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Dynamic stabilization of cubic CaSiO3 perovskite at high temperatures and pressures from ab initio
molecular dynamics
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The stability of cubic CaSiO3 perovskite (CaPv) at high temperatures and pressures is investigated by
vibrational normal-mode analysis. We compute power spectra of mode autocorrelation functions using a recently
developed hybrid approach combining ab initio molecular dynamics with lattice dynamics. These power spectra,
together with the probability distributions of atomic displacements, indicate that cubic CaPv is stabilized at
T ∼ 600 K and P ∼ 26 GPa. We then utilize the concept of phonon quasiparticles to characterize the vibrational
properties of cubic CaPv at high temperature and obtain anharmonic phonon dispersions through the whole
Brillouin zone. Such temperature-dependent phonon dispersions pave the way for more accurate calculations of
free-energy, thermodynamic, and thermoelastic properties of cubic CaPv at Earth’s lower mantle conditions.
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I. INTRODUCTION

CaSiO3 perovskite (CaPv) is believed to be the third most
abundant mineral in the Earth’s lower mantle (6 to 12 wt %).
It is also the last major mantle phase whose structural and
elastic properties have not been well characterized [1–4].
The structure of CaPv was initially proposed to be cubic
with a space group Pm3̄m [5–8]. However, harmonic phonon
calculations revealed that cubic CaPv contains unstable normal
modes with imaginary frequencies at all pressures (P ) [1].
Subsequent experiments also indicated that cubic CaPv is
unstable at room temperature (T ) [2,9,10], leading to the
present understanding on the structure of CaPv, i.e., a slightly
distorted noncubic structure, either tetragonal [1,11–13] or
orthorhombic [14,15] at low T , which transforms into the
cubic phase at high T . Unfortunately, the P -T conditions
under which cubic CaPv is stabilized are under debate, still.
X-ray-diffraction experiments conducted by Komabayashi
et al. [16] identified the transition temperature as between 490
and 580 K at 27 to 72 GPa, in accordance with earlier studies
by Ono et al. [10] and Kurashina et al. [9], while a more
recent experiment suggested CaPv remains noncubic with a
space group Pbnm or Cmcm up to 18 GPa and 1600 K [17].
Resolving the stability of cubic CaPv at Earth’s lower mantle
conditions (23 < P < 135 GPa and 2000 < T < 4000 K)
is important for the interpretation of seismic data, as
cubic and noncubic CaPv may have very different sound
velocities [11,18].

The high-temperature stabilization of cubic CaPv has
been the subject of several theoretical studies. Adams and
Oganov conducted ab initio molecular dynamics (AIMD)
in a metrically cubic supercell [15]. By examining the
hydrostaticity of the time-averaged stress tensor, they found
the transition temperature to cubic CaPv to be between 1000
and 2000 K. A similar conclusion was obtained by Stixrude
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et al. [11] using Landau mean-field theory. In contrast, AIMD
carried out by Li et al. [19,20] found the hydrostatically
compressed structure to be tetragonal up to 4000 K. The lack
of consensus between theoretical and experimental studies
calls for further investigations with new perspectives and
methods.

Here we address the stability of cubic CaPv by computing
its temperature-dependent phonon dispersion, which has not
been determined yet. The underlying idea is that the frequency
shifts of soft modes induced by temperature can be good indi-
cators of displacive phase transitions [21,22]; i.e., once cubic
CaPv is stabilized, all of its vibrational normal modes should
be stable, having positive frequencies. The characterization of
normal modes and the calculation of temperature-dependent
phonon dispersions of CaPv are conducted using a recently
developed computational scheme [23]. This scheme consists
of two steps. In the first step, mode projected velocity autocor-
relation functions and the corresponding power spectra, which
numerically define phonon quasiparticles, are computed by
projecting ionic velocities obtained from AIMD trajectories
onto vibrational normal modes. After the existence of phonon
quasiparticles is verified, renormalized phonon frequencies
and lifetimes are extracted [23]. In the second step, effective
dynamical matrices are constructed using the renormalized
phonon frequencies and the phonon polarization vectors.
Complete phonon dispersions and vibrational density of states
are then obtained by Fourier interpolation. These dispersions
can be used to determine accurately the entropy and free energy
of cubic CaPv in the framework of the phonon gas model
(PGM) [24–26].

The paper is organized as follows: we first review the
method used in Sec. II. Simulation details are reported in
Sec. III. Section IV contains our main results: dynamic sta-
bilization of cubic CaPv and the corresponding temperature-
dependent phonon dispersion. In Sec. V, we discuss how the
system’s vibrational entropy is affected by the temperature de-
pendence of phonon frequencies. We also check the accuracy
of our approach by comparing the calculated entropy with that
predicted by the formally exact thermodynamic integration
(TI) method. Conclusions are reported in Sec. VI.
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II. METHOD

As a method based on the PGM, the present approach [23]
relies on the existence of phonon quasiparticles with well-
defined frequencies and lifetimes [26]. While for simple
materials this prerequisite can be verified by inelastic neutron
or x-ray-scattering spectroscopy [27,28], at present such
verification is not feasible for complex minerals such as CaPv.
The present approach allows substantiating the existence of
phonon quasiparticles from the start.

Consider an AIMD simulation conducted in a N1 × N2 ×
N3 supercell; the power spectrum of the velocity autocorrela-
tion function is defined as

〈vls · vls〉ω =
∑

α

∫ ∞

0
〈vlsα(0)vlsα(t)〉eiωtdt, (1)

where vls denotes the mass-weighted velocity of particle s in
the unit cell l. vlsα is its α-Cartesian component. In general
〈vls · vls〉ω contains multiple peaks. Each peak corresponds to
a vibrational normal mode involving the particle labeled by l

and s. The total vibrational density of states (VDOS) of the
supercell is given by

∑
ls〈vls · vls〉ω [21,29].

To better resolve individual phonons, vls is first projected
onto different wave vectors. Translational symmetry gives

vqs =
∑

l

vlse
−iq·Rl , (2)

where the wave vector q is commensurate with the supercell
size. The resulting power spectrum is

〈v∗
qs · vqs〉ω =

∑
α

∫ ∞

0
〈v∗

qsα(0)vqsα(t)〉eiωtdt. (3)

The spectrum
∑

s〈v∗
qs · vqs〉ω contains contributions from all

the vibrational modes with wave vector q [29,30].
Complex materials such as CaPv contain several vibrational

modes with very similar frequencies and their spectral profiles
overlap in

∑
s〈v∗

qs · vqs〉ω . In these cases a further projection
is necessary:

vqj =
∑
sα

vqsαê∗
α(s|qj ), (4)

where ê(s|qj ) is the polarization vector of the harmonic
phonon with wave vector q and branch j . The power spectrum
of the autocorrelation function for vqj is simply

〈v∗
qj vqj 〉ω =

∫ ∞

0
〈v∗

qj (0)vqj (t)〉eiωtdt. (5)

A single peak with a Lorentzian line shape in 〈v∗
qj vqj 〉ω

indicates a well-defined phonon quasiparticle [26]. The peak
position corresponds to the renormalized phonon frequency
ω̃qj . The linewidth is inversely proportional to the phonon
lifetime [26]. Inspection of the 〈v∗

qj vqj 〉ω spectra can verify
whether phonon quasiparticles are well defined in the sys-
tem [26]. If 〈v∗

qj vqj 〉ω resembles Lorentzian functions, then
their renormalized frequencies ω̃qj can be thus obtained. This
way, ω̃qj of all phonons sampled by the supercell can be
obtained.

The next step is to calculate renormalized phonon disper-
sions in the whole Brillouin zone. Recall that for harmonic

phonons
∑

s ′β Dαβ(ss ′|q)êβ(s ′|qj ) = ω2
qj êα(s|qj ), where D is

the harmonic dynamical matrix. Replacing ω2
qj with ω̃2

qj and
applying the orthonormality condition of polarization vectors
one gets an effective dynamical matrix D̃ as

D̃αβ(ss ′|q) =
∑

j

ω̃2
qj êα(s|qj )ê∗

β(s ′|qj ). (6)

The effective dynamical matrix D̃ has the same eigenvectors as
its harmonic counterpart D, while its eigenvalues are renormal-
ized from ω2

qj to ω̃2
qj . A discrete Fourier transformation on D̃

gives an effective harmonic force constant matrix in real space.
The dynamical matrix of arbitrary wave vector q can then be
built and diagonalized to get renormalized phonon frequencies.
Note that, in constructing the real space force constant matrix
for polar crystals such as CaPv, short-ranged forces need
to be separated from long-ranged dipole-dipole interactions
to ensure rapid spacial convergence of the interatomic force
constants [31].

The projection as defined in Eq. (4) assumes tacitly that
the polarization vectors of phonon quasiparticles at finite
temperatures are the same as those of harmonic phonons
ê(s|qj ), and anharmonic effects are taken into account by
the renormalized phonon frequencies and lifetimes only. This
assumption is in accordance with standard many-body theory,
where ê(s|qj ) can be chosen as an unperturbed basis and
each phonon acquires through anharmonic interactions a
temperature-dependent self-energy [32]. The real and imag-
inary parts of the phonon self-energy correspond to the
frequency shift and the inverse lifetime, respectively [26,32].
It will be shown that this assumption works well in the
temperature range where cubic CaPv is stable.

III. SIMULATION DETAILS

Simulations were conducted using the plane-wave pseu-
dopotential method as implemented in the QUANTUM ESPRESSO

software [33]. Harmonic phonon frequencies and polarization
vectors were calculated using density-functional perturba-
tion theory (DFPT) [34]. The local-density approximation
(LDA) [35] was chosen for the exchange-correlation functional
as previous calculations showed LDA gives the best equation
of states for CaPv [11–13]. The pseudopotentials for Ca, Si,
and O were generated by Vanderbilt’s method [36]. The refer-
ence electronic configurations and the core radii for all angular
quantum numbers l (in parentheses) are 3s23p64s14p03d0

(2.0 a.u.), 3s23p13d0 (1.6 a.u.), and 2s22p4 (1.4 a.u.) for
Ca, Si, and O, respectively. The static equation of state and
harmonic phonon dispersions of cubic CaPv determined using
these pseudopotentials are in excellent agreement with those
in literature [1,12].

CaPv was simulated with a 2 × 2 × 2 cubic supercell
containing 40 atoms. The 2 × 2 × 2 supercell is the minimum
size to sample the unstable phonon modes at q vectors
R ( 1

2 , 1
2 , 1

2 ) and M ( 1
2 , 1

2 , 0). On the other hand, our cal-
culations confirmed that this cell is sufficiently large to get
spatially converged interatomic force constants for harmonic
phonon interpolations [1,12]. Because the anharmonic parts
of interatomic forces have shorter ranges than the harmonic
components [37], the 2 × 2 × 2 cell with 40 atoms should
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also be adequate to obtain converged effective harmonic
force constants. The plane-wave energy cutoff was set to
36 Ry. A higher cutoff (60 Ry) changed the equilibrium
lattice parameter of cubic CaPv by merely 0.001 Å. Since
previous studies have shown insufficient k-point sampling can
bias the calculated stresses and lead to incorrect hydrostatic
structures [11], we carefully checked the convergence of
stresses with respect to k-point sampling. We found that using
the gamma point only would cause errors of more than 1 GPa
in the calculated stresses, while the stresses calculated on a
shifted 2 × 2 × 2 Monkhorst-Pack k-point mesh [38] differed
from those on a shifted 4 × 4 × 4 k-point mesh by less than
0.02 GPa. Thus we chose the shifted 2 × 2 × 2 k-point mesh
(four k points) for all our calculations.

To study the intrinsic temperature dependence of phonon
frequencies, we conducted Born-Oppenheimer molecular dy-
namics [39] using the NV T ensemble with a Nose-Hoover
thermostat [40]. The temperature ranged from 10 to 4500 K.
The lattice parameter of the unit cell was set to 3.45 Å. It
corresponds to a static pressure of 23 GPa: the pressure at the
top of the lower mantle. At 600 K, this volume corresponds to a
pressure of 26 GPa. The time step was set to 0.97 fs, about 1/30
of the period of the highest-frequency phonon in the system.
To minimize statistical error fairly long simulations (>50 ps)
were carried out at each temperature and the maximum entropy
method [41] was used to compute the power spectra of velocity
autocorrelation functions.

IV. RESULTS

A. Emergence of the cubic symmetry

Before studying vibrational properties, it is useful to first
identify the system’s equilibrium configuration. The ideal
cubic structure [a0a0a0 in Glazer’s notation [42], as illustrated
in Fig. 1(a)] contains modes with imaginary frequencies and
is not the equilibrium structure at 0 K, even though it may
become the preferred structure at high temperatures because
it is more symmetric and has higher entropy. Energetically
more stable structures can be obtained by relaxing the atoms
associated with these unstable modes, tilts (or rotations) of
the SiO6 octahedra [11–13]. A representative tilted structure
is shown in Fig. 1(b). In the following we determine the

FIG. 1. (Color online) CaPv in a 2 × 2 × 2 cubic supercell.
(a) The ideal cubic structure (a0a0a0) being dynamically unstable
at 0 K. (b) The a+b−b− structure with the atomic degrees of freedom
fully relaxed. It is 5.5 meV/atom more stable than a0a0a0. Its tilting
angles in the x, y, and z directions are 1.4, 4.5, and 4.5◦, respectively.
Harmonic phonon calculations indicate that all of its vibrational
frequencies are positive.

equilibrium structure at relevant temperatures by inspecting
the probability distributions of atomic displacements.

Figure 2(a) shows the probability distributions of atomic
displacements with respect to the perfect cubic structure
at 1000 K. For all types of atoms, we see bell-shaped
distribution curves centered at zero displacements. Since the
probability distribution of atomic displacements is maximal at
the equilibrium position around which the atom oscillates [43],
we conclude that the equilibrium structure of CaPv at 1000 K is
a0a0a0. Note that the distribution function of O displacements
is not identical in the three Cartesian directions. It is narrower
(smaller variance) in the z direction compared to the x or
y direction. The variance of the distribution is the mean-
square displacement and the origin of this anisotropy can be
understood as follows: O displacements in the z direction are
associated with SiO6 octahedral stretching. O displacements
in the x or y direction are related to SiO6 octahedral tilting
(rotating). The mean-square displacement in a certain direction
equals kBT /Mω2

0, where ω0 is the frequency of the vibrational
mode polarized in that direction [21]. Because tilting modes
in general are lower in frequency than stretching modes, the
mean-square displacement in the z direction is smaller than in
the x or y direction.

At lower temperature, the atomic vibrations become more
complex. Although the distributions of Ca, Si, and O in the
z-direction displacements still peak at zero, a splitting of the
distribution peak of O in x and y directions develops below
600 K. The split peaks at 150 K locate at 0.12 Å, as shown in
Fig. 2(b). Because the distribution function has two maxima
located at nonzero displacements, the equilibrium structure
at low T is no longer a0a0a0 and is not unique. Since the
splitting is observed only for the O displacements in the x

and y directions, the corresponding equilibrium structures
contain tilted SiO6 octahedra. In this regard, O displacements
of ±0.12 Å correspond to tilting angles of ±4.0◦. In the
MD simulated evolution, atoms first oscillate with respect
to one of the equilibrium structures with a tilting angle of
+θ . As SiO6 octahedra switch their tilting directions due to
thermal fluctuations, atoms will oscillate around a different
tilted structure with opposite tilting angle (−θ ). Such hopping
among different tilted structures gives rise to two peaks that are
nearly symmetric in the distribution function. At T > 600 K,
entropic effects become stronger and the energetic preference
of tilted structures becomes less important, and the two peaks
in the distribution function start to merge into a single one
centered at zero displacement, indicating that the undistorted
cubic structure is the equilibrium configuration.

In our simulation, the time-averaged stress tensors are hy-
drostatic, i.e., 〈σxx〉 = 〈σyy〉 = 〈σzz〉, 〈σxy〉 = 〈σxz〉 = 〈σyz〉 =
0, even at low T (e.g., 50 K). This is in contrast with previous
calculations by Adams and Oganov [15] and Li et al. [19,20].
In these calculations the k-point sampling is limited to the
Gamma point only, which is insufficient to get fully converged
stresses. The apparent hydrostaticity of the time-averaged
stress tensor is due to the fact that SiO6 octahedrons switch
their tilting directions during the MD evolution [15,20] and
the instantaneous nonhydrostatic deviations get canceled in the
time average. Still, there is a fundamental difference, as shown
in Fig. 3. At low T , the correlation function of the off-diagonal
component of the stress tensor 〈σyz(0)σyz(t)〉/〈σyz〉2 decays
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FIG. 2. (Color online) (a) Probability distributions of atomic displacements with respect to the ideal cubic structure (a0a0a0 in Glazer’s
notation [42]) at T = 1000 K. For Ca and Si atoms, the distributions of atomic displacements in the three Cartesian directions are the same,
while for O atoms displacements in the z direction (octahedral stretching) are more restricted than displacements in the x or y direction
(octahedral tilting). (b) Distributions of the O displacements in the x or y direction (octahedral tilting) with respect to the ideal cubic structure
(a0a0a0) at various temperatures.

slowly, indicating that the system is nonhydrostatic in the time
scale of hundreds of femtoseconds. It decays much faster
at high T , and the system is effectively hydrostatic once
the decay time is comparable to or less than the average
vibrational period (∼60 fs). In this high T hydrostatic regime
(�600 K), pressure is defined as (〈σxx〉 + 〈σyy〉 + 〈σzz〉)/3. Its
temperature dependence is given by

P = P0 + γ
(3N − 3)kBT

V
,

where P0 is the static pressure; N and V are the total number of
atoms and the volume of the simulation cell, respectively; and
γ is the thermal Grüneisen parameter. In this case, P0 equals
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FIG. 3. (Color online) Correlation of an off-diagonal component
of the stress tensor σyz at various temperatures.

23 GPa, N equals 40, and V equals 327.23 Å3. We find that γ

shows little temperature dependence and equals 1.34, in good
agreement with that of Adams and Oganov (1.43) [15] and of
Li et al. (1.37) [19,20].

The transition temperature (∼600 K) identified from the
distribution of atomic displacements is close to some exper-
imental observations, where the transition temperature was
determined to be between 490 and 580 K [10,16,44]. While the
agreement is good, we note our approach is rather phenomeno-
logical. In particular, the fixed cubic simulation cell excludes
the fluctuations of lattice strains, which can be important.
The more rigorous way to determine phase boundaries is to
compare directly the free energies of competing phases. The
renormalized phonon frequencies presented in the following
sections make possible more accurate determination of the free
energy of cubic CaPv.

B. Phonons of cubic CaPv

The concept of the phonon is useful to characterize lattice
vibrations. Here we employ the approach described above,
which numerically defines phonon quasiparticles, to study the
evolution of soft modes with temperature in cubic CaPv. This
result has implications on the stabilization of the cubic CaPv
phase.

We have carried out AIMD on a 2 × 2 × 2 cubic su-
percell. Four inequivalent q vectors of the primitive cubic
perovskite cell were sampled: �(0,0,0), X(0,0, 1

2 ), M(0, 1
2 , 1

2 ),
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FIG. 4. (Color online) (a) Power spectrum of the velocity autocorrelation functions projected on different wave vectors. Dotted lines
correspond to the total

∑
ls〈vls · vls〉ω. (b) Power spectrum of individual mode autocorrelation functions with q vector R ( 1

2 , 1
2 , 1

2 ) . Dotted lines
correspond to the

∑
s〈v∗

qs · vqs〉ω at R. The temperature is 1000 K.

and R( 1
2 , 1

2 , 1
2 ). Our approach enables calculations of the

total power spectra
∑

ls〈vls · vls〉ω, the q-projected power
spectra

∑
s〈v∗

qs · vqs〉ω, and the mode projected power spectra
〈v∗

qj vqj 〉ω. Results obtained at 1000 K are summarized in
Fig. 4. Figure 4(a) shows

∑
s〈v∗

qs · vqs〉ω at the four MD
sampled q vectors (solid lines). In the background, the total
power spectra

∑
ls〈vls · vls〉ω is also shown for comparison

(dotted lines).
∑

s〈v∗
qs · vqs〉ω contains the contribution from

all the modes at wave vector q. For cubic CaPv, there are
15 such modes. Although several peaks can be identified
from

∑
s〈v∗

qs · vqs〉ω, corresponding to inequivalent vibrational
modes, e.g, the case for q = �, the spectra of individual modes
are not available. This is because there are modes whose
frequencies are so close that their spectra overlap with each
other, in contrast with the situation in simple crystals, e.g.,
MgO [45]. Fortunately, our approach allows the calculation
of the power spectra for individual modes, 〈v∗

qj vqj 〉ω, i.e.,
the formalism encapsulated in Eqs. (4) and (5). Note that in
Eq. (4) the polarization vector ê(s|qj ) is obtained with the
perfect cubic structure a0a0a0. Mode projected power spectra
are shown in Fig. 4(b) for those modes at the wave vector
R. The convention of R. A. Cowley (see [46,47]) is used to
indicate the symmetries of these modes. The spectrum of each
mode with a single peak with a Lorentzian line shape indicates
that the phonon quasiparticle is well defined. It is interesting
to point out that the threefold degenerate R25 modes having a
harmonic frequency of 148i cm−1 now have a real frequency
of 102 cm−1, as seen in Fig. 4(b). Similar effects are also found

in other modes with imaginary harmonic frequencies, e.g., the
M2 mode with wave vector M. This indicates that the cubic
phase at 1000 K is dynamically stable.

At low T , where cubic CaPv is unstable, normal-mode
projections using the polarization vectors of harmonic phonons
can be futile. This is illustrated in Fig. 5, which shows the
power spectra of the mode autocorrelation function of R25

with q vector R. At 150 K the spectrum contains two well-
separated peaks and does not represent a well-defined phonon
quasiparticle. The breakdown of normal-mode projections at
low T is not surprising; after all, we are using the polarization
vectors of harmonic phonons of the perfect cubic structure
a0a0a0 to carry out the projection, while in this temperature
regime the equilibrium structure around which the atoms
oscillate is not a0a0a0, as illustrated in Fig. 2. The extra peak in
the power spectrum gets diminished at T ∼ 600 K, consistent
with the fact that the equilibrium structure takes on a0a0a0 at
this temperature.

The above analysis of normal-mode spectra indicates that it
is proper to employ the concept of the phonon quasiparticle to
depict lattice vibrations of cubic CaPv at T > 600 K. Figure 6
shows the temperature dependence of phonon frequencies
of cubic CaPv obtained under constant volume conditions,
where the frequency shifts are caused by intrinsic temperature
effects only (without thermal expansion). To compare the
strength of intrinsic anharmonicity of each mode, frequencies
are normalized by those at 600 K. We find that, for modes with
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FIG. 5. Power spectra of the mode autocorrelation function of
R25 with q vector R ( 1

2 , 1
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2 ) at low temperatures.

positive harmonic frequencies, temperature induced frequency
shifts are relatively small, mostly within 5% up to 3500 K.
Among these modes, some, e.g., X′

5(451), show positive shifts
that are nearly linear in T , and others, such as X′

4(895),
show negative shifts that are also linear in T . This linear
T dependence is consistent with lowest-order perturbation
theory [24–26]. Frequency shifts can be either positive or
negative, depending on the details of anharmonic interac-
tions [37]. There are also modes whose frequencies are nearly
temperature independent, such as �15(879) with wave vector
�. This suggests anharmonic effects are particularly weak for
this mode, or alternatively a cancellation of contributions from
the third- and fourth-order anharmonic force constants [26,37].
The largest relative frequency shifts are observed in modes that
were unstable at 0 K. For instance, from 600 to 3500 K the
frequency of M2(113) increases by 62.5%. The frequency of
R25( 85) nearly doubles. Clearly, the unstable normal modes
at 0 K are also the most anharmonic ones. Their renormalized
frequencies show a temperature dependence of

√
T , which

seems to be consistent with the soft-mode model [21,22].
Having obtained the phonon frequencies of the 2 × 2 × 2

supercell, we now consider phonon dispersions in the whole
Brillouin zone. Following the procedure described in Sec. II,
we obtain renormalized phonon dispersions as shown in Fig. 7.
The LO-TO splitting effect, absent in supercell calculations,
is taken into account by adding a nonanalytic contribution to
the dynamical matrix in the long-wavelength limit [34]. We
find that for stable branches (positive harmonic frequencies)
the renormalized and harmonic phonon dispersions are not
very different. This is consistent with results shown in

Fig. 6: the temperature induced frequency shifts of such
modes are relatively small. In contrast, the frequencies of
unstable branches (imaginary harmonic frequencies) get lifted
to positive frequencies in the renormalized phonon dispersions.
At 1000 K, cubic CaPv is stable with respect to normal-mode
displacements of any wavelength.

Recently Hellman et al. [28] proposed a new method to
study lattice dynamics of anharmonic solids. The basic idea of
the method is to find a set of effective harmonic force constants
that give the best fit of the potential-energy surface generated
by AIMD. This method has been successfully applied to
simple metallic materials that were unstable at 0 K but get
stabilized at high T . Here we use Hellman et al.’s method
to cross-check our approach. As shown in Fig. 7, while in
some parts the phonon frequencies obtained from Hellman
et al.’s method are slightly smaller than those from the velocity
autocorrelation functions, the overall agreement between the
two methods is quite good. However, the present approach
has the advantage that it gives more complete information on
the dynamics of phonon quasiparticles. Besides renormalized
phonon frequencies to compute thermodynamic properties, it
also yields phonon lifetimes which can be used to determine
lattice thermal conductivity [26,30].

V. DISCUSSION

Here we discuss how the temperature dependence of
phonon frequencies affects the system’s vibrational entropy.
We also check the accuracy of our approach by comparing the
anharmonic entropy calculated from renormalized phonon fre-
quencies with that given by the formally exact thermodynamic
integration (TI) method [48]. This serves as a benchmark
for future calculations of thermodynamic properties of cubic
CaPv.

In the PGM, the vibrational entropy Svib is given by

Svib = kB

∑
qj

[(nqj + 1) ln(nqj + 1) − nqj ln nqj ], (7)

where nqj is the Bose-Einstein distribution
[exp(�	qj /kBT ) − 1]−1. In the semiclassical approximation,
the frequencies of quasiparticles 	qj are substituted by
the renormalized frequencies ω̃qj extracted from MD [21].
This approximation works well especially at high T , where
quantum effects are negligible.

In the current simulation, cubic CaPv is stable only at T �
600 K. Thus, to measure anharmonic effects in cubic CaPv,
we use renormalized frequencies at 600 K as a reference and
define the anharmonic vibrational entropy SA as

SA = Svib{ω̃(T )} − Svib{ω̃(600 K)}, (8)

where Svib{ω̃(T )} denotes vibrational entropy calculated from
Eq. (7) using the renormalized phonon frequencies at the
corresponding temperature and Svib{ω̃(600 K)} corresponds to
the vibrational entropy computed from Eq. (7) with phonon
frequencies fixed at those of 600 K. For comparison we also
calculate SA by the TI approach [26,48]. Since the ideal cubic
structure a0a0a0 contains unstable modes with imaginary
frequencies, the relaxed structure a+b−b− shown in Fig. 1(b)
was chosen as the reference harmonic system to carry out
TI calculation. Similar to [23] and [26], we first evaluate the
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FIG. 6. (Color online) Temperature dependence of renormalized phonon frequencies at constant volume. For each inequivalent q vector,
Two modes with the largest positive and one mode with the largest negative temperature dependence are shown. Each mode is labeled by its
symmetry and frequency at 600 K (shown in parentheses in units of cm−1). The plotted frequency and error bar correspond to the mean value
and variance of the frequencies of all symmetrically equivalent modes. Solid lines show the

√
T temperature dependence.

anharmonic part of the free energy FA(T ) from

FA(T )

N − 1
= −kBT

∫ T

0

dT ′

T ′

[
E(T ′) − E0

(N − 1)kBT ′ − 3

]
, (9)

where E(T ′) is the statistical average of the total energy
for the MD simulation carried out at temperature T ′, E0 is
the static energy of the relaxed structure a+b−b−, and N
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FIG. 7. (Color online) Phonon dispersions at 1000 K. The circles
represent the frequencies extracted from the normal-mode correlation
functions. Fourier interpolating these frequencies yields the renormal-
ized phonon dispersions, shown in solid black line. Dashed lines are
the phonon dispersions determined by fitting an effective harmonic
force constant matrix [28]. Harmonic phonon dispersions calculated
with DFPT are shown in orange (light) line.

is the total number of particles in the MD supercell. We
found that an exponential function f (x) = a[exp(−x/r) − 1],
where a and r are fitting parameters, gives the best fit
to [(E(T ′) − E0)/(N − 1)kBT ′ − 3]. Integrating this fitted
function we get FA(T ). The anharmonic part of the entropy SA

was calculated from SA = −∂FA/∂T . To compare with PGM
results, a constant offset was applied such that SA at 600 K
was set to zero.

Figure 8(a) shows the vibrational entropy Svib{ω̃(T )} and
Svib{ω̃(600 K}. We see that their difference is small, with
the anharmonic entropy SA consisting of about 3% of the
total entropy. This is because while some modes in cubic
CaPv are strongly anharmonic, as shown in Fig. 6, the
proportion of such modes is small. The harmonic part of the
entropy still dominates. Accordingly, the thermal equations of
states of cubic CaPv based on harmonic modes work fairly
well [7,44,49,50]. On the other hand, a 3% difference in
entropy is quite significant for determining properties such as
phase boundaries [51,52]. In these cases, anharmonic effects
need to be calculated accurately.

Figure 8(b) compares the anharmonic entropy calculated by
TI and the one from PGM using Eq. (8). The agreement is quite
good and consistent with similar tests on other systems [26].
While TI and PGM give very similar results when applied to
the same supercell, the real advantage of PGM is that it can
use phonon frequencies Fourier interpolated on a much denser
q mesh, therefore overcoming the finite-size effect inherent
in the TI approach. This feature is particularly important
for AIMD, where the size of a simulation cell is seriously
constrained by the current computational capacity [28].
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FIG. 8. (Color online) (a) Vibrational entropy predicted by PGM in the 2 × 2 × 2 supercell. The line labeled as “ω̃(600 K)” denotes the
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frequencies at the corresponding temperatures. (b) Anharmonic entropy of cubic CaPv determined by TI (line) vs the one from PGM using
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VI. CONCLUSIONS

We have used a recently proposed hybrid scheme [23] that
combines ab initio molecular dynamics and lattice dynamics
to study the dynamic stabilization of cubic CaPv at high-
temperature and high-pressure conditions. In contrast with
the other system previously investigated with this method,
MgSiO3 perovskite [23], CaPv is strongly anharmonic. Here,
we presented the first test of this approach to a strongly
anharmonic system. We witness the emergence of the cubic
phase of CaPv from both the real space perspective (in terms
of atomic vibrations) and the phase space perspective (in
terms of phonons). The transition takes place at T ∼ 600 K
and ∼26 GPa, in agreement with some experiments. In
particular, we show that phonon quasiparticles are well defined
once the cubic phase is stabilized. With this knowledge, we
are able to characterize systematically intrinsic anharmonic
frequency shifts in cubic CaPv. In contrast with direct
free-energy methods such as thermodynamic integration, the
current methodology offers a realistic approach for ab initio

free-energy calculations in the thermodynamic limit (N →
∞). Altogether, the current results validate the proposed
methodology and invite further investigation of CaPv over
temperature and pressure ranges of geophysical significance.
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