained using the combined density functional and dynamical
mean-field theory (DMFT) approach for Ni and Fe. We
supplement our previous results for Ni and Fe [7] by discussing
magnetic Compton profiles (MCPs) along the [110] and [001]
directions. The comparison with the experimental data leads
us to conclude that theoretical MCP spectra are improved
when local correlations are taken into account. We compute
also the total Compton profiles (CPs) for the main three

1098-0121/2014/89(9)/094425(9) 094425-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.094425


CHIONCEL, BENEA, EBERT, DI MARCO, AND MINÁR PHYSICAL REVIEW B 89, 094425 (2014)

directions within the cubic symmetry([001], [110], and [111]
directions) at the local spin-density approximation (LSDA)
and DMFT level. In addition we evaluate the second-order
moments of the difference of Compton profiles taken along the
same momentum space direction with and without including
electronic correlations:

�JK(p) = J DMFT
K (p) − J LSDA

K (p). (3)

This quantity is different from the structural anisotropy
and its second moments

∫ ∞
0 p2�JK(p) allows us to discuss

the momentum space anisotropy of correlations effects in
Fe and Ni.

II. COMPUTATIONAL METHOD

The electronic structure calculations based on the density
functional theory approach were performed using the spin-
polarized relativistic Korringa-Kohn-Rostoker (SPR-KKR)
method in the atomic sphere approximation (ASA) [14]. The
exchange-correlation potentials parametrized by Vosko, Wilk,
and Nusair [15] were used for the LSDA calculations. For
integration over the Brillouin zone the special points method
has been used [16]. In addition to the LSDA calculations, a
charge and self-energy self-consistent LSDA + DMFT scheme
for correlated systems based on the KKR approach [17–19] has
been used. The many-body effects are described by means of
DMFT [20–22] and the relativistic version of the so-called
spin-polarized T-matrix fluctuation exchange approximation
[23,24] impurity solver was used. The realistic multiorbital
interaction has been parametrized by the average screened
Coulomb interaction U and the Hund exchange interaction
J . The values of U and J are sometimes used as fitting
parameters, although recent developments made it in principle
possible to compute the dynamic electron-electron interaction
matrix elements with a good accuracy [25]. The static limit
of the screened energy-dependent Coulomb interaction leads
to a U parameter in the energy range between 2 and 4 eV for
all 3d transition metals, with substantial variations associated
with the choice of the local orbitals [26]. As the J parameter
is not affected by screening it can be calculated directly within
the LSDA and is approximately the same for all 3d elements,
i.e., J ≈ 0.9 eV. In our calculations we used values for the
Coulomb parameter in the range of U = 2.0–3.0 eV and the
Hund exchange interaction J = 0.9 eV.

The KKR Green function formalism was recently extended
to compute MCPs [27–29]. In the case of a magnetic
sample the spin-resolved momentum densities are computed
from the corresponding LSDA(+DMFT) Green functions in
momentum space as

nms
( �p) = − 1

π
Im

∫ EF

−∞
GLDA(+DMFT)

ms
( �p, �p,E) dE, (4)

where ms =↑ (↓).
The momentum density, defined as n↑( �p) + n↓( �p) pro-

jected onto the direction K defined by the scattering vector,
allows to define the Compton profile as a double integral
in the momentum plane perpendicular to the scattering

momentum �pz:

J
LDA(+DMFT)
K (pz) =

∫∫
[n↑( �p) + n↓( �p)] dpx dpy ; (pz||K).

(5)

Analogously, the double integral of the spin momentum
density n↑( �p) − n↓( �p) projected onto the scattering direction
defined by the vector K defines the MCP:

J
LDA(+DMFT)
mag,K (pz) =

∫∫
[n↑( �p) − n↓( �p)] dpx dpy ; (pz||K).

(6)

The electron momentum densities are usually calculated
for the principal directions K = [001],[110],[111] using a
rectangular grid of 200 points in each direction. The maximum
value of the momentum in each direction is 8 a.u. The
magnetic-Compton or Compton profile is normalized such that
the area under its curve is equal to the magnetic moment or the
number of valence electrons. This means that for the ordinary
Compton profile the contribution of the core electrons has been
omitted, as this does not show an anisotropy.

III. ELECTRONIC CORRELATIONS IN Fe AND Ni

It is commonly accepted that the decisive features of
ferromagnetic Fe and Ni are determined by the electronic
correlation effects taking place in the relatively narrow 3d

band, which hybridizes weakly with the 4s and 4p bands. Fe
(Ni) has a cubic body (face)-centered structure with lattice
parameter 2.86 (3.52) Å [30] and 8 (10) electrons within
the valence band, about 7 (9) of them having predominantly
d character. Important differences between Ni and Fe are the
following: Ni has a rather small exchange splitting of about
0.2–0.3 eV [31–35], while in Fe this is more substantial and
amounts to 2.2–2.4 eV [36,37], i.e., a difference by a factor
of 10. Ni exhibits a prominent satellite structure at about 6 eV
below the chemical potential [38], while the existence of an
analogous feature in Fe is still controversial [39]. On the other
hand, Fe exhibits an “exchange splitting” persisting into the
high-temperature phase, while in Ni such a feature seems
absent.

From a theoretical point of view, band-structure calcula-
tions based on density functional theory (DFT) are able to
account for ground-state properties of Fe quite reasonably.
Even the most striking failure of LSDA, namely the prediction
of an fcc instead of the experimental bcc ground state in
Fe, is explained by the tiny energy difference between the
two structures within the generalized gradient approximation
(GGA) [40–43].

State-of-the-art computations including many-body effects
were recently used to scrutinize the paramagnetic α phase of
iron. An orbital selective local moment formation mechanism
was proposed [44]. Later on, Leonov et al. introduced the
correlation magnetic energy and for the first time explained
the α-to-γ phase transition in paramagnetic iron [45]. Sub-
sequently this opened the path towards the computation of
the phonon spectra across the α-to-γ phase transition and
the study of lattice stability in the presence of electronic
correlations [46]. Concerning the methodological background,
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the generalization to a rotational invariant exchange interaction
allowed to revisit the magnetic properties of paramagnetic
α iron [47] and to establish a reasonably good agreement
for the Curie temperature of Fe and Ni [48]. A remarkable
difference between Fe on the one side and Ni on the other side
lies in the fact that in the latter the majority spin bands are
fully occupied, while this is not the case in Fe. The LSDA
calculations for fcc Ni cannot reproduce some features of
the electronic structure of Ni as observed experimentally.
The valence-band photoemission spectra of Ni shows a 3d

band width that is about 30% narrower than obtained from
the LSDA calculations. It is known from valence-band x-ray
photoemission spectroscopy spectra that LSDA cannot re-
produce the dispersionless feature at about 6 eV binding
energy (the so-called 6-eV satellite). In addition the magnetic
exchange splitting is overestimated by LSDA calculations
when compared with the experimental data. An improved
description of correlation effects for the 3d electrons via
LSDA + DMFT gives a more correct width of the occupied
3d bands, a better exchange splitting, and also the 6-eV satellite
structure in the valence band [17,39,49–54].

Concerning the magnetic Compton profiles of Fe and Ni,
the experimental spectra and the FLAPW calculations based
on LSDA are in fair agreement [55]. For Fe the center
of gravity of p states was lowered to reproduce correctly
the N-centered hole pocket of the third minority-spin band
[55]. This shows that LSDA needs to be supplemented to
obtain a better description of the MCP. For Ni a slightly
noticeable discrepancy in the spectra is seen. In the literature,
discrepancies between calculated and experimental MCPs
are often attributed to nonlocal corrections to the potential
stemming from electronic correlations. However, in order to
check which prescription beyond the LSDA potential performs
better, we first take into account local dynamic electronic
correlations. Clearly, on the other hand, measurements with
higher statistical accuracy are also desired, in order to provide
a critical test of band theories.

A. Magnetic Compton profiles of iron

The magnetic Compton profiles along the [111] direction
for Fe and Ni including dynamic correlations were studied
recently by Benea et al. [7]. Here we extend this study,
including results for the [001] and [110] directions for both
magnetic and nonmagnetic Compton profiles.

The computed magnetic Compton profiles along the [001]
and [110] directions of Fe are shown in Fig. 1. The
dashed (solid red) curve represents the results of LSDA
(LSDA + DMFT) calculations. The average Coulomb U =
2.3 eV and exchange J = 0.9 eV parameters have been used,
and the temperature was taken as 400 K. The experimental
MCP data are taken from the work of Sakurai et al. [56] for
the [001] direction while for the [110] direction the results
presented in the paper of Collins et al. [57] are given. The
experimental momentum resolutions are 0.12 a.u. for the [001]
direction and 0.7 a.u. for the [110] direction, respectively.
According to this, the theoretical spectra have been convoluted
with Gaussians corresponding to the experimental resolution.
After convolution, the calculated MCPs have been scaled to
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FIG. 1. (Color online) Magnetic Compton profiles of Fe along
the [001] and [110] directions, calculated with LSDA and
LSDA + DMFT with U = 2.3 eV, J = 0.9 eV, and T = 400 K.
The MCP profiles were convoluted with the experimental resolution
(0.12 a.u. for [001] MCP and 0.7 a.u. for [110], respectively).
The experimental MCPs stem from Sakurai et al. [56] and Collins
et al. [57].

correspond to a spin momentum of 2.3μB (LSDA) and 2.19μB

(LSDA + DMFT), respectively.
As one can see from Fig. 1 there is a fair agreement between

the measured and computed MCP spectra except for the region
with momenta pz < 2.5 a.u., where noticeable differences are
visible. The spectra change shape in the small momentum
region pz < 2.5 a.u., with a depletion around 1 a.u. for the
[001] direction. On the other hand, for the [110] direction
no such depletion is seen. In the high-momentum region
pz > 2 a.u., structureless similar shapes are observed for both
[001] and [110] directions. Similarly to the results discussed
in our recent work [7] for the [111] direction, we see that
DMFT improves the agreement with the experimental spectra
for the [110] direction at small momenta pz < 1.5 a.u. A
different situation is noticeable for the spectra along [001]:
in the vicinity of zero momentum, DMFT results slightly
overestimate experiment and follow very closely the LSDA
data until pz = 1.5 a.u. The maxima in the LSDA profile at
≈1.25 a.u. is significantly reduced. However, this reduction is
not sufficient to intercept the experimental data. At higher
momenta both LSDA and DMFT lead to similar MCPs.
Although the experimental momentum resolution is rather
satisfactory, at large momenta the spread in the experimental
data, in particular along [001], indicates the need for enhanced
accuracy in the experiment.

To discuss further the characteristic features of the cor-
relations we plot in Fig. 2 the difference between the total
Compton profiles obtained within the LSDA- and DMFT-
based calculations together with its second moment for the
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FIG. 2. (Color online) Differences between the LSDA + DMFT
and LSDA total Compton profiles of Fe �J (dashed red line) and
its second-order moment p2�J (solid blue line) along [001], [110],
and [111] directions. Larger values of the second moment indicate
a more important electronic correlation energy contribution for the
corresponding direction.

main three directions. A similar trend in the momentum
dependence is seen.

Essentially, one can distinguish three regions: the low-
momentum region (I) for momentum smaller than ≈0.8 a.u.,
the intermediate region (II) 0.8 a.u. < pz < 2 a.u., and finally
the high-momentum region pz > 2 a.u. The comparison
between different directions shows differences concerning the
shape as well as the absolute values. The most significant
discrepancies are seen at low momenta (pz � 1 a.u.): along
the [001] direction, one can find regions in which electronic
correlations lead to depleted (�J < 0) or enhanced (�J > 0)
Compton profiles. In contrast to the other two directions, [110]
and [111], with �J > 0 the Compton profile is enhanced
because of Coulomb interactions. The maximum at pz = 0
remains also along the [110] direction, while for [111], the
difference �J shows a peak and a central dip. Within the
region of the intermediate momenta, 1 a.u. < pz < 2 a.u., �J

has positive values along the [001] and [111] directions and
small negative (around 1 a.u.) as well as positive values for
[110]. Thus, the electronic correlations lead to an overall
enhancement of the Compton profile in the intermediate
region. For all principal directions, �J behave similarly in
the high-momentum region, being essentially negative in the
entire range, with a slightly positive hump at pz = 4 a.u. for
the [001] direction.

A more quantitative analysis upon the momentum space
anisotropy of correlations can be made by calculating the
second moment of the Compton profile. The second moment
has been previously applied to study the redistributions of
interatomic interactions in the momentum densities, which
allowed to connect the Compton profile with the interaction
energy and interatomic forces [58,59]. Taking the second

moment along the bond directions allows to study the
electronic properties of the bond in momentum space. In
coordinate space the charge is contracted around the nucleus
and accumulated along the bond direction. The reverse of the
situation happens in momentum space: momentum density is
greater perpendicular to the bond direction [1]. In the same
spirit, it is possible to compute the second moment of the
difference between correlated and noncorrelated Compton
profiles, along the bond directions K:

〈p2〉K =
∫ ∞

0
p2

z

[
J DMFT

K (pz) − J LSDA
K (pz)

]
dpz; (pz||K),

(7)

which allows to discuss the effects of the electronic interactions
upon the bounded density.

In the case of Fe the values for the second moment of
the difference in the total Compton profiles are given in
Fig. 2. We observe that including electronic interactions treated
beyond mean field, the second moment of the difference
decreases along all bonds. We have obtained a stronger
decrease along the [111] and [001] directions, and a weaker de-
crease along [110]. We note also that the decrease happens in
agreement with the interatomic distances in the bcc lattice:
for a shorter bond a stronger decrease is evidenced. These
results demonstrate that (i) although the included interaction
is only local, its consequences, i.e., the electronic correlations,
show momentum space anisotropy, and (ii) in addition, shorter
bonds experience stronger effects. A more detailed discussion
concerning the connection between the second moment along
a K direction and the energy of an interacting electronic system
is provided in Sec. IV.

B. Magnetic Compton profiles of nickel

The magnetic Compton profiles of Ni along the [001] and
[110] directions are shown in Fig. 3. The dashed (solid red)
curve represents the LSDA (LSDA + DMFT) calculations.
The theoretical calculations are compared with the experimen-
tal MCP data of Dixon et al. [60]. The experimental momentum
resolution is 0.43 a.u., which was also used as a Gaussian
broadening parameter for the calculated MCP spectra. In
addition, the calculated MCPs have been scaled to the spin
magnetic moment 0.6μB for LSDA and to 0.6μB , 0.57μB ,
0.56μB , and 0.5μB for the corresponding values of U = 1.8,
2.0, 2.3, and 3.0 eV for the LSDA + DMFT calculations.

As one can see in Fig. 3 (top panel) LSDA results are
already in reasonable agreement with the measurements. They
capture the behavior at large moments, get close to the
maximum at ≈1.8 a.u., and overestimate the contributions
in the low-momentum region. Dixon et al. [60] analyzed the
magnetic Compton profile of Ni comparing LSDA and GGA
results obtained through a linear muffin-tin orbitals (LMTOs)
method. In their theory, and in particular from the analysis
of the fifth band, Dixon et al. [60] identified several main
peaks, which they labeled from A to G. In the present study
all these major features are essentially reproduced, although
they are not very evident in our plot due to the Gaussian
broadening. The first two peaks, which LSDA locates at 0.3
and 0.7 a.u (inside the first Brillouin zone), are not resolved by
the experiment. The highest peaks, labeled C and D, are located
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FIG. 3. (Color online) Magnetic Compton profiles of Ni along
[001] (upper panel) and [110] (lower panel) directions, computed
with LSDA and LSDA + DMFT with U = 2.3 eV, J = 0.9 eV and
T = 400 K. The computed data were convoluted according to the
experimental resolution of 0.43 a.u. The experimental profiles are
taken from Ref. [60].

at 1.25 and 1.70 a.u. and are followed by other umklapp peaks
at 2.7 a.u. (E), 3.6 a.u. (F), and a further shoulder at G. The
LSDA results (dashed black line) overestimates significantly
the contributions in the low-momentum region, while the
DMFT profile is in much better agreement with experiments,
until the peak D. There are no essential differences between the
LSDA and LSDA + DMFT spectra for momenta larger than
≈1.7 a.u.

The bottom panel of Fig. 3 shows the MCPs along the
[110] direction. As for the [001] direction, our results are in
good agreement with previous results by Dixon et al. [60].
Following their notation, a first peak A is situated inside the
first Brillouin zone and located around 0.7 a.u. All subsequent
peaks are essentially of umklapp origin, and the maximum of
the MCP is at C, being overestimated in theory in comparison
with experiment. It was remarked by Dixon et al. [60] that
all computed peaks at higher momenta E (3.3 a.u.) and
F (4.7 a.u.) are more visible than the corresponding maxima
in the experiment. This seems to hold also for DMFT results.
Instead, the low-momentum region (pz < 1.7 a.u.) is in better
agreement with experiment, in particular for the value at zero
momentum and for the peak within the first Brillouin zone (A).
Furthermore, the experimental value of the MCP at B seems
to be at an intermediate level between LSDA and DMFT.
Both LSDA and DMFT overestimate the maximum C from
where they follow a very similar momentum dependence, as
mentioned above.

The MCP for Ni along the [001] direction using LSDA and
LSDA + DMFT are presented in Fig. 4 for different values
of the U parameter. The experimental data are shown with
dots and the LSDA results are given by dashed lines. The
DMFT results are presented for U = 1.8, 2.0, 2.3, and 3.0 eV
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FIG. 4. (Color online) Magnetic Compton profiles of Ni along
[001] direction. Dashed-solid black line, LSDA; solid red line,
LSDA + DMFT for U = 2.3 eV; dot-dashed blue line, U = 2.0 eV;
and dot-dot-dashed line, U = 3.0 eV. In all calculations J = 0.9 eV
and T = 400 K. The experimental data are taken from Ref. [60]
(momentum resolution 0.43 a.u.).

and are respectively plotted with green (dot-dashed), blue
(dot-dot-dashed), red (solid), and violet (dashed-dot-dashed)
lines. The values in the region of low momentum, up to
pz < 1 a.u. (most of it in the first Brillouin zone), are better
captured by the intermediate values of U = 2.3 eV. A slight
overestimation and a more significant underestimation can
be noticed for 2.0 and 3.0 eV, respectively. Around the
maximum (pz ≈ 1.7 a.u.) of the experimental profile (label D),
LSDA and all DMFT results, U = 1.8, 2.0, and 2.3 eV,
overestimate the magnitude of the maxima, except U = 3 eV
which underestimates the contribution at this position. For
momenta larger than point D the DMFT profiles with U = 2.0
and 2.3 eV and the LSDA profile have essentially the same
behavior, in good agreement with experimental data. Dixon
et al. [60] noted that discrepancies may not be eliminated
simply by renormalizing the magnetic moment because the
moment is connected to the exchange splitting; therefore, this
would not necessarily scale the MCP spectra. Figures 3 and 4
show that electronic correlations beyond LSDA/GGA improve
the spectra in the low-momentum region. We mentioned above
(Sec. III) that the reduction of exchange splitting is one among
several subtle consequences of the correlation effects in Ni/Fe.
Therefore, DMFT accounts naturally for the renormalization,
in this case the reduction of the magnetic moment. Obviously,
this has consequences for the entire momentum dependence
of the MCP spectrum, also in the high-momentum region.
The high-momentum behavior was attributed to a free-atom-
type profile [61], based on the argument that the strong
weighting of the high-momentum components into the sum
of the second moments dominates the cohesive energy. This
argument may be invoked also in the presence of electronic
correlations, although the noninteracting and interacting cases
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FIG. 5. (Color online) Difference of the Compton profile (top)
and p2�J (bottom), together with the second moments. Values for
the second moments are given in rydbergs.

have different atomic limits. As Figs. 3 and 4 show in
the high-momentum region very similar LSDA and DMFT
profiles, electronic correlations seem to have little influence in
this region. To learn more about the consequence of electronic
correlations, in the following we analyze the difference of the
total Compton profiles with and without correlations and its
second-order moments.

In Fig. 5 the difference between the LSDA and DMFT total
Compton profiles �J is shown together with its second-order
moment p2�J . The theoretical CPs were broadened with a
Gaussian of 0.22 a.u. width. The momentum dependence of
p2�J (p) and the second moments of the difference Compton
profiles are depicted in Fig. 5 along [001] and in Fig. 5 for
the [110] and [111] directions. For all principal directions
the weight of p2J DMFT(p) > p2J LSDA(p) for moments pz <

2 a.u., while for larger moments p2�J (p) has a negative
weight. This shows that the DMFT-derived correlation is
significant in the low-momentum region, pz < 2 a.u. This
result allows to extend the concept of spectral weight transfer
from real space into momentum space. In the real-space
representation spectral weight transfer is discussed in terms
of the changes of the spectral properties as a function
of the strength of the local interaction, U . For larger U

values, spectral weight is redistributed from the Fermi level
towards high binding energies. In momentum space more
states/electrons are transferred towards low energies for small
momenta pz < 2 a.u., while at large values of p spectral weight
is shifted towards the high-momentum region.

Along the [001] direction the spectra have mostly a negative
weight, and the estimated values for the second moments
are −0.05 Ry for U = 2 eV, −0.07 Ry for U = 2.3 eV, and
−0.15 Ry for U = 3.0 eV. One notices that larger values of
U determine larger values (in absolute terms) of the second
moment, although the precise increase of these values is
different along different directions. Along the [110] direction

the magnitude of the second moment is similar, being −0.04,
−0.06, and −0.12 Ry, while along [111] smaller values for the
second moments are obtained.

IV. DISCUSSIONS AND CONCLUSION

The Compton scattering experiment yields the one-
dimensional momentum distribution for the scatterer. There-
fore, it is possible to use Compton data to calculate the
expectation values of operators which are functions of mo-
mentum 〈pn〉. The value for n = 2 is of special interest,
since 1/2〈pn〉 gives the electronic kinetic energy, leading to
a connection with the total energy of the scattering system.
As a result, the computed Compton profile can be easily
interpreted as a very fundamental quantity. In the following
we discuss the connection between the second moment
of the difference between correlated (LSDA + DMFT) and
noncorrelated (LSDA) Compton profiles and the kinetic energy
of the electronic system. Our main focus is on the bond average
of the second moment of the difference Compton profiles:

〈p2〉 = 1

Nb

∑
K

∫ ∞

0
p2

z�JK(pz) dpz ∝ EDMFT
kin − ELSDA

kin .

(8)

Here the overbar represents the average taken over the bonds
extended along the K directions, �JK(pz) is the difference
of total Compton profile, Nb is the number of bonds, and the
energies on the right-hand side are the kinetic energies com-
puted in DMFT/LSDA. In general, calculating total energies in
LSDA + DMFT is a difficult task and requires the evaluation
of an energy functional with several terms [18,62] including
the Galitskii-Migdal contribution [63], i.e., 1/2Tr[�̂Ĝ], and
the double counting as well. The LSDA + DMFT total energy
functional can in principle be analyzed to obtain an expression
for the kinetic energy similarly to what is done for DFT [64,65].
When focusing on the differences between LSDA + DMFT
and LSDA, one can write

�Ekin = Tr
[
Ĥ DMFT

KS ĜDMFT
] − Tr

[
Ĥ LSDA

KS ĜLSDA
]

+〈�VKS〉 + 〈�Tc〉. (9)

In this expression the first and second terms on the right-
hand side are the single-particle energies of the Kohn-Sham
Hamiltonian within LSDA + DMFT and LSDA, while the
third term is the expectation value of the difference of their
corresponding Kohn-Sham potentials. The last term in Eq. (9)
is the variation of the exchange-correlation contribution to the
kinetic energy and can in principle be expressed in terms of
the exchange-correlation potential and its gradient [65].

In spite of the recent progress in improving the accuracy
of LDA + DMFT energetics [18,62] it is still a difficult
task to compute not only LSDA + DMFT total energies but
also the terms in discussion with a high degree of accuracy.
In addition, the energy components given in Eq. (9), being
complete traces, would not provide any information about the
magnitude of the correlation energy along different bonds or
directions in the k space. On the contrary, the analysis of the
second moments along the bonds 〈p2〉K as shown in Figs. 2, 5,
and 6 demonstrates that changes in the kinetic energy because
of electronic correlations are anisotropic. One has to note that
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FIG. 6. (Color online) Differences between the LSDA and
LSDA + DMFT total Compton profiles of Ni along the [110] (left)
and [111] (right) directions for different values of U . The values
of the second moment are larger along the [110] direction at all
values of U .

the main source for the anisotropy in the momentum space is
bond directionality that is already captured within the LSDA.
However, this cannot provide any measure of the electronic
correlations.

In Fig. 7 we show the second moment of the difference
�JK(p) along the principal directions and its directional
average. The latter is estimated as the weighted sum of
the nearest neighbors, i.e., 6 times the contribution along
[001], 12 times the contribution along [110], and 8 times
the contribution along [111] divided by the total number
of neighbors (26). The values of the second moments are
almost similar along [110] and [001] directions and smaller
than along the [111] direction. For the sake of comparison,
in Fig. 7 we also show the variation of the kinetic energy
as obtained from Eq. (9) by ignoring the last term, 〈�Tc〉.
These data were obtained through a full-potential (FP)-LMTO
code [39,53], which has been shown to give results in very
good agreement with SPR-KKR regarding LSDA + DMFT
total energies [18]. Due to the aforementioned approximations
and a very high sensitivity to the numerical and computational
details, any quantitative comparison between the second
moment of �JK(p) from SPR-KKR and �Ekin from FP-
LMTO is problematic. In fact, from Fig. 7, it is clear that the
two contributions are still far from a quantitative agreement.
However, we capture a consistent qualitative picture pointing
to a decrease of kinetic energy difference for increasing
U . It is important to note that the second moment of the
Compton profile turns out to be negative because the positive
contribution in the low-momentum region up to pz < 2 a.u. is
completely overruled by the large negative contribution from
high momenta. In the low-momentum region, increasing the
values of U an increasing in the kinetic energy is obtained,

2 2.2 2.4 2.6 2.8 3

U (eV)

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

E
ne

rg
y 
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[1 1 0]

[1 1 1]

ΔE
kin

 (FP-LMTO)

directional average

fcc - Ni

FIG. 7. (Color online) Second moment of the difference �JK(p)
along the directions [001] (solid black line with triangles pointing
up), [110] (solid red line with triangles pointing to the right), and
[111] (solid green line with triangles pointing down), together with
the directional average over the bonds (dashed blue line with crosses).
Moreover, the approximate difference in kinetic energy between
LSDA + DMFT and LSDA as obtained by FP-LMTO [39,53]
is also shown.

which is in agreement with the argument that the presence
of U penalizes the electrons and leads to an increase in their
kinetic energy. This argument is not valid anymore in the
region of high momenta, where the mean-field-type exchange
correlation dominates the “Hubbard-U” contribution. Further
analysis is needed in order to make a more quantitative
comparison, especially to understand the role of the double-
counting correction and the effects of the expectation value of
Tc, discarded in the present analysis.

Concerning the charge redistribution in Ni, the real-space
picture corresponds to the contraction of the electronic charge
because of correlation effects, as seen from previous coor-
dinate space charge computation [50]. The overall negative
second moment of the difference tells us that the corresponding
kinetic energy is decreasing with increasing the strength of
U . Therefore, the less mobile correlated d electrons would
weaken the covalent component of the metallic bonding seen in
transition metals. In addition, as one can see in Fig. 7, this effect
is anisotropic. Similarly for Fe the covalent d-d contribution
is weakened as well in the presence of correlations. In
comparison to Fe, Ni shows larger values of the second
moments p2�J along [001] and [110] directions, while for
the [111] direction the opposite situation is found. This is
an expected result as the shortest distance and the strongest
bond is realized along the [111] direction of the bcc structure.
As a common feature both Fe and Ni show positive values
for �JK(p) and consequently positive second-order moments
up to the pz < 2 a.u. momenta. This value seems to be the
upper bound in the momentum space up to which many-body
correlation effects captured by DMFT have a larger weight in
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comparison to the exchange and correlation effects described
by LSDA.

To conclude, in the present work we studied the influence
of electronic correlations on the Compton profiles of Fe and
Ni within the framework of density functional theory using
the LSDA + DMFT approach. The second moment of the
Compton profile difference allows to quantify the momentum
space anisotropy of the electronic correlations of Fe and Ni.
The changes in the shape and magnitude of the anisotropy
have been discussed as a function of the strength of the
Coulomb interaction U . According to our results Ni has a
larger momentum space anisotropy of the second moment of
the total Compton profile in comparison with Fe. In the range
of the studied values of U no significant dependence is seen in
the anisotropy of the Compton profile. As an overall conclusion
DMFT introduces moderate improvements for the spectral

features in particular at low momentum. Further progress is
needed to bridge between momentum density and the total
energy of the system through the computed Compton profile.
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