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Soliton dynamics in a solid lubricant during sliding friction
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Recent highly idealized model studies of lubricated nanofriction for two crystalline sliding surfaces with
an interposed thin solid crystalline lubricant layer showed that the overall relative velocity of the lubricant
vlub/vslider depends only on the ratio of the lattice spacings, and retains a strictly constant value even when system
parameters are varied within a wide range. This peculiar “quantized” dynamical locking was understood as due
to the sliding-induced motion of misfit dislocations, or soliton structures. So far the practical relevance of this
concept to realistic sliding three-dimensional crystals has not been demonstrated. In this work, by means of
classical molecular dynamics simulations and theoretical considerations, we realize a realistic three-dimensional
crystal-lubricant-crystal geometry. Results show that the flux of lubricant particles associated with the advancing
soliton lines gives rise here too to a quantized-velocity ratio. Moreover, depending on the interface lattice spacing
mismatch, both forward and backward quantized motion of the lubricant is predicted. The persistence under
realistic conditions of the dynamically pinned state and quantized sliding is further investigated by varying
sliding speed, temperature, load, and lubricant film thickness. The possibilities of experimental observation of
quantized sliding are also discussed.
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I. INTRODUCTION

The problem of boundary lubricated friction of two perfect
sliding crystal surfaces is fascinating both from the fundamen-
tal point of view and for applications in the wider context
of nanofriction [1]. Intriguing and unexpected behavior of
the relative lubricant velocity have recently been reported
in numerical simulations, depending on the “degree” of ge-
ometrical incommensurability defining the moving interface.
The main nontrivial feature is the asymmetry in the sliding
velocity of the intermediate lubricant sheet relative to the
two substrates [2–12]. Moreover, and even more strikingly,
the lubricant mean velocity takes a constant, “quantized,”
value uniquely determined by the incommensurability ratios
of the three spatial periodicities involved—the two sliders and
the interposed solid lubricant—and is insensitive to other
physical parameters of the model. The sliding steady state
versus overall sliding velocity, as well as other parameters,
are characterized by perfectly flat plateaus in the ratio of
the time-averaged lubricant center of mass (c.m.) velocity
to the externally imposed relative speed vext of the two sliders.
This amounts to a kind of “dynamical incompressibility” or
dynamic pinning, namely, identically null velocity response to
perturbations or fluctuations trying to deflect the relative lubri-
cant velocity away from its quantized value. The occurrence of
this surprising regime of motion was ascribed to the intrinsic
topological nature of this locked dynamics. This phenomenon,
investigated in detail in rather idealized one-dimensional (1D)
geometries [2–10], was explained by the grip exerted by one
slider onto the topological solitons (called kinks or antikinks
in one dimension) that the embedded solid lubricant lattice
forms with the other slider. The pinning of these solitons by
the first slider causes their rigid dragging at the full sliding

speed vext. As a result the overall mean lubricant speed is a
fixed ratio w of the slider’s speed, strictly determined by the
soliton spatial density, a purely geometrical factor |w| < 1.
Simulation evidence of this particular sliding regime was also
confirmed for a less idealized 1+1-dimensional (1+1D) model
of boundary lubrication [11,12], where Lennard-Jones (LJ)
interacting atoms were allowed to move freely, parallel and
perpendicularly to the sliding direction. Solitons formed in
this case too, and their influence transmitted from one slider
to the other across the lubricant film even when the thickness
is as large as six atomic layers.

In this work we simulate lubricated sliding in a fully 3D
prototypical model. We again find that, under fairly general
conditions, the lubricant slides relative to a fixed surface
with a mean relative lubricant velocity component in the
driving direction w = vc.m. x/vext, which is quantized to a
basically parameter-independent value w = wquant, much as
was observed for the essentially 1D models. Confirming its
soliton nature here too, we characterize the properties and
limitations of the quantized-velocity dynamics in the 3D
model, showing that the quantized sliding is robust against
wide-range variations of different model parameters.

An intuitive and suggestive picture of the advancing solitons
in the quantized state can be appreciated by the side view of
the 3D geometry of Fig. 1. One can note the characteristic
“caterpillar” motion executed by the lubricant particles in
contact with the closest-matched crystal surface. In the 3D
geometry actually the soliton (Moiré) pattern is a 2D feature,
which in general implies additional characteristics, such as
mismatches induced by relative lattice rotation [13]. In this 3D
study we will however restrict our investigation to mutually
aligned incommensurate geometries, deferring the rotated
cases to future work.
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FIG. 1. (Color online) Side view of the substrate-lubricant-
substrate sandwich, with the static bottom substrate (red), the mobile
lubricant atoms (light blue, smaller), and the top rigid slider, with
much larger spacing (dark blue). Three successive time frames
illustrate the caterpillar soliton motion driven by the rightward
advancing top layer. Note the small vertical corrugations of the
lubricant layer.

II. THE MODEL

We represent the two confining 3D crystal surfaces by
perfectly periodic 2D (xy) monolayers, rigidly arranged in
close-packed triangular lattices representing, e.g., the (111)
face of a cubic crystal. Between these two rigid planar sliders
we insert Nlayer layers of generally crystallized but mobile
lubricant atoms, see Fig. 1. Each layer is composed of pointlike
classical particles of unit mass (m = 1). While the reciprocal
intralayer positions of top and bottom slider atoms are of
course fixed, the atoms composing the lubricant film move
freely under the action of pairwise (6,12) LJ interactions
among one another and with the rigid atoms forming the top
and the bottom surfaces. The standard LJ interaction

φLJ(r) = ε

[(
σ

r

)12

− 2

(
σ

r

)6]
(1)

is characterized by depth ε and radius r = σ . We truncate the
interaction at a cutoff radius RC = 2.5σ and shift the two-
body potential energy to eliminate the energy discontinuity as
follows:

φ(r) =
{

φLJ(r) − φLJ(RC), r � RC,

0, r > RC.
(2)

The motion of the j th lubricant particle is ruled by the
equation of motion

m�̈rj = −
Nt∑

it=1

∂

∂�rj

φt,p
(∣∣�rj − �rit

∣∣) −
Np∑
j ′=1
j ′ �=j

∂

∂�rj

φp,p(|�rj − �rj ′ |)

−
Nb∑

ib=1

∂

∂�rj

φb,p
(∣∣�rj − �rib

∣∣) + �fdamp j + �fj (t), (3)

where �rj is the position of the j th lubricant particle; �rit and
�rib are the positions of the top and bottoms slider atoms, Nb,
Np, and Nt are the numbers of the bottom, lubricant, and top
particles, and φb,p, φp,p, and φt,p are the truncated two-body po-
tential energies for the interactions between bottom-lubricant,
lubricant-lubricant, and top-lubricant particles, respectively,
characterized by generally different σ and ε parameters, as

specified below. �fdamp j and �fj (t) are a damping force and
a random force, respectively, used to implement a Langevin
dynamics, as detailed below.

By convention, we select the bottom slider as our reference
frame. The top slider is forced to move rigidly along x̂ at a fixed
horizontal velocity ṙ

top
xit

(t) ≡ vext, under an external downward
force −Fload ẑ applied to each particle in the slider. It also
generally moves along the ŷ and ẑ axes (its inertia equals
the total mass Nt of its atoms) under the interaction between
its atoms and those of the lubricant film. For these ŷ and ẑ

components, the motion of the top slider is described by

Ntmr̈ top
yit

(t) = −
Nt∑

i ′t=1

Np∑
j=1

∂

∂ry

φt,p(∣∣�ri ′t − �rj

∣∣) + Fth y, (4)

Ntmr̈ top
zit

(t) = −
Nt∑

i ′t=1

Np∑
j=1

∂

∂rz

φt,p(∣∣�ri ′t − �rj

∣∣) + Fth z − NtFload,

(5)

where the components of the thermostat force �Fth are discussed
below. As all equations for r

top
y/zit

are the same, irrespective
of it, in practice their solution only differs by a translation
�r top

it
≡ �r top + �r init

it
(where �r init

it
are the initial positions of the

rigid top 2D lattice), so that equations for r
top
y and r

top
z only are

integrated.

A. Frictional work and thermostat

The total force needed to maintain the top slider at the fixed
velocity vext compensates exactly the total force which the
lubricant exerts on the top slider itself:

Ffrict =
Nt∑

i ′t=1

Np∑
j=1

∂

∂rx

φt,p
(∣∣�ri ′t − �rj

∣∣) − Fth x. (6)

The work of this frictional force

Wfrict =
∫ τ

0
Ffrictvext dt = vext

∫ τ

0
Ffrict dt = τvextF̄frict (7)

represents the total Joule heat that the advancing top layer
pumps into the mechanical system over a time interval τ .

To remove this Joule heat, to reach a steady state, and to
control the rise of lubricant temperature in this driven system,
we use a standard implementation of the Langevin dynamics,
Eq. (3), including a phenomenological viscous damping term,
plus a Gaussian random force �fj (t). To avoid biasing the
lubricant motion by privileging either the bottom or the top
reference frame, the damping force includes two contributions
representing the energy dissipation into both sliders

�fdamp j = −η�̇rj − η(�̇rj − �̇rt). (8)

Taking into account this twofold contribution to dissipation,
the zero-average Gaussian random forces satisfy

〈fjβ(t)fj ′β ′ (t ′)〉 = 4ηkBT δjj ′δββ ′δ(t − t ′) (9)

(with β,β ′ = x,y,z components), so that in a nonsliding
regime (vext = 0) the Langevin thermostat leads to a stationary
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state characterized by standard Boltzmann equilibrium average
kinetic energy of the lubricant:

〈Ek〉 = 3Np
1
2kBT . (10)

The damping force contribution representing the energy
dissipation into the top slider requires a force balance (New-
ton’s third law) term in Eqs. (4) and (5) for the top layer:

�Fth = η

Np∑
i

(�̇ri − �̇rt) = ηNp(�vc.m. − �̇rt). (11)

While the ŷ and ẑ components of this additional term have
a real influence on the top motion through Eqs. (4) and (5),
of course its x̂ component does not. It only contributes to the
external force Ffrict required to maintain the top velocity x̂

component constant and equal to vext, with the last term in
Eq. (6).

As long as the value of η is so small [14] that it
produces an underdamped dynamics, the thermostat perturbs
the atomistic dynamics only marginally. Under this condition,
the Langevin method represents a simple but numerically
stable and effective phenomenological approach to describe
energy dissipation into the substrates occurring, e.g., through
the excitation of phonons and (in the case of metals) of
electron-hole pairs, etc. We verified that all qualitative results
are insensitive to the value of η (as long as it is small enough),
although quantitative issues such as the precise boundary of
the quantized sliding regime do depend on η. More refined
methods were proposed and adopted in similar simulations
[15–22], but to investigate the occurrence and main properties
of the quantized sliding phenomenon, a simple Langevin
approach to power dissipation is sufficient and appropriate.

B. Length scales and units

The sliding system involves three generally different solids,
two sliders and a lubricant, which in their crystalline state are
characterized by generally different lattice spacings: ap, at,
and ab. For the particle-particle interaction inside the lubricant
we take the LJ radius σpp = 1.01ap so as to compensate
approximately first-neighbor repulsion with second- and third-
neighbor attraction. Interactions within each of the rigid sliders
are of course not needed. However, one could still introduce
them for convenience with radii σtt = at and σbb = ab, and fix
slider-lubricant interaction radii σtp and σbp, e.g., by means of
the Lorentz-Berthelot mixing rules [23]:

σtp = 1
2 (σtt + σpp), σbp = 1

2 (σbb + σpp). (12)

In practice however we fix the radii according to σtp = σbp =
1.02ab, and for simplicity we fix the same interaction energy
εtp = εpp = εbp = ε for all pairwise coupling terms, unless
otherwise noted.

We consider a set of “natural” units in terms of ε (energy),
ab (length), and m (mass). All quantities are then expressed
as dimensionless numbers. To obtain a physical quantity in its
explicit dimensional form, one should multiply its simulated
numerical value by the corresponding natural units listed in
Table I.

The spacings at, ap, and ab, and the angles of relative
rotation, define the initial conditions for the sliders and the

TABLE I. Natural units for several mechanical quantities in a
system where length, mass, and energy are measured in units of ab,
m, ε. Typical physical values are also indicated.

Physical quantity Natural units Typical value

Length ab 0.2 nm
Mass m 50 amu � 8.3 × 10−26 kg
Energy εpp 1 eV � 1.6 × 10−19 J

Time ab m1/2ε−1/2
pp 0.14 ps

Velocity v m−1/2ε1/2
pp 1400 m/s

Force a−1
b εpp 0.8 nN

lubricant lattices. Each atomic layer is initially a perfect 2D
triangular lattice. We stack complete layers, realizing an fcc
crystalline film of lubricant as it would be at low temperature.
The initial vertical separation between successive lubricant
layers is of the order of

√
2/3ap.

The three different spacings at, ab, and ap give rise to two
independent ratios affecting the 2D lattice mismatches:

rt = at

ap
, rb = ab

ap
. (13)

We perform the numerical integration of Eqs. (3), (4),
and (5) by means of an adaptive fourth-order Runge-Kutta-
Fehlberg method, when T = 0, or, for finite T , a six-step
Runge-Kutta algorithm involving Langevin random forces,
Eq. (9).

C. Boundary conditions

In order to explore with ease a large number of different
configurations and to follow their evolution long enough for the
top and lubricant to advance by several lattice spacings, our
simulations involve a number of lubricant atoms Np � 103,
which is exceedingly small compared to those involved in
a realistic sliding interface (easily of the order of 107 in a
μm2). To alleviate the effect of finite size and impose precise
lattice-spacing ratios, we use periodic boundary conditions
(PBC) in the xy plane: The particles are enclosed in a supercell
generated by two vectors �acell

i of length L, replicated infinitely
by means of rigid translations. Each particle j in the box
interacts not just with the other particles j ′ in the supercell,
but also with their translated images in the nearest neighboring
cells by means of a standard minimum-image algorithm [23].
In the third (ẑ) direction, the lubricant is of course confined
by top and bottom sliders. In the simple case in which the
crystalline directions of the bottom, lubricant, and top lattices
are parallel, it is straightforward to construct the appropriate
supercell, whose side L is an integer multiple (e.g., the smallest
multiple) of all three 2D lattice spacings, which have therefore
to be taken mutually commensurate. For example, for ab = 1,
ap = 25/29, at = 25/4, the smallest supercell is obtained by
taking L = 25.

D. The coverage ratio

The quantized-velocity state was interpreted in 1D as the
dynamical pinning of the periodic soliton pattern on the
comparably long-wavelength corrugation potential produced
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by the top substrate [2,9]. Isomorphic to a static depinning
transition (the role of particles now taken by the moving
kinks of the lubricant-substrate interface), although different
in nature, this pinning should be particularly robust for perfect
one-to-one commensurate matching of the intersoliton spacing
asol and the top-slider lattice spacing at [9], a condition where
the soliton dragging should be especially effective in producing
the quantized state.

Whenever the top lattice and the soliton pattern are aligned
along the same crystalline directions, it makes sense to define
a length ratio


 =
√

Nsol

Nt
= at

asol
, (14)

defining a “coverage,” and whose actual value depends on
the spacing of solitons asol. The latter in turn is tuned by
the geometric mismatch condition between the lubricant and
bottom layers, as detailed in Sec. III A.

For most of the simulations described in the following we
have selected an appropriate rb to obtain 
 = 1. However, as
discussed later, we also investigated the quantized sliding for
the less specific geometrical configuration when rb is such that

 deviates from unity.

III. RESULTS

A simulation will represent the steady dynamical state of
the system provided (i) that the simulation time is much longer
than the relaxation times of all quantities of interest and (ii) that
it yields a sufficiently long sampling of fluctuations to obtain
accurate time averages in the dynamical steady state. In all our
calculations we discard an initial transient, extending usually
for a comparably long time (100 to 1000 time units), related to
the poor damping produced by the relatively weakly coupled
thermostat (η = 0.05). Figure 2 illustrates a typical transient
regime for the lubricant center-mass velocity. Over the ensuing
steady running state we evaluate the time averages of physical
quantities. Whenever the quantities to be averaged happen
to fluctuate periodically, we minimize systematic errors by
evaluating these averages over one or several periods.

When we run simulations with different vext, we set the total
evolution time of each simulation tcalc by fixing the product
tcalc vext, so that in a simulation the top slider advances by the
same distance. We take at least vext tcalc = 10 length units for
each simulation, and we also include a condition that tcalc never
decreases under 100 time units, which is usually sufficient
because when vext is changed in small steps transients are
shorter than the one illustrated in Fig. 2. For moderate speeds
vext � 1, this choice allows the system enough time for all
initial transient stresses induced by a changed vext to relax,
and for a steady sliding state to ensue.

Guided by the lesson learned in earlier 1D models [2,9]—
solitons formed in the lubricant by one slider are docked and
dragged by the other slider—we adopt a geometry of near
commensuration of the lubricant spacing to that of the bottom
slider, with rb not far from unity, and rt far away from unity
and closer instead to commensurate with the soliton lattice.
Figure 3 displays a configuration of this kind, which we adopt
as a prototype in the present paper.

0

0.1

0.2

w
 =

 v
cm

 x
/v

ex
t

vext=0.05; Fload=0

0 100 200 300 400 500
time

-0.05

0

0.05

v cm
 y

/v
ex

t

initial transient steady state

(b)

(a)

FIG. 2. (Color online) A typical approach to the steady state for
the Nlayer = 1 model represented in Fig. 3, with unrotated layers
characterized by at = 25/4 = 6.25, ap = 25/29, ab = 1. (a) Average
lubricant velocity component in the driving direction w = vc.m. x/vext

(normalized by the top externally fixed speed) as a function of
time. After an initial transient, w starts to fluctuate around the
value predicted by Eq. (24): wquant = 4/29 � 0.1379, marked by the
horizontal dashed line. (b) The transverse (y) component of �vc.m.

stabilizes to 0 after the transient. The simulation is carried out with
Fload = 0, T = 0, vext = 0.05. The transient detail depends on several
physical quantities, including the initial configuration, the top speed
vext, temperature T , and the dissipation coefficient η. In contrast, the
final value w in the quantized-sliding state is completely insensitive
to these details, but only depends on the lattice mismatch.

A. Quantized lubricant sliding

Simulations show that in most cases the lubricant slides
relative to the bottom substrate with a relative mean lubricant
velocity component in the driving direction w = vc.m. x/vext

giving rise to a plateau w = wquant which is essentially
parameter independent, that is quantized as in the the more
idealized models studied in the past. We ran several batches of
MD simulations to characterize the properties and boundaries
of this plateau of quantized-velocity dynamics in the 3D
model. To evaluate the dragging of solitons and the ensuing
velocity-quantization phenomenon in 3D, for each lubricant
layer we need to compute the mean flux �̄p of lubricant
particles crossing a line of length Ly transverse to the pulling
direction. By dividing �̄p by a hypothetical flux �̄vext

p of
lubricant particles all moving across the Ly line at speed vext,
we obtain

w ≡ vc.m. x

vext
≡ �̄p

�̄
vext
p

. (15)

First, we evaluate the length δsol of a single soliton line that
crosses our reference line Ly in a time τ , while advancing
perpendicularly to its own elongation

δsol = v τ
cos ν

sin ν
, (16)

where ν is the angle formed by the soliton line with the
Ly direction, also equaling the angle that the advancement
direction makes with the pulling direction, see Fig. 4. We then
evaluate the mean length of soliton lines crossing Ly in a unit
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FIG. 3. (Color online) A snapshot of the sliding steady state of
the simulation of Fig. 2, representing the atoms inside one PBC-
repeated supercell, in the same color convention as Fig. 1. The bottom
slider and the lubricant are aligned with a lattice spacing mismatch
of rb = ab/ap = 29/25 = 1.16, producing a clear soliton pattern.
(a) Top view of a lattice-mismatched configuration, where only the
bottom slider atoms (larger, red) and lubricant atoms (smaller, light
blue) are shown. (b) Same top view as (a), with marked soliton lines
and their crossings (top-site lubricant atoms), and in-registry regions
(hollow-site lubricant atoms). These regions form a loose triangular
lattice of spacing asol = 25/4ab = 6.25 ab. (c) Lateral perspective
view, with the advancing top layer (dark blue particles) spaced by
at = asol also included.

time for a train of parallel soliton lines separated by a mutual
distance d:

V̄ = δsol

τ

Ly sin ν/v

d/v
= v

cos ν

sin ν

Ly sin ν

d
= Ly

d
v cos ν, (17)

where d/v represents the time between two successive solitons
starting to cross Ly , and Ly sin ν/v is the time it takes for one
such crossing to occur.

We first apply this general result to the case of a soliton
pattern formed by a lattice-spacing mismatch between two
aligned triangular lattices. In terms of the spacing asol of
the lattice of soliton-crossing areas, see Fig. 3(b), successive
soliton lines are separated by d =

√
3

2 asol. The soliton spacing

d
Ly

v

v

FIG. 4. (Color online) A train of lines, spaced by a distance d ,
moves perpendicular to their direction at speed v and crosses a
segment of length Ly at an angle ν. This construction allows us
to evaluate the length of line crossing the segment per unit time,
Eq. (17).

in the aligned case is given [24] by the 1D geometric mismatch
condition

a−1
sol = a−1

p − a−1
b . (18)

A soliton line can only advance perpendicularly to itself,
because the soliton-forming atoms stand locally at bridge sites
relative to the bottom surface: Each atom is forced to cross the
saddle-point energy barrier between highly coordinated hollow
sites moving in the energetically most favorable direction,
which is perpendicular to the soliton line, see Fig. 5. The
soliton intersections are dragged forward by the top layer
moving at speed vext.

This advancement is realized when each one of the
soliton lines advances perpendicularly to itself at a speed
v = vext cos ν, namely a speed scaled by the angle that each

x

x

soliton line

FIG. 5. (Color online) A typical bridge atom along a soliton line
(dashed line) moves from one hollow site to the next (green crosses),
thus advancing perpendicularly to the soliton line.
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(a)

(b)

FIG. 6. The geometry of a triangular lattice of soliton lines
moving perpendicular to their direction at a speed v. (a) The case
where the lines of type 3 are parallel to the dragging direction x̂.
(b) The case characterized by an overall rotation by α relative to the
dragging direction x̂.

line forms with the dragging direction. In the simplest case of
unrotated lattices, see Fig. 6(a), of the three soliton families, the
one labeled 3 is horizontal, namely perpendicular to Ly , thus
it does not contribute to the rightward sliding of the lubricant
(ν = π/2, thus v = 0). The two other families of solitons,
labeled 1 and 2, both contribute a speed reduced by a factor
cos ν = cos(π/6).

Using Eq. (17) we evaluate the total speed of soliton lines
crossing Ly in this unrotated case, obtaining

V̄1 = Lyvext cos π
6 cos π

6

asol

√
3/2

= 2Lyvext√
3asol

cos2 π

6
, (19)

V̄2 = V̄1, (20)

Vtot = V̄1 + V̄2 =
√

3Lyvext

asol
, (21)

where Vtot includes contributions from all advancing soliton
lines.

As a next step we evaluate the flux of mobile particles
associated with the advancing soliton lines. Recalling Fig. 3(b),
we observe that (i) in-registry particles in between solitons
do not contribute to sliding, as they are trapped in individ-
ual minima of the corrugation potential; (ii) a soliton line
represents a single line of extra particles; (iii) as the soliton
lines are parallel to the crystal principal directions, the line
density of such extra particles along a soliton line is simply
the reciprocal lattice spacing of the lubricant a−1

p ; and (iv) one
half of each soliton is composed of particles in the region in
between soliton-crossing areas (bridge overlayer sites), which
belong uniquely to that soliton, while the other half particles,
those in the soliton crossing region (top sites), are shared by
three solitons, thus the effective mean line density of mobile
soliton particles is 1

2 × (1 + 1
3 )a−1

p = 2
3a−1

p . By multiplying
this atomic linear density by Vtot, we obtain the total flux of
particles crossing Ly per unit time, due to soliton advancement

�̄p = 2Lyvext√
3 apasol

. (22)

We can now evaluate the dimensionless ratio of Eq. (15):

w = �̄p

�̄
vext
p

=
2Lyvext√
3 apasol

Lyvext√
3 a2

p/2

= ap

asol
. (23)

This expression is independent not just of Ly but also of vext,
and it is a purely geometric function of the crystal lattice
spacings which we can make explicit using Eq. (18) for asol:

w = ap

(
1

ap
− 1

ab

)
= 1 − ap

ab
= 1 − 1

rb
≡ wquant. (24)

This formula coincides with the 1D result [9] and matches the
outcome of simulations as discussed in the next section.

In the case of a rigid overall rotation by a common angle α,
we apply the same theory, but we need to re-evaluate the speed
of soliton lines crossing a line Ly directed perpendicularly
to the dragging direction x̂. Using Eq. (17) we evaluate the
crossing speed of the three families of parallel soliton lines
shown in Fig. 6(b):

V̄1 = Ly vext

asol

√
3

2

cos2

(
π

6
− α

)
,

V̄2 = Ly vext

asol

√
3

2

cos2

(
π

6
+ α

)
,

V̄3 = Ly vext

asol

√
3

2

cos2

(
π

2
− α

)
.

(25)

By summing these three contributions we obtain

Vtot = V̄1 + V̄2 + V̄3

= Ly vext

asol

√
3

2

[
3

2
cos2 α + 3

2
sin2 α

]
=

√
3Lyvext

asol
, (26)

which coincides with the unrotated result, Eq. (21). As also the
particle density along the soliton lines is the same, we obtain
the same particle flux, as given by Eq. (24). We conclude
that an overall rotation produces no change in the quantized
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sliding state, consistently with the fundamental isotropy of the
triangular soliton net.

B. Dragging solitons: Forward lubricant motion

Zero-temperature MD simulations confirm the phe-
nomenon of perfect velocity quantization in both the unrotated
and the rigidly rotated case. As an example, the unrotated
single-layer case of the model of Fig. 3 is characterized by
ab = 25/29, thus rb = 29/25 and asol = 29/4: This indicates
that we cross 4 soliton lines every 29 lubricant particles in
each 2D-crystal high-symmetry direction. The choice rt = asol

guarantees that for each one of these soliton lines, a line
of top atoms is there to grab it. Figure 2(a) compares the
instantaneous center-mass lubricant speed to the predicted
quantized value of Eq. (24): After the initial transient, the
resulting vc.m. x makes a tiny oscillation around wquant =
4/29 � 0.1379. This value of rb is not to be considered in
any way special: We find perfect quantized sliding for many
other values of rb.

Likewise, by rotating rigidly the model of Fig. 3, e.g., by an
angle α = π/12, we obtain the geometry sketched in Fig. 7.
When we pull the top slider along the same horizontal direction
x̂, we obtain the time evolution of the center of mass displayed
in Fig. 8. Again this velocity oscillates periodically around
to the same relative value wquant, as predicted by Eq. (24),
but with a different oscillation pattern. The longer period and
larger oscillation amplitude are related to the necessity of a
coordination of the forward motion with a transverse motion,
induced by the tendency of the lubricant to follow the grooves
of the bottom substrate, and detected as a nonzero average
of the transverse velocity component, Fig. 8(b). We explored
different rotation angles α. For comparatively small |α| � 15◦
and small vext, a similar transverse motion is established,
characterized by periodic oscillations of the center-mass
speed; for larger (nontrivial) α and for intermediate driving
speed little or no substrate channeling nor net transverse
motion arises, with the result that the center-mass motion is

FIG. 7. (Color online) Top view of the same model as in Fig. 3,
but rotated rigidly by an angle α = π/12 with respect to the original
orientation. The top layer is still driven in the same horizontal
direction x̂ highlighted by arrows.
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FIG. 8. (Color online) (a) x̂ and (b) ŷ components of the lubricant
center-mass velocity divided by the driving speed vext = 0.01 as a
function of time for the rotated model of Fig. 7. The time-averaged
center-mass x̂ component coincides with the one obtained for the
unrotated model, Fig. 2, and matches the quantized formula (24),
dashed line. The amplitude and period of the fluctuations of w around
wquant are both substantially larger than in the unrotated case, Fig. 2.
The average vc.m. y is consistent with the lubricant moving at an
average angle of 1.1◦ with the x̂ driving direction.

apparently nonperiodic (or of extremely long period). This is
due to the advancing lubricant layer exploring the bottom-
layer corrugation in an ever renewed mutual configuration.
Importantly, in all tested cases, w fluctuates (periodically or
nonperiodically) around wquant, as long as vext is not too large.

C. Dragging antisolitons: Backward lubricant motion

A peculiar reversed lubricant dragging occurs when the
lubricant is less dense than the bottom layer, i.e., rb < 1.
Lines of dilation (antisolitons) are separated by in-register
regions, as shown in Fig. 9. These antisoliton lines are soft
defects with an enhanced mobility similar to that of the
solitons of overdense layers: They can therefore be dragged
rightward by the advancing top slider. Since these rightward
traveling antisoliton lines are basically lines of missing atoms,
or vacancies, the involved atoms, and thus the overall lubricant
center of mass, move leftward, opposite to the driving vext. As
illustrated by the sequence of Fig. 9, a net backward lubricant
motion (vc.m. < 0) is indeed observed. This result is perfectly
accounted for by Eq. (18), which yields negative asol, and by
Eq. (24), which yields negative wquant.

The detailed example of this antisoliton case shown in Fig. 9
has rb = 25/29, so that the mismatch generates 4 antisoliton
lines every 25 lubricant lattice spacings. We consider a
top slider with rt = 25/4 to full commensuration with the
antisoliton lattice, i.e., 
 = 1. As reported in Fig. 10, after the
usual transient, simulations do show a net negative lubricant
velocity oscillating around vc.m. x/vext = −0.16, matching the
predicted wquant = −4/25.

D. Ar on graphite and other possible experimental realizations

The experimentally accessible configuration of Ar layers
interposed as a lubricant in between a graphite substrate and a
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(a)

(b)

(c)

FIG. 9. (Color online) A portion of three successive snapshots of
the steady state of an underdense lubricant layer (rb = 25/29) forming
a Moiré pattern, with 
 = 1 antisoliton every top-layer line (same
atomic symbol convention as in previous figures). Arrows track two
atoms to help visualizing the leftward motion of the lubricant induced
by a rightward motion of the top layer. Between snapshots (b) and (c)
the leftmost line of lubricant particles has been remapped back inside
the cell at its right side by the PBC.
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FIG. 10. (Color online) The normalized average lubricant veloc-
ity w = vc.m. x/vext as a function of time for the antisoliton geometry
represented in Fig. 9, with at = 29/4 = 7.25, ap = 29/25 = 1.16,
and ab = 1 for the top, lubricant, and bottom layers corresponding
to rb = 25/29 = 0.86. After an initial transient, w starts to fluctuate
around the negative value predicted by Eq. (24): wquant = −4/25 =
−0.160, marked by the horizontal dashed line. The simulation is
carried out for Nlayer = 1, vext = 0.05, Fload = 0, and T = 0.

suitably nanopatterned top layer is a promising system
where an antisoliton dragging can occur. The Ar monolayer
is well know to be incommensurate to the graphite substrate
[25], thus its soliton pattern is likely mobile.

To verify this possibility we simulate this system by
adopting the LJ parameters of the most basic model pro-
posed in Ref. [26]. The main difference with the hitherto
studied model is that the bottom substrate is a honeycomb
net, see Fig. 11, rather than the triangular lattice. For
mechanical units we take the graphite in-plane lattice spacing
ab = agraphite = 246.4 pm, m = mAr = 6.63 × 10−26 kg, and
εpp = εAr-Ar = 10.3 meV. The Ar-C interaction energy εbp =
εAr-C = 5.65 meV = 0.549 εAr-Ar [26]. We approximate the
Ar lattice constant to aAr � 20/13 agraphite � 379 pm. For
the top substrate we assume a triangular nanopattern with

FIG. 11. (Color online) Successive snapshots of the quantized
sliding state of an Ar (light-blue/clear) monolayer confined between
a static graphite layer (black), and a nanopatterned top layer (dark
blue) advancing rightward at a speed vext = 7.9 m/s. The time interval
between successive frames is 12.5 ps. The top layer lattice spacing
at � 0.7 nm corresponds to coverage 
 = 1 of the antisoliton pattern.
The leftward motion of the Ar layer is evident.
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at = 20/7 agraphite � 704 pm, such to produce a coverage

 = 1. For the σtp and εtp parameters we adopt tentatively
the Ar-C ones [26].

Even at the comparably large simulated speed vext =
0.05 m−1/2ε

1/2
pp = 7.9 m/s (see Table I), we do find quantized

antisoliton motion, with the lubricant running backward,
precisely at the speed vc.m./vext = wquant = −7/13 � −0.538
predicted by Eq. (24). We verified that the quantized state
is retrieved also in the following conditions: (i) Ar bilayer
(Nlayer = 2), rather than monolayer, (ii) the application of
Fload = 0.004, representing a 1 MPa load, and (iii) a looser
nanopattern of the top layer, namely at = 40/7 agraphite �
1408 pm, i.e., 
 = 2. However, we could retrieve no quantized
state for other (noninteger) coverages, at least at the driving
speeds we tested. We conclude therefore that the Ar/graphite
system is potentially suitable for the observation of antisoliton
dragging, with a remarkable backward lubricant motion,
provided a nanopatterned top layer of a properly tuned
periodicity can be assembled and brought into contact with
the Ar layer.

Analogous incommensurate configurations occur for other
noble gases on metal surfaces such as Ag(111) and Pb(111). It
is quite possible that similar quantized sliding regimes occur
in such systems as well. However, in some cases the noble
gas-metal interaction may be comparably stronger [27] than
with graphite, possibly resulting in a higher corrugation and
practically pinned (anti)solitons.

An experimentally promising geometry which could reveal
the quantized sliding phenomenology could be realized in
surface force apparatus (SFA) experiments [28] where atom-
ically thin lubricant layers are confined between molecularly
smooth mica surfaces. At a larger (meso) scale, the same
mechanism could be realized by some modification of the
setup used in Ref. [29] where a 2D crystal of colloidal particles
is dragged by a flow of solvent over a periodic corrugation
generated by a light interference pattern. A pattern or solitons
or antisolitons, very similar to that illustrated for an atomic
overlayer in Fig. 3, can form and slide around when the two
lattice spacings do not match [30]. In this case, a second
independent periodic interference pattern might be used to
mimic the sliding top layer and drag the soliton pattern along.
At an even larger (macro) scale, friction experiments with a 2D
granular system consisting of photoelastic disks confined in a
channel [31] might be considered with channel walls formed
by two corrugated and vertically oriented Plexiglas sheets,
once again reproposing the soliton mechanisms under shear.

E. The velocity plateau

Quantized sliding, where the ratio vc.m. x/vext remains
constant, forming a flat “plateau,” as a function of parameters,
occurs within certain ranges of physical conditions, speed,
etc. Of course plateaus do not extend to arbitrary values of the
physical parameters, but end at certain boundaries marking a
sort of “dynamical phase diagram.” The point in parameter
space where the quantized sliding terminates identifies a sort
of dynamical depinning transition, where the top slider’s grip
on solitons is lost [9]. A variation of system parameters
will generally affect the plateau extension and the precise
occurrence of this dynamic depinning.

The most straightforward way to end the quantized sliding
state is by increasing the driving velocity vext. Indeed,
simulations show that, once the plateau exists for a given speed
vext, the quantized state holds for all smaller speeds, at least
at zero or low enough temperature. In contrast, for increasing
vext, beyond a critical speed vcrit the quantized state is generally
lost. The reason for the existence of such a maximum speed is
that the quantized state is based on the forced advancement
of a soliton deformation at speed vext along the lubricant
crystal. As soon as vext is larger than the lubricant speed of
sound, the amplitude of this soliton wave decays rapidly due
to inertia, until it disappears together with the quantized state.
However, whenever the pinning between the soliton pattern
and the top substrate is weak, the depinning may occur earlier,
for smaller vext. It is then natural to regard the critical speed
vcrit as a measure of the robustness of the quantized state.
We map this robustness under variations of other parameters:
temperature T , the load Fload per particle in the top layer, the
soliton coverage ratio 
, and the number of lubricant layers
Nlayer.

1. The quantized state as a function of the driving velocity

We use sequences of linked MD simulations to investigate
the termination of the quantized-sliding state, as vext is
changed in small steps. A similar study was carried out for
the 1D Frenkel-Kontorova model [32] and for the 1D and
2D analogous of the present sliding model [4,5,8], where
a hysteretic termination of the plateau was identified in
underdamped dynamics. As vext is increased adiabatically,
coming from the low-speed quantized state, there is a good
chance that the ensuing sliding state remains quantized. This
quantized sliding will therefore generate a plateau of constant
w = vc.m. x/vext, extending until a critical speed vcrit, where
the pinning of solitons to the top slider corrugation loses its
battle against the dissipative forces acting on the lubricant
layer, represented by Eq. (8). For vext � vcrit, a nonquantized
state ensues, characterized by an irregular lubricant motion,
and a center-mass speed fluctuating nonperiodically far from
the quantized value wquantvext. Upon adiabatic decreasing vext

from this high-speed nonquantized state, the quantized state
is usually recovered at a speed lower than the depinning vcrit,
a clearly hysteretic unpinning-pinning dynamical transition.
In the intermediate range, the velocity ratio w = vc.m. x/vext is
therefore a multivalued function of vext.

Figure 12(a) illustrates this hysteretic depinning for the
fully commensurate 
 = 1 model of Fig. 3, with Fload = 0
and T = 0. The precise value of vcrit is obtained by ramping
vext up in small steps; at every step the integration starts from
the final configuration of the preceding step. For these model
parameters we estimate vcrit = 0.825 ± 0.005. Following the
same procedure with downward steps to locate the speed of
recovery of the quantized state, we obtain vcrit down = 0.415 ±
0.005.

The hysteretic loop is due to the dynamically metastable
nature of the dynamically pinned state. The finite simulation
time tcalc and the absence of thermal fluctuations (T = 0) can
leave the system locked in a dynamically unfavorable state,
which survives until the system jumps into the appropriate
dynamically favored state.
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FIG. 12. (Color online) The plateau of the dynamically pinned
state and its tribological properties, for the model described in Fig. 3.
As a function of the adiabatically increased (circles) or decreased
(squares) top-layer velocity vext, the panels report: (a) the average
velocity ratio w = vc.m. x/vext compared to the plateau value wquant =
4/29 � 0.1379, Eq. (24), dashed line; (b) the average friction force
experienced by the top layer; and (c) the average lubricant kinetic
energy per particle relative to the lubricant center of mass.

The friction force reported in Fig. 12(b) exhibits a nontrivial
structure. Around vext � 0.24, 0.39, 0.44, 0.58, and 0.82,
the friction force (and consequently the dissipated power)
is seen to peak and then drop to a smaller value. These
friction peaks arise at the resonances of the “washboard”
frequency of the advancing lubricant crystal with the bottom
lattice with specific vibrational normal modes of the lubricant
lattice. The resonance are reflected by peaks in the lubricant
internal kinetic energy, see Fig. 12(c). Across these resonant
peaks the value of w remains mostly stable, except at the
last of these transitions, marking the end of the quantized
plateau, with w moving away from the wquant value, again
coinciding with a significant drop in friction. At resonant
peaks rearrangements of the pinned configuration may occur,
with the top layer displacing to grab and drag the soliton
pattern to a different mutual arrangement, always guaranteeing
the regular advancement of the solitons/antisolitons realizing
the dynamically pinned state and the associated quantized
velocity.

A similar phenomenon is observed on the way back,
decreasing vext: The friction force and the lubricant internal
kinetic energy undergo several small jumps corresponding to
washboard resonances related to the top-layer advancement
over the nonquantized quasistatic state. Corresponding to the
resonances also vc.m. x has small bumps, until eventually the
plateau state is recovered, with a sudden jump in the friction
force. The hysteretic depinning regime observed in the present
fully 3D model is therefore richer than that observed in the
purely 1D model [10] or in the 1+1D model of Refs. [11,12].

If the ideal one-to-one geometrical interlocking between the
top corrugation and the lubricant soliton pattern (at = asol, i.e.,

 = 1) is of course an especially favorable condition for the
occurrence of dynamical pinning, we do find velocity quantiza-

tion even for 
 �= 1, although not for all investigated values of

. Assuming that the previously unraveled 1D mapping to the
Frenkel-Kontorova model [9] is also meaningful in the present
richer interface geometry, the coverage ratio should thus affect
the robustness of the velocity plateau. Indeed, simulations with
simple integer ratios, such as 
 = 2 and 
 = 1/2, do show
quantized sliding essentially equivalent to the case with 
 = 1.
Other configurations with fractional 
, where the top-lattice
crystal lines turn to be more pronouncedly out-of-registry with
the lubricant soliton pattern, give rise to a weakening, or even
the loss, of the quantized plateau.

By following the quantized plateau up to its critical speed
for several values of the mismatch ratio rb = ab/ap, ranging
from solitonic (rb > 1) to antisolitonic (rb < 1), we find a
rather erratic dependence of vcrit on rb. In this case the
different degree of efficiency of the grip on solitons and thus of
robustness of the quantized dynamics may be partially related
to random initial conditions, hardly a controllable element.

2. Effects of temperature

To investigate the robustness of the quantized state against
thermal fluctuations, we run finite-temperature simulations in
the same conditions as the zero-temperature runs discussed
until now. The results are summarized in Fig. 13. For low
temperature kBT = 0.0001 and 0.001 (not shown), even
though the trajectories of individual particles are affected by
thermal fluctuations, w exhibits no significant deviation from
T = 0.

For larger kBT = 0.01 and 0.05 we observe deviations
and fluctuations around the quantized plateau speed, see
Fig. 13. Similar deviations were found in the 1+1D model
[11,12]. Notice that these deviations in w reflect very wide
instantaneous fluctuations, often far exceeding the average
lubricant velocity. The averaging over a finite simulation
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FIG. 13. (Color online) The effect of temperature on the plateau
of the dynamically pinned state studied for increasing vext. The circles
are the same T = 0 data as in Fig. 12(a). Each square or star is
obtained by averaging vc.m. x over the last 70% of an at least 100 time
units long Langevin simulation at finite temperature, started from the
final state of the previous configuration. The dot-dashed line marks
the plateau value wquant = 4/29 for the considered geometry.
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duration tcalc integrates out these large fluctuations, suggesting
that, over an appropriately reduced range of vext, the system
fluctuates around the quantized sliding state, which still
dictates the average lubricant advancement speed. If longer
simulations were carried out, further averaging would decrease
the fluctuation amplitude, thus indicating that the thermal
regime is indeed randomly fluctuating around the dynamically
pinned state. In temperature, the dynamical depinning tends to
occur at a generally smaller driving speed.

For even larger kBT = 0.1, the tendency to in-plane thermal
expansion of the lubricant layer, frustrated by the in-plane
PBC, resolves in the expulsion of a small fraction of atoms
from the lubricant layer, which thus gets rid of the soliton-
originating mismatch to the bottom layer. As a result, the
quantized sliding state is completely absent at such high
temperature.

3. Effects of applied load

We also investigate the effect of changing the load applied
between the sliders, squeezing the lubricant layer among them.
The lubricant in turn is not perfectly flat, because in-register
regions are composed of hollow-site atoms, which move closer
to the bottom slider, while the soliton regions consist of atoms
occupying bridge or top sites, which are therefore pushed
upward. In matched (
 = 1) configurations and in the ensuing
quantized sliding state, the top slider atoms tend to catch
over the in-register regions which are the most vertically
depressed lubricant areas, rather than over the solitons, where
the lubricant is sticking out locally. As a result, the applied
load squeezes down onto the in-register regions, and affects
the solitonic regions more marginally. Thus, the increased load
should make it more difficult for the soliton pattern to unpin
itself from the top-layer corrugation.

To investigate the load dependence of the quantized plateaus
we consider several Fload values, and for each of them we cycle
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FIG. 14. (Color online) The depinning speed vcrit as a function of
the applied load per particle Fload for the same model as in Fig. 3.
Beyond the small-load region, the quantized-sliding state exhibits an
overall benefit of increased load.

FIG. 15. (Color online) (a) Side and (b) perspective view of a
Nlayer = 5 lubricant layers model, with the same lattice mismatch and
other parameters as in Fig. 3.

vext up in small steps, as described in Sec. III D 1, to determine
vcrit. We collect the resulting values of vcrit for varied load in
Fig. 14, which shows that, by increasing Fload, vcrit generally
rises, thus indicating that, as expected, the quantized state is
extended under a larger load Fload.

4. Multiple lubricant layers

In boundary lubrication, the lubricant as a rule solidifies
into a multiplicity of layers, whose thickness is gradually
reduced by squeeze-out under pressure, until a single layer
is just an extreme possibility. It is therefore important to verify
whether the plateau dynamics is an exclusive prerogative of
the single lubricant layer studied so far, or whether it will occur
even for multilayer solid lubricant films—although of course
with generally smaller and less robust plateaus. Figure 15
displays the typical arrangement of lubricant particles relative
to the substrates in a lubricant multilayer configuration. Soliton
deformation affects mostly the lubricant layer in direct contact
with the bottom substrate. The atoms of the uppermost
lubricant layer are spaced almost regularly, but the residual
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FIG. 16. (Color online) The depinning speed vcrit as a function
of Nlayer for a multilayer configuration of the type illustrated by
Fig. 15, with the same simulation parameters as in Fig. 3. The
quantized sliding state weakens for increasing number of lubricant
layers Nlayer � 2.
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vertical displacements can be sufficient for the soliton pattern
to ingrain in the top substrate.

For multiple lubricant layers (up to Nlayer = 5), we recover
quantized-velocity plateaus, for the case examined of full
matching 
 = 1, with Fload = 0 and T = 0. We evaluate
the robustness of the quantized sliding state by determining
the critical speed vcrit where the quantized plateau ends
in this multilayer lubricant case. Figure 16 shows that the
broadest plateau is achieved for Nlayer = 1. Its width is still
as large at Nlayer = 2; further lubricant thickening reduces
vcrit progressively. This decrease is not surprising, as the
power-law weakening of soliton-induced corrugation across
the film makes the grip on solitons by the top slider harder and
harder for thicker and thicker layers. For Nlayer > 5, we could
detect no quantized-sliding dynamics, even at very small vext.

IV. DISCUSSION AND CONCLUSION

We present a simulation study of the relative sliding of
rigid incommensurate crystal surfaces separated by a 3D
solid and fully mobile lubricant film, whose interatomic
interactions were assumed to be of LJ type. The quantization
of the lubricant’s sliding speed previously uncovered in much
more idealized, lower dimensional models is fully confirmed
in this more realistic case. The quantized relative speed
plateau as a function of overall sliding speed is detected very
clearly and demonstrated to extend over broad parameters
ranges including applied load, number of lubricant layers, and
commensuration ratio between the top layer and the soliton
lattice.

Focusing mainly on unrotated lattices and a single lubricant
layer, we find perfect plateaus at the same geometrically
determined velocity ratio wquant as observed in the 1D and
2D models, both in case of solitons (forward lubricant sliding)
and of antisolitons (backward soliton sliding). We find that the
soliton pinning to the top slider leading to plateau quantization
is abandoned by increasing the sliding velocity vext above

a critical value vcrit. It is eventually retrieved when vext is
reduced back down to vcrit down < vcrit, thus with a hysteresis.
The quantized sliding state is strengthened by an applied load.
Although the optimal rate of commensuration for quantization
to occur is perfect 1:1 matching (
 = 1) between soliton lattice
and top slider lattice of kinks to the upper slider lattice, weaker
but definite quantized regimes exist even for 
 �= 1.

In the attempt to address slightly more realistic conditions,
we also model a multilayer as opposed to monolayer LJ solid
lubricant; and a monolayer and a bilayer of solid Ar acting as
a lubricant between a flat graphite surface and a nanopatterned
slider. Quantized sliding is recovered in both cases, although
in a rather fragile form for Nlayer > 3. We see no reason for
the same Moiré-pattern dragging mechanism to be restricted
to LJ systems: It is likely to show up in many sliding-friction
experiments, as long as a crystalline lubricant thin film (e.g., a
graphene layer) is sandwiched in between two different lattice-
mismatched crystalline sliders.

The present preliminary investigation of thermal effects
confirms the robustness of the quantized state. Like for the
1+1D model of Refs. [11,12], we find that (i) the quantized
plateau becomes noisy, with the relative lubricant velocity w

fluctuating around wquant, (ii) the dynamical depinning, rather
than a sharp hysteretic transition, behaves as a continuous
crossover, and (iii) this crossover occurs at a generally smaller
speed vext. A further systematic investigation of thermal effects
and of the mutual rotation of the three crystalline layers
promises nontrivial developments.
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