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Quantum hexatic order in two-dimensional dipolar and charged fluids
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Recent advances in cold atom experimentation suggest that studies of quantum two-dimensional melting of
dipolar molecules, with dipoles aligned perpendicular to ordering plane, may be on the horizon. An intriguing
aspect of this problem is that two-dimensional classical aligned dipoles (already studied in great detail in soft
matter experiments on magnetic colloids) are known to melt via a two-stage process, with an intermediate hexatic
phase separating the usual crystal and isotropic fluid phases. We estimate here the effect of quantum fluctuations
on this hexatic phase, for both dipolar systems and charged Wigner crystals. Our approximate phase diagrams
rely on a pair of Lindemann criteria, suitably adapted to deal with the effects of thermal fluctuations in two
dimensions. As part of our analysis, we determine the phonon spectra of quantum particles on a triangular lattice
interacting with repulsive 1/r3 and 1/r potentials. A large softening of the transverse and longitudinal phonon
frequencies, due to both lattice effects and quantum fluctuations, plays a significant role in our analysis. The
hexatic phase is predicted to survive down to very low temperatures.
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The melting of crystals is a fundamental topic in condensed
matter physics that has been studied for more than a century.
Nevertheless, one lacks a quantitative understanding of the
melting for many materials. This deficiency is partly due to
imprecise knowledge of the particle interactions that control
the relevant phase transitions on a microscopic scale. In
two dimensions (2D), however, a defect-mediated theory of
melting is available. Building on pioneering work proposing an
entropically driven proliferation of dislocations by Kosterlitz
and Thouless and by Berezinski [1], and on unpublished
work of Feynman [2], a defect-mediated theory was worked
out [3]. The detailed theory actually invokes a sequential
unbinding of dislocations and disclinations, with the usual
latent heat of a first-order melting transition spread out over an
intermediate hexatic phase. The hexatic phase is characterized
by extended bond orientational order at intermediate densities
or temperatures. It has been observed in a series of impressive
experiments using colloidal particles with a diameter of
4.5 μm and an induced magnetic moment, with dynamics
confined to an air-water interface [4,5]. Although this system,
characterized by long-range 1/r3 dipole-dipole interactions,
is thoroughly understood in the classical regime, it is presently
unknown whether the hexatic phase exists when quantum
fluctuations play a major role.

The advancing field of ultracold gases consisting of het-
eronuclear molecules with an electric dipole moment promises
to change this situation. The dipolar gases are expected to
exhibit qualitatively new physics, with several experimen-
tal groups reporting impressive progress towards achieving
quantum degeneracy in these systems [6–10]. Using dipolar
gases, one should finally be able to probe experimentally
the role of quantum fluctuations on the hexatic phase and
study its stability at very low temperatures. Recent Monte
Carlo calculations predict that a 2D dipolar gas with the
moments perpendicular to the 2D plane exhibits a quantum
phase transition directly to a hexagonal crystal phase at

zero temperature T = 0 [11,12]. However, the effects of
quantum zero point motion on the hexatic phase, accessible
now for the first time via cold dipolar gases, have not been
discussed.

In this paper, we explore this question by analyzing the
stability of crystal and hexatic order of a 2D system of
dipoles including both thermal and quantum effects. First,
we calculate the classical elastic coefficients of the crystal
from the phonon spectrum. We then show how quantum
effects soften the crystal by decreasing these coefficients.
Using Lindemann criteria suitably modified to treat both
2D thermal fluctuations and quantum effects, we study the
successive loss of translational and orientational order that
lead to the melting of the crystal and hexatic phases. The
relevant Lindemann numbers are extracted in the classical
regime as well as for T = 0 by comparing with Monte Carlo
and experimental results. Throughout the paper, we construct
a useful comparison between the 2D dipolar system and a
2D fluid consisting of negatively charged particles immersed
in a uniform background of positive charges—the Jellium
model. An experimental realization of charged systems in the
classical limit with a Wigner crystal phase at low temperatures
has been known for quite some time, in the form of a
2D electron gas trapped by a positively charged capacitor
plate to the surface of liquid helium [13]. For computer
simulation evidence that this system melts via a dislocation
mechanism and may possess an intermediate hexatic phase;
see Refs. [14] and [15], respectively. We obtain essentially
the same Lindemann numbers for the dipolar and the charged
systems, which suggests that the melting of these phases is a
geometric phenomenon, insensitive to the detailed form of the
interaction potential. Similar conclusions resulted from Monte
Carlo simulations of quantum hard sphere systems [16], and
from a meta-analysis of Monte Carlo results for the freezing of
two-dimensional systems [17]. We show that quantum effects
initially increase the temperature range where the hexatic
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phase is stable when the coupling strength is decreased from
the strong coupling classical regime, provided the temperature
dependence of the Lindemann numbers can be neglected. A
tentative phase diagram is then provided showing that quantum
effects are important even for very large interaction strengths
where one would naively expect the system to be deep in the
classical regime. Finally, we discuss the possible experimental
observation of the hexatic phase in the quantum regime using
cold dipolar gases.

We conclude this introduction with a few observations
about the Lindemann criterion for melting of quantum and
classical systems in two dimensions and the nature of quantum
hexatics. As originally proposed by Lindemann [18], one first
calculates the mean-square displacement W = 〈|u(r)|2〉 of a
single particle away from its equilibrium lattice position, where
〈· · · 〉 represents an ensemble average. Melting as a function
of, say, the temperature or density then occurs when the root
mean square displacement exceeds a fixed fraction of the lattice
spacing a, i.e., for

√
W � cLa, where the Lindemann number

is typically in the range cL ≈ 0.1–0.3 [19]. This rough criterion
fails, however, in 2D classical solids, because W diverges
logarithmically with system size. Here we use an alternative
formulation that focuses on the stretching of a nearest neighbor
distance [20], namely,

�(r) =
√

〈|u(r + b) − u(r)|2〉 � γma, (1)

where b connects nearest neighbor lattice sites (|b| = a)
and γm is an alternative Lindemann number describing this
new measure of the loss of translational order. The quantity
�(r) remains finite in the thermodynamic limit even in two
dimensions and, as we show here, can also be computed in
the quantum regime all the way down to T = 0 for simple
pair potentials. Moreover, a related criterion allows us to
estimate where the order associated with the rotational broken
symmetry of a 2D crystal is lost due to thermal or quantum
fluctuations, namely,

�θ (r) =
√

〈θ2(r)〉 = 1

2

√
〈|∂xuy(r) − ∂yux(r)|2〉 � γi, (2)

where γi is a Lindemann number for the loss of bond
orientational order. Here, θ (r) = [∂xuy(r) − ∂yux(r)]/2 is the
local phonon-induced twist of the crystallographic axes [21],
a quantity whose fluctuations are known to remain finite
even in the limit of infinite system size for a classical
2D crystal [22]. Note that �(r) ≈

√
〈[(b · ∇)u(r)]2〉 has a

similar gradient structure to �θ (r). These two different
Lindemann numbers γm and γi allow for two distinct melting
temperatures, characterized by the successive loss of first
translational and then orientational order [23], a scenario
we know occurs for classical colloidal particles interacting
with repulsive long-range 1/r3 dipole-dipole interaction [4].
Our evaluation of the criterion (2) using crystalline phonon
spectra to estimate the extent of the hexatic phase seems
reasonable, provided local orientational order remains robust
after long-range translational order is lost, as is the case for
the dislocation-disclination theory of classical 2D melting
[23], and in situations where a weakly first-order transition
leads to a hexatic phase [24]. We also note that our use of
phonon displacements from an underlying reference crystal
implicitly treats quantum particles as distinguishable (a similar

FIG. 1. (Color online) The quantum partition function (12) is
obtained by integrating over particle world lines in imaginary time
τ . (Left) The high temperature regime limit n0�

2
T � 1 where one

recovers the classical 2D system. (Right) The low temperature
quantum regime where the problem becomes 2+1 dimensional.

approximation is used in the Debye theory of the specific heat
of crystals [25]), so we are effectively looking at the melting
of quantum particles with Boltzmannian statistics [26]. We
assume that the exchange interactions that distinguish bosons
from fermions play only a minor role in determining the
locations of quantum melting transitions.

These Lindemann inequalities are criteria, and of course
do not themselves constitute a theory of quantum or classical
melting. We are not aware of a reliable microscopic theory of
2D quantum melting, and even the defect-mediated melting
of classical particles in two dimensions could be preempted
by a direct first-order transition from a crystal to an isotropic
liquid [3]. It is also worth noting the rather different nature of
classical as opposed to quantum melting in two dimensions.
This difference is particularly evident in the Feynman path
integral formulation of nonrelativistic quantum statistical
mechanics [27], where classical particles are replaced by
configurations of particle world lines in imaginary time (see
Fig. 1). We allow, for simplicity, only the identity permutation
with periodic boundary conditions across an imaginary time
slab of thickness β�. In the absence of interactions, these
trajectories when projected down the imaginary time axis
behave like two-dimensional random walks as a function of
the imaginary time variable, with a size given by the thermal
de Broglie wavelength �T =

√
2π�2β/m. In the classical

limit �T � n
−1/2
0 , where n0 is the areal particle density, the

particle world lines are short and nearly straight; hence, the
usual Lindemann picture for melting of pointlike particles
applies when interactions are turned on. However, in the highly
quantum limit �T � n

−1/2
0 , quantum and thermal fluctuations

act on a crystal of long wiggling lines: As illustrated in
Fig. 1, a particle world line rj (τ ) that makes a large excursion
within its confining cage at imaginary time τ is connected
by the kinetic energy interaction m

∫
�β

0 |drj (τ )/dτ |2/2 to
time slices above and below, and hence can more easily
recover and return to its equilibrium position when the slab
thickness is large. It is harder to melt arrays of lines in 2 + 1
dimensions than pointlike particles in two dimensions with
the same pair potential. Thus, we should not be surprised
if the Lindemann numbers γm and γi depend somewhat on
n0�

2
T , with larger Lindemann numbers required to produce

melting when n0�
2
T � 1. This is indeed what we find fitting

to experiments on colloids and quantum simulations of power
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law potentials, with, e.g., γm ranging from ∼0.1 in the classical
limit to ∼0.3 when quantum effects predominate. Phonon
nonlinearities can give rise to a weak temperature dependence
of the long wavelength elastic constants, even in the absence
of quantum fluctuations [14]. We neglect such effects here for
simplicity. With these understandings, we believe the criteria
sketched above can provide a rough map of where to look for
quantum melting in the new arena provided by cold quantum
gases.

What would a quantum hexatic look like, if next gener-
ation experiments were to discover such a thing? Roughly
speaking, it would be a quantum liquid crystal, a cousin
of the long-sought supersolid phase of 4He if the particles
were bosons [28,29]. A fermionic analog would be the
quantum nematic studied by Oganesyan et al. in electronic
systems [30], which exhibits a twofold rather than sixfold
anisotropy. These authors also considered the possibility
of an electronic quantum hexatic. A hexatic quantum fluid
would display a fuzzy, sixfold-symmetric diffraction pattern,
indicating extended orientational correlations, somewhat like
a poorly averaged powder diffraction pattern. However, unlike
a classical polycrystal, a quantum hexatic would be a fluid with
zero shear modulus! If composed of bosons, it could develop
a nonzero superfluid density and support supercurrents at
sufficiently low temperatures [31]. The nature of hexatic order
in real space, with extended correlations in the orientations of
distant sixfold particle clusters, is discussed in Ref. [3].

In the crude phase diagrams constructed here, we have taken
a conservative approach, and assumed the intermediate hexatic
phase is squeezed out as T → 0, leaving behind a transition
from a quantum solid directly to an isotropic quantum liquid.
But this need not be the case: Consider particles interacting
with a screened, 2D Yukawa potential,

V (r) = ε0K0(κr), (3)

where K0(x) is the modified Bessel function of the second
kind, K0(x) ∼ − log x for x � 1, K0(x) ∼ exp(−κx) for x �
1, and κ−1 is a screening length. Such a potential describes in-
teractions between vortex lines with weak thermal fluctuations
in type II superconductors with an external magnetic field,
where κ−1 is the London penetration depth. When the lines
are very long compared to the vortex line spacing, and pinning
is negligible, the classical statistical mechanics of these three-
dimensional lines at finite temperatures can be mapped via the
transfer matrix method onto the quantum statistical mechanics
of 2D bosons at T = 0 interacting with the pair potential
Eq. (3) [32]. Here, the temperature T of the 3D superconductor
plays the role of � and the thickness of the bulk superconductor
plays the role of �β in the equivalent 2D quantum system. A
dislocation loop unbinding model then leads directly to an
entangled liquid of vortex lines, with long-range sixfold bond
orientational order, equivalent via the path integral mapping to
a zero temperature quantum hexatic [33]. Although it has not
yet been possible to check for hexatic order in melted vortex
liquids in type II superconductors (the signal from neutron
diffraction is quite weak), something very like an entangled
line hexatic has been seen in x-ray diffraction experiments
off partially ordered arrays of aligned DNA molecules [34].
When these charged, linear polymers are aligned by an external
field, a screened, Debye-Hückel interaction arises in the

FIG. 2. X-ray diffraction pattern as a function of scattering
angle φ from a sample of aligned DNA molecules exhibiting the
sixfold symmetry characteristic of the hexatic phase. Reprinted with
permission from Ref. [34].

perpendicular direction which has precisely the form (3). The
characteristic line hexatic diffraction pattern from this work is
reproduced in Fig. 2. The 2D structure function 〈|n(q)|2〉 for
particles in a quantum hexatic at low temperatures should look
very similar.

I. LAMÉ COEFFICIENTS

In this section, we calculate the elastic coefficients from
the phonon modes of a 2D hexagonal crystal consisting
of charged particles with a neutralizing background charge
density, or particles with a dipole moment perpendicular to the
2D plane. The crystal lattice with lattice constant a is spanned
by the vectors a1 = a(

√
3/2,1/2) and a2 = a(−√

3/2,1/2)
corresponding to the reciprocal vectors b1 = 2πa−1(1/

√
3,1)

and b2 = 2πa−1(−1/
√

3,1). The reciprocal lattice with the
irreducible Brillouin zone is shown in Fig. 3 (left). The
interaction between two particles separated by a distance r

in the plane is

U (r) = D2

r3
dipoles, U (r) = Q2

r
charges, (4)

where D2 = d2/4πε0 for electric dipoles with dipole moment
d, and Q2 = q2/4πε0 for particles with charge q. We set
� = kB = 1 in the following.

A. Classical elasticity of point dipoles and point charges

We find the phonon modes of the potential energy in
the harmonic approximation in the usual way. To accelerate
the convergence of the sums, we use the Ewald summation
technique as detailed in Appendix A. In Fig. 3 we plot the
resulting two phonon branches along the vector b1 for the
dipoles (middle) and the charged particles (right). The low
energy mode is purely transverse and the high energy mode is
purely longitudinal for long wavelengths where the hexagonal
crystal is equivalent to an isotropic continuum system [21].
The characteristic phonon energy for the dipolar crystal is
ωD =

√
D2/ma5, and for a crystal of Coulomb charges, it is

ωC =
√

Q2/ma3 where m is the particle mass. For the dipoles,
we find for long wave lengths the isotropic modes,

ωl(q) � 4.8ωDqa and ωt (q) � 1.4ωDqa. (5)
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FIG. 3. (Color online) (Left) The hexagonal lattice in reciprocal space and the irreducible first Brillouin zone. (Middle) The two phonon
modes along b1 for dipoles. (Right) The two phonon modes along b1 for charged particles. Note that ωl(q) ∼ √

q for small q, indicating an
infinite bulk modulus in the long wavelength limit. The dashed lines are from Eqs. (5) and (6).

These sound velocities differ somewhat from what was
reported recently [35], but as we shall demonstrate shortly, they
accurately recover well-established values for the k = 0 Lamé
coefficients [36] which gives us confidence in our numerical
calculations. For the charged particles, we have plotted the
long wave length formulas,

ωl(q) = 2
√

π

31/4
ωC

√
qa and ωt (q) = 21/4η1/2

31/8
ωCqa, (6)

for the longitudinal and transverse modes, respectively, with
η = 0.25 [37]. We see that the numerics reproduce these results
confirming that the Ewald summation has converged. Note
that the longitudinal mode scales as

√
q for small momenta

reflecting the long-range nature of the Coulomb interaction.
The Lamé coefficients are defined by writing the elastic

energy of the crystal as [38]

Fel = 1

2L2

∑
k

{μ(k)|ut (k)|2 + [2μ(k) + λ(k)]|ul(k)|2}k2,

(7)

with |u(k)|2 = u(k)u(−k) and L2 the area of the system. The
longitudinal component of the displacement field is ul , and
ut is the transverse component. Note that “transverse” and
“longitudinal” simply refers to the lowest and highest phonon
mode for a given k, since the eigenvectors are not in general
parallel or perpendicular to k when lattice effects are taken
into account. The relation between the Lamé coefficients and
the phonon modes is then as usual,

ωt (k) =
√

μ(k)

ρ
k and ωl(k) =

√
2μ(k) + λ(k)

ρ
k, (8)

where ρ = m2/
√

3a2 is the mass areal density. The natural
scale for the Lamé coefficients is D2/a5 for dipoles and Q2/a3

for charged particles, and they are k dependent due to lattice
effects. Since ωl(k) ∝ √

k for k → 0, the Lamé coefficient
λ(k) diverges as 1/

√
k for the charged particles.

In Figs. 4 and 5, we plot the classical Lamé coefficients
along b1 for the dipoles and the charged particles. The elastic
parameters display a significant k-dependent softening due to
the discrete lattice symmetry. We also plot in Fig. 4 the k = 0

Lamé coefficients corresponding to Eq. (5), i.e.,

μ(0) � 2.4
D2

a5
and 2μ(0) + λ(0) � 26

D2

a5
. (9)

These values agree very well with those reported in Ref. [36].
Likewise, we plot in Fig. 5 the k = 0 value for the transverse
mode corresponding to Eq. (6), i.e. [37],

μ(0) = η
23/2Q2

33/4a3
, (10)

which is recovered by our numerics.
Using Eq. (7), it is straightforward to calculate the mean

displacement of the particles from their equilibrium positions
at a given temperature T , and we obtain

〈ul(k)ul(k′)〉 = δk,−k′L2 T

[2μ(k) + λ(k)]k2
,

〈ut (k)ut (k′)〉 = δk,−k′L2 T

μ(k)k2
. (11)

B. Quantum softening of the Lamé coefficients

We now include quantum effects on the Lamé coefficients
by quantizing the phonons. This can be done in several
ways. Here, we use the path integral approach since it
allows us to describe the quantum effects on the crystal
melting in terms of a simple geometrical picture of wiggling

FIG. 4. (Color online) (Left) The Lamé coefficient for the lowest
(transverse) mode of the dipoles along b1. The solid and dotted
lines include quantum effects for two different temperatures, and
the dash-dotted line gives the classical limit. (Right) The same for the
highest (longitudinal) mode of the dipolar system. The dashed lines
are the q = 0 results from Eq. (9). Note the significant downward
renormalization due to quantum fluctuations.
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FIG. 5. (Color online) (Left) The Lamé coefficient for the lowest
(transverse) mode of the charge particles along b1. The solid and
dotted lines include quantum effects for two different temperatures,
and the dash-dotted line gives the classical limit. (Right) The same for
the highest (longitudinal) mode of the charged particles. The dashed
line is obtained from Eq. (10).

particle trajectories described in the introduction. For com-
pleteness, we also present a canonical quantization approach in
Appendix B.

The partition function Z for the crystal can be written
as an integral over all possible paths u(r,τ ) of the particle
displacements in imaginary time τ as [27]

Z =
∫

D[u(k,τ )]e− ∫ β

0 dτ [Fkin(τ )+Fel(τ )], (12)

where Fkin(τ ) = ρ
∑

k |∂τ u(k,τ )|2/2L2 is the kinetic energy,
ρ is the 2D mass density, and the elastic energy Fel(τ ) is
given by Eq. (7) with the replacement k → (k,τ ). We do not
include permutations of the particle positions at the boundary
τ = β of the imaginary time slab, so the boundary condition in
Eq. (12) is u(r,β) = u(r,0). At this level of approximation, we
therefore cannot distinguish between bosonic and fermionic
particles. We can from Eq. (12) calculate the fluctuations of
the particles including quantum effects,

〈uσ (k,τ )uσ (−k,τ )〉 = L2β

ρ

∑
n

1

ω2
n + ωσ (k)2

= L2

2ρωσ (k)
coth[βωσ (k)/2)], (13)

where the sum is over Matsubara frequencies ωn = 2nπT and
phonon modes σ = t,l. Recasting this result in the form of
Eq. (11) defines the quantum Lamé coefficients μQ(k) and
λQ(k) as

μQ(k) = 2T
√

ρμ

k
tanh

(√
μ

ρ

k

2T

)
,

2μQ(k) + λQ(k) = 2T
√

ρ(2μ + λ)

k
tanh

(√
2μ + λ

ρ

k

2T

)
,

(14)

where we have suppressed the k dependence of the classical
Lamé coefficients μ(k) and λ(k) for notational simplicity.
Equation (14) reveals that the magnitude of quantum effects
on the Lamé coefficients is determined by the parame-
ters

√
μ/ρk/T = ωt/T and

√
(2μ + λ)/ρk/T = ωl/T . For

ωσ/T → 0 we recover the classical results given by Eq. (8),

whereas the elastic coefficients are decreased due to quantum
fluctuations whenever ωσ/T � 1.

In Figs. 4 and 5, we plot the quantum Lamé coefficients
along b1 for T/ωD = T/ωC = 1 and T/ωD = T/ωC = 0.2.
We see that quantum effects significantly soften the crystal
for decreasing temperature, and that it is the high energy
fluctuations which are reduced the most. Quantum softening
is therefore greater for the longitudinal mode, reducing
[2μQ(k) + λQ(k)]/[2μ(k) + λ(k)] more than μQ(k)/μ(k).

II. MODIFIED LINDEMANN CRITERIA FOR CRYSTAL
AND HEXATIC MELTING

Since there is algebraic, as opposed to long-range transla-
tional order in a 2D crystal when T > 0 [39], it is not possible
to estimate the melting temperature of the crystal from a
usual Lindemann criterion, as discussed in the introduction.
We will therefore use a modified Lindemann criterium for the
melting. Our basic assumption is that the melting of the crystal
occurs in two steps with increasing temperature [3,23,40].
First, the crystal melts at a temperature Tm into a hexatic phase,
characterized by long-range bond angle order but short-range
translational order. Then, at a higher temperature Ti the hexatic
phase melts into an isotropic liquid. The existence of the
hexatic phase is well established for classical systems [4],
but our knowledge concerning its stability against quantum
fluctuations is limited. A Monte Carlo study supports the
existence of such a phase in the quantum regime in the case
of distinguishable particles with Coulomb interactions [26].
We therefore focus on how quantum fluctuations affect the
stability of the hexatic phase.

A. Melting of the crystal phase

To calculate the temperature Tm where the crystal melts
into the hexatic phase, we will use the modified Lindemann
criterion given by Eq. (1). It states that the crystal melts when
the relative fluctuations of the particle positions of two nearest
neighbors are larger than the lattice constant a. Using the
quantum Lamé coefficients in Eq. (11) yields

δu2
i = 〈|ui(r) − ui(0)|2〉 = T

2

L2

∑
k

(1 − cos k · r)

×
[

εl,i(k)2

[2μQ(k) + λQ(k)]k2
+ 1 − εl,i(k)2

μQ(k)k2

]
, (15)

for the fluctuations along a specific direction i = x or i = y.
Here, εl,i(k) is the ith component of the eigenvector of the
highest mode.

The melting temperature for the crystal phase in the
classical limit was reported to be Tm � 0.0907D2/a3 for
dipoles [36,41], and Tm � 0.0136Q2/a for charged particles
[15]. From these results, we can determine the Lindemann
number in the classical regime. Using Eqs. (1) and (15) with the
classical Lamé coefficients to calculate the particle fluctuations
at the classical melting temperature yields

γm,cl = 0.14 dipoles, γm,cl = 0.15 charges. (16)

We see that the classical Lindemann numbers are essentially
the same for the dipoles and the charged particles. This result
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suggests that melting is mainly determined by the geometry of
the crystal, depending very weakly on the detailed form of the
interaction potential so that the Lindemann number is almost
universal.

As discussed in the introduction, we expect that the
Lindemann numbers in general depend on temperature due to
quantum effects. We can determine the Lindemann number γm

at T = 0 using recent quantum Monte Carlo results suggesting
a T = 0 quantum phase transition between the crystal phase
and the liquid phase: For dipoles, two independent calculations
give the value rD � 18 ± 4 [11,12], and for distinguishable
charged particles one obtains the value rC � 127 for the
critical value of this quantum phase transition [26]. Here, the
r parameters,

rD = mD2

a
dipoles, rC = mQ2a charges, (17)

are the ratios between the nearest neighbor interaction energy
and the quantum kinetic energy. Using the T → 0 limit of
Eq. (14) in Eq. (15), we obtain

〈|ui(r) − ui(0)|2〉 = 1

ρL2

∑
k

(1 − cos k · r)

×
[
εl,i(k)2

ωl(k)
+ 1 − εl,i(k)2

ωt (k)

]
(18)

for T = 0. Equation (18) predicts as expected that the zero
point motion of the particles scale as the typical harmonic os-
cillator length for the phonons, i.e., δu2 ∼ 1/mωD for dipoles
and δu2 ∼ 1/mωC for charged particles. Using Eq. (18), we
can determine the Lindemann number for T = 0 at the critical
coupling strength for the quantum melting transition, obtaining

γm,0 = 0.31 dipoles, γm,0 = 0.31 charges. (19)

The Lindemann numbers are again the same for the dipoles and
the charges at this level of accuracy, indicating that the melting
of the crystal phase is primarily determined by geometry also at
T = 0. The T = 0 value of γm at the critical point is consistent
with what was obtained using perturbation theory [42].

Comparing Eqs. (16) and (19) shows that the Lindemann
numbers are significantly larger at T = 0 than in the classical
regime. As discussed in the introduction, the path integral
approach provides a simple geometrical interpretation of this
result. Indeed, from Eq. (12) it is clear that the quantum
problem corresponds to the melting of a crystal of lines in
a 3D slab of thickness β (see Fig. 1). Only when β → 0
does one recover the classical problem of the melting of a 2D
crystal. Since the lines can wiggle significantly along the β

direction without melting the crystal, it is natural to expect
that the Lindemann number is larger in the quantum regime as
compared to the classical regime.

B. Melting of the hexatic phase

In the two-step melting scenario, the system is in a
hexatic phase characterized by extended bond angle order for
temperatures Tm < T < Ti . We therefore use the Lindemann
criterion based on the fluctuations in the bond angle θ given
by Eq. (2). Fourier transforming Eq. (11) using the quantum

Lamé coefficients gives after some algebra,

〈θ2〉 = T

4L2

∑
k

[
(k × εl(k))2

[2μQ(k) + λQ(k)]k2
+ (k × εt (k))2

μQ(k)k2

]
,

(20)

where εt (k) is the eigenvector of the lowest mode. For an
isotropic medium where εl ‖ k and εt ⊥ k, Eq. (20) reduces to

δθ2 = T

4L2

∑
k

1

μQ(k)
, (21)

i.e., the bond angle fluctuations are determined by the
transverse mode only. Since a hexagonal crystal is equivalent
to an isotropic medium for long wavelengths [21], and since
it is these low energy modes which contribute most to the
fluctuations, Eq. (21) turns out to be a very good approximation
to Eq. (20).

To determine the Lindemann numbers for the hexatic phase,
we again use results for the melting temperatures reported
in the literature. The melting temperature of the hexatic
phase in the classical limit was found to be Ti � 0.0968U (a)
with U (a) = D2/a3 for dipoles [36], and Ti � 0.0159U (a)
with U (a) = Q2/a for charged particles [15]. Using these
temperatures and the classical Lamé coefficients in Eq. (20)
yields

γi,cl = 0.12 dipoles, γi,cl = 0.13 charges, (22)

for the Lindemann numbers determining the melting of the
hexatic phase in the classical regime. As for the crystal phase,
the Lindemann numbers are essentially the same for the dipoles
and the charged particles, suggesting again that melting of the
hexatic phase is a geometric phenomenon, largely independent
of the precise form of the interaction.

The T = 0 Monte Carlo calculations for the dipoles did
not examine the quantum hexatic phase [11,12], so it is
presently not known whether it exists all the way down to
T = 0. In the case of distinguishable “Boltzmannian” charged
particles, it was found that the hexatic phase persists to
quite low temperatures where quantum effects are significant,
disappearing in a tricritical point at T � 0.04U (a) [26]. Since
our analysis indicates that, for a given value of n0�

2
T , the

melting is insensitive to the detailed form of the interaction
potential, this Monte Carlo result suggests that the hexatic
phase persists deep into the low temperature regime both for
dipoles and for charged particles. It is therefore interesting to
evaluate the Lindemann numbers at T = 0 for the bond angle
fluctuations. Using the T = 0 limit of Eq. (20),

δθ2 = 1

8ρL2

∑
k

[
(k × εl(k))2

ωl(k)
+ (k × εt (k))2

ωt (k)

]
, (23)

yields

γi,0 = 0.23 dipoles, γi,0 = 0.24 charges, (24)

at the quantum quantum transition points rD � 18 and rC �
127 for dipoles and charged particles, respectively. Again, the
angle fluctuations differ very little between the dipolar and
the charged systems. The precise values of the Lindemann
numbers may, of course, differ at the exact boundaries of
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the hexatic phase in the quantum regime, which are presently
unknown.

As we discussed, the melting of the hexatic phase is
determined almost exclusively by the lowest phonon mode
in the sense that Eq. (21) is an excellent approximation to
Eq. (20). In addition, the lowest phonon mode is less affected
by quantum fluctuations than the highest phonon mode. It
follows from this that the hexatic phase is more robust towards
quantum fluctuations compared to the crystal phase, and as a
result the hexatic region in the phase diagram should increase
with decreasing potential/quantum-kinetic energy ratio r . This
conclusion depends of course on the assumption that the
Lindemann numbers are independent of temperature, so we
expect it to be valid only when the quantum corrections are
small. When the temperature dependence of the Lindemann
numbers is significant we cannot determine the fate of the
hexatic without further information.

III. PHASE DIAGRAMS

In this section, we provide approximate phase diagrams,
using the fact that the melting of the crystal and hexatic phases
are insensitive to the detailed form of the interaction potential.
However, by comparing the values of the Lindemann numbers
in the classical regime and at T = 0 given by Eqs. (16) and (19)
we see that they depend on temperature. To provide a tentative
phase diagram, we therefore write the Lindemann number
determining the crystal melting on the phenomenological
form,

γm(T ) = γm,0 + (γm,cl − γm,0)

(
T

Tm

)n

, (25)

which interpolates between the T = 0 value and the classical
value for T = Tm. We write γi(T ) in the same phenomeno-
logical form. To determine n, we compare the phase diagram
produced by these phenomenological forms with the phase
diagram obtained by Monte Carlo calculations for distinguish-
able charged particles in Ref. [26]. It turns out that n = 6
yields a reasonable good fit as is shown in Fig. 6. It must
be emphasized that we have not performed a systematic fit
to determine the optimal value of n, since this is not relevant
at this level of approximation, where our goal is simply to
provide a qualitatively reliable phase diagram. The detailed
form of the actual phase diagram could be different. For
instance, our analysis does not reproduce the tricritical point
at T � 0.004U (a) found in the Monte Carlo calculations.
Instead, we have chosen to let the hexatic and crystal phases
continue down to rC � 95 for T = 0 corresponding to the
Lindemann numbers γi,0 = 0.25 and γm,0 = 0.33. Moreover,
as stressed in the introduction, for the case of a Yukawa
potential, a quantum hexatic phase could exist for a finite
parameter range even at T = 0. Note that there is no significant
increase in the temperature range for which the hexatic phase
is stable with decreasing rC in Fig. 6. This is because the
phenomenological form for the temperature dependence of the
Lindemann numbers given by Eq. (25) with n = 6 essentially
cancels this effect for the temperatures shown.

In Fig. 6, we also plot as dashed lines the critical
temperatures in the classical limit. We see that the quantum
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FIG. 6. (Color online) Approximate phase diagram of the
charged particles as a function of the rescaled temperature T/(Q2/a)
and the potential/quantum-kinetic energy ratio rC , using temperature-
dependent Lindemann constants determined by Eq. (25) with n = 6.
The dashed lines are the classical limits for rC � 1, and the ×’s and
+’s are numerical Monte Carlo data from Ref. [26].

suppression of the critical temperatures is significant even for
rC ∼ O(100), where one would naively expect the system to
be well within the classical regime. The enhanced importance
of quantum fluctuations arises because the classical melting
temperatures of the crystal and hexatic phases are so low with
Tm/U (a) = 0.0136 � 1 and Ti/U (a) = 0.0159 � 1. Since
quantum softening of the Lamé coefficients sets in for T/ωC �
1, and T/ωC = √

rCT /U (a) with Tm/U (a) � 1 in the hexatic
and crystal phases, the classical melting temperature is only
recovered for rC � 1.
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FIG. 7. (Color online) Approximate phase diagram of the dipoles
as a function of the rescaled temperature T/(D2/a3) and the
potential/quantum-kinetic energy ratio rD , using temperature-
dependent Lindemann constants determined by Eq. (25) with n = 6.
The dashed lines are the classical limits for rD � 1.
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In Fig. 7, with applications to cold dipolar gases in mind, we
plot our tentative phase diagram for dipolar charges obtained
from the Lindemann criteria using temperature-dependent
Lindemann numbers given by Eq. (25) with n = 6. As for the
charged case, quantum effects on the melting are significant
even for rD � 1 since the classical critical temperatures are
so low with Tm/U (a) � 1 and Ti/U (a) � 1. As for the case
of charged particles, there is no significant increase in the
temperature range where the hexatic phase is stable with
decreasing rD due to the chosen temperature dependence of
the Lindemann numbers. Again, this phase diagram is only
qualitatively reliable but it suggests that the hexatic phase
extends well into the quantum regime.

IV. EXPERIMENTAL CONSIDERATIONS

The hexatic phase and other aspects of melting for aligned
2D dipolar systems have been observed with great precision
in the classical regime in experiments using colloidal particles
with a magnetic moment, confined to an air-water interface
[4]. On the other hand, the quantum analog of the hexatic
phase is yet to be explored. The cold assemblies of dipolar
molecules seem well suited to study both the classical and the
quantum regimes of 2D melting. The typical dipole moment
of these molecules is of the order of one Debye. Taking as
an example the recently trapped 23Na40K molecule which has
a permanent dipole moment of d = 2.7 Debye [6,43], one
gets rD � 24 for an average interparticle spacing of 300 nm,
which is well inside the quantum regime as can be seen from
Fig. 7. The critical temperature for the hexatic phase in the
classical regime is T � 0.2 μK for this set of parameters. Even
though the critical temperature will be lower in the quantum
regime we estimate that the quantum hexatic phase should
be within experimental reach once the cooling techniques for
the dipolar gases have been optimized. One can furthermore
reach much higher critical temperatures using molecules with
larger dipole moments such as SrO with d = 8.9 Debye. The
presence of the hexatic phase can be detected by measuring
the static structure factor via Bragg spectroscopy which is a
well-proven experimental probe for quantum gases [44–46].
In the hexatic phase, the structure factor will exhibit a sixfold
symmetry with no sharp peaks similar to what it is shown in
Fig. 2. Recent impressive experiments have reported single
atom resolution in optical lattices [47,48], and if one is able to
achieve the same resolution with dipolar systems, the hexatic
phase can be seen directly by the characteristic presence of
lattice defects consisting of tightly bound disclination pairs,
i.e., particles with five and seven neighbors, respectively [3].

V. CONCLUSIONS

In this paper, we analyzed the stability of the crystal and
hexatic phases of 2D systems consisting of either dipoles
or charges. The classical elastic coefficients were calculated
from the phonon spectra of the triangular crystal, and we then
demonstrated how quantum effects decrease these coefficients
thereby softening the crystal. Using Lindemann criteria suit-
ably adapted to deal with the large fluctuations in 2D systems,
we calculated approximate phase diagrams for the existence of
the hexatic and crystal phases, predicting that the hexatic phase

is stable to very low temperatures. The relevant Lindemann
numbers were extracted from experiments in the classical
regime, and from Monte Carlo calculations for T = 0. The
Lindemann numbers depend strongly on temperature, but they
turn out to be essentially the same for the charged and the
dipolar system for the same value of n0�

2
T . This suggests that

the two-step melting of the crystal phase with an intermediate
hexatic phase is a geometric phenomenon, insensitive to the
detailed form of the particle interaction. Finally, we discussed
the exciting prospect of finally being able to probe the existence
hexatic phase in the quantum regime using ultracold dipolar
gases.
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APPENDIX A: EWALD SUMMATION

The phonon modes are as usual found by solving the matrix
equation [25],

mω2ε(k) = D(k)ε(k), (A1)

where D(k) = ∑
R D(R) exp(−k · R) is the dynamical matrix

with R the lattice vectors. We have

Dij (R) = E0 ×
{∑

R�=0

[
(n + 2)nRiRj

Rn+4 − n
δij

Rn+2

]
R = 0

n
δij

Rn+2 − (n + 2)nRiRj

Rn+4 R �= 0,

(A2)

for repulsive power law potentials V (r) = E0/rn with n = 1
and E0 = Q2 for the charged particles, and n = 3 and E0 =
D2 for the dipoles. We can write D(k) as

Dij (k) = E0 lim
u→0

∂2

∂ui∂uj

∑
R�=0

1

|R + u|n (1 − e−ik·R). (A3)

Using r−n = (n + 1)π−1/2
∫ ∞

0 dyyn−1e−r2y2
with n = 1,3 and

splitting the integral into a short-range and a long-range
part, i.e.,

∫ ∞
0 dy · · · = ∫ y0

0 dy · · · + ∫ ∞
y0

dy · · · , the sum in
Eq. (A3) is split into a short-range and a long-range part,
D(k) = D<(k) + D>(k). Upon defining the function,

ϕn(x) = 2√
π

∫ ∞

1
dttne−tx2

, (A4)

we get

D>
ij (k) = E0

n + 1

2
yn+2

0

∑
R�=0

(1 − e−ik·R)

× [
2y2

0RiRjϕn/2+1(y0R) − δijϕn/2(y0R)
]
. (A5)
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The short-range part of the sum is evaluated by
Fourier transforming. Writing

∑
R�=0(1 − e−ik·R) exp(−|R +

u|2y2) = F1(u,y) − exp(k · u)F2(u,y) and Fourier transform-
ing the functions Fi(u,y) which have the same periodicity as
the lattice yields after some algebra,

D<
ij (k) = E0

n + 1

4πv
yn−2

0

∑
K

[(K + k)i(K + k)jϕ−n/2

× (|K + k|/2y0) − KiKjϕ−n/2(|K|/2y0)], (A6)

where v = √
3a2/2 is the area of the primitive cell of the

lattice, and K are reciprocal lattice vectors. With Eqs. (A5)
and (A6) we have split the expression for D(k) into two
fast converging sums. These expressions agree with what is
found in Refs. [49,50]. We pick y0 = 1/a for the numerical
calculations.

APPENDIX B: CANONICAL QUANTIZATION OF THE
PHONONS

For clarity, we briefly discuss how quantum effects on the
Lamé coefficients are included via canonical quantisation. In
this approach, we introduce the bosonic annihilation operators
b̂kσ for the phonons via

ûσ (k) = L√
2ρωσ (k)

(b̂kσ + b̂
†
−kσ ), (B1)

where σ = l,t . Using 〈b̂†kσ b̂kσ 〉 = [eβ�ωσ (k) − 1]−1, we obtain

〈ûσ (k)ûσ (−k)〉 = L2

ρωσ (k)

(
1

eβωσ (k) − 1
+ 1

2

)

= L2

2ρωσ (k)
coth[βωσ (k)/2)], (B2)

which is identical to Eq. (13).
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