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Typically, computational screens for new materials sharply constrain the compositional search space, structural
search space, or both, for the sake of tractability. To lift these constraints, we construct a machine learning model
from a database of thousands of density functional theory (DFT) calculations. The resulting model can predict
the thermodynamic stability of arbitrary compositions without any other input and with six orders of magnitude
less computer time than DFT. We use this model to scan roughly 1.6 million candidate compositions for novel
ternary compounds (AxByCz), and predict 4500 new stable materials. Our method can be readily applied to other
descriptors of interest to accelerate domain-specific materials discovery.
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I. INTRODUCTION

Rational, data-driven materials discovery would be an
immense boon for research and development, making these
efforts far faster and cheaper. In such a paradigm, [1,2]
computer models trained to find patterns in massive chemical
datasets would rapidly scan compositions and systematically
identify attractive candidates for technological applications,
such as new batteries, lightweight alloys, solar cells, and so
on. Indeed, machine learning models in particular have been
used to address a number of important physics problems,
including crystal structure prediction (CSP) [3], molecular
atomization energy prediction [4], and approximation of
density functionals [5]. Nonetheless, routine computational
materials discovery remains an elusive goal. Why?

The two greatest barriers to facile computational materials
discovery with a workhorse quantum mechanical tool such
as density functional theory (DFT) [6,7] are (a) missing
atomistic structural information (a necessary DFT input)
and (b) computer resource limitations. As a result, notable
high-throughput discovery efforts to date have had to constrain
either the structural search space, compositional search space,
or both [8–13]. To address the structure issue, much recent
effort in the computational materials field has focused on
CSP [14–17]. CSP traditionally assumes a target composition,
or binary composition range [18], and then performs a global
optimization of crystal unit cell parameters with respect
to energy until the algorithm locates a suitable energy-
minimizing configuration. While CSP is quite successful for
many individual materials of interest [19,20], it is compu-
tationally costly. This point represents the second barrier
to computational materials discovery: thoroughly searching
through the combinatorial explosion of ternary or higher-order
compositions with DFT and CSP is entirely infeasible, and will
likely remain so well into the future.

In the present work, we describe an extremely fast approach
for identifying compositions with desired materials properties,
while removing structure- and resource-based constraints on
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computational materials screening. Our approach relies on
training both heuristic and machine learning (ML) models on a
large database of quantum mechanical calculations on known
materials, and then combining these two models into a unified
prediction method. We describe in more detail the specific
algorithms we employed in the Supplemental Material [21].
Our combined heuristic-ML framework evaluates a single
composition in roughly a millisecond on today’s hardware,
may be trivially parallelized across the search space, and does
not use crystal structure as input (though, of course, it has
been initially trained on several thousand DFT calculations of
ground-state crystal structures); hence, it is able to scan mil-
lions to even trillions of candidate compositions in reasonable
time. We use as a case study the prediction of undiscovered
stable ternary compounds, and produce a ranked list of about
4500 compositions that are likely to represent undiscovered
materials.

Mining information from “big data” has recently garnered
increased interest in both the popular [22] and scientific liter-
ature [23,24], as society grapples with information overload:
Our ability to generate new data has far outstripped our ability
to make sense of it. Science, and in particular computational
science, is a perfect example of the asymmetry between
our capacities for data production and data analysis. In the
materials field, DFT calculations have become commoditized
to the point where individual research groups can calculate
large fractions of all known bulk crystalline materials [25,26].
By far the more urgent matter is, when we want to discover
a new material, knowing where in composition space to point
our computer power.

II. METHODOLOGICAL DETAILS

Our ML-based approach answers this question with a
predictive computational tool, trained on the results of pre-
vious calculations, which may then be used to suggest new
chemistries of interest. In other words, the outcomes of all
prior calculations should inform what we calculate next.
ML concepts have been previously used with success to
predict crystal structure [3,13,14]. These works describe a
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FIG. 1. (Color online) Schematic of our data-driven approach to materials discovery. (a) The creation and evaluation of heuristic and
machine learning models from input quantum mechanical energetics. (b) Our method for identifying likely new ternary compounds. We ran
an extremely large combinatorial list of ternary compositions through both heuristic and machine learning models, and combined these two
models to rank the compositions based on how likely they are to form compounds in nature.

classification model that suggests likely crystal structures
for an input composition based on data-mined chemical
similarities between elements; to obtain energetics, one must
perform DFT calculations on the best candidate structures.
In a similar vein, Bayesian statistics has been used to more
efficiently construct cluster expansions, which in turn can
elucidate ground-state decorations in fixed-lattice mixing
problem [27]. Our approach differs from this previous work in
a few key ways: It immediately provides quantitative property
predictions at arbitrary compositions, such that its outputs can
be used directly for modeling without recourse to DFT or CSP;
it is structure independent, so that we may identify promising
compositions even if their eventual structures do not already
exist in our input database; and it could be trained on any
property of interest, not just thermodynamic stability.

Figure 1 depicts our overall DFT calculation, model
building, and prediction scheme. Our first set of steps
[Fig. 1(a)] results in the construction of a large database of
DFT calculations, two predictive formation energy models
(one heuristic, one ML based), and a quantitative measure
of the models’ accuracies. With validated models in hand, we
proceed to the second set of steps [Fig. 1(b)]: scanning millions
of ternary compositions with the models, ranking the resulting
list by combining the two models, and presenting this list as a
prioritized and nearly exhaustive survey of possible ternaries.
In the rest of this paper, we discuss the details and results of
these processes.

The input to our prediction machinery is a large database of
(composition, formation energy) data points based on outputs
from over 15 000 DFT calculations on various materials,
spanning a wide variety of chemical systems. We discretize
composition space in all binary A-B elemental systems and use
as training data the formation energies at each grid point; for
ternary compositions, we include as ML input only formation
energy values associated with stable compounds (i.e., no
intermediate compositions associated with mixtures of stable
compounds). The structures associated with all calculations are
drawn from the Inorganic Crystal Structure Database (ICSD).
The Supplemental Material contains more details on how we
built our thermodynamic database [21].

We now describe our construction of two types of models,
which we eventually combine into a single stability-prediction
framework. The first is based on a simple but powerful
metallurgical heuristic, which states that the formation energy
in a ternary system can be estimated from a composition-
weighted average of that ternary’s constituent binary formation
energies [28,29]. For example, the heuristic would estimate
the formation energy of a ternary compound ABC as an equal
weighting of binary AB, BC, and AC formation energies, whose
compositions are determined via a simple geometrical con-
struct we describe further in the Supplemental Material [21].
We find that, when we apply this heuristic to our data, it
significantly underestimates the ternary formation energy—
but that this underestimation is remarkably systematic. Using
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linear regression to a fitting set of ternary compounds, we
modify the simple composition-weighted formation energy
(FE) heuristic as follows:

FEmodified = 1.50 FEheuristic − 0.020 eV/atom.

The second model we use is based on formal ML tech-
niques, and in particular consists of ensembles of decision trees
trained to predict formation energies of arbitrary compositions.

We provide in the Supplemental Material a detailed description
of these ML methods [21].

III. RESULTS

We illustrate the performance of the heuristic and ML
models in Fig. 2. For a true test of predictive power, we fit
to 4000 ternaries and withhold �8600 others from either of
the fitting procedures, and compare DFT formation energies

FIG. 2. (Color online) (a) Comparison between DFT-calculated and model-predicted formation energies for �8600 ternary compounds to
which the models were not fit. Both models give excellent R2 scores, and mean absolute errors (MAEs) relative to DFT that are much smaller
in magnitude than typical DFT discrepancies with experiment (�0.25 eV/atom) [30]. (b) Receiver operating characteristic (ROC) curves for
the heuristic, ML model, and the combined heuristic-ML stability-ranking scheme. ROC curves provide a visual comparison of the various
methods’ ability to rank input compositions by thermodynamic stability. Better ranking performance causes the curves to rise above the random
guessing line toward the perfect classifier in the upper left. The inset magnifies the region in the lower left corresponding to a very conservative
classifier—i.e., one that labels only the top few compounds as “very stable.” The combined model performs best in the conservative classifier
regime.
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to the models’ outputs. As shown in Fig. 2(a), both models are
excellent at predicting DFT formation energies to which they
were not fit, with R2 scores above 0.9 and mean absolute
errors (MAEs) well within DFT’s typical agreement with
experiment [30]. We note that expected DFT error is a strong
function of chemistry, and our MAE values are averaged over
an exceptionally wide variety of chemistries, as in Ref. [29].
Our models’ performance carries remarkable implications: In
principle, these models can make formation energy predictions
without any structural input, at six orders of magnitude lower
computational expense than DFT, and without sacrificing the
accuracy of DFT compared to experiment.

Although our models’ numerical predictions of DFT
formation energies are important indicators of accuracy, in
our work, we are asking the models a slightly different
question. We want them to scan vast swaths of ternary
composition space and recommend to us the compositions
most likely to contain undiscovered but stable compounds.
This undertaking amounts to ranking millions of candidate
ternary compositions by their predicted stability. A so-called
receiver operating characteristic (ROC) curve is an established
means of visualizing a ranking-based Boolean classifier’s
performance [31]—in our case, we rank our entire list by
predicted driving force for formation, and declare all members
of the list above a certain threshold “stable.” The rest, by
default, are classified as “unstable.” Because, for discovery
purposes, we are most interested in compositions whose
predicted energies are well below any combinations of known
compounds, we modify the binary classification to be “very
stable” (at least 100 meV/atom below mixtures of currently
known compounds) or “not very stable” (which could mean
simply less stable, or not stable at all).

We depict ROC curves for the heuristic alone, the ML model
alone, and their ensemble in Fig. 2(b), classifying the same set
of �8600 ternary compounds whose formation energies are
known to us but not used to fit models in Fig. 2(a). ROC
curves, generally plotted as true positive rate (TPR) vs false
positive rate (FPR), illustrate the necessary trade-off between
sensitivity (i.e., TPR, or stable compounds classified as stable)
and specificity (i.e., 1-FPR, or unstable compounds classified
as unstable). Each point on a model’s ROC curve corresponds
to a particular choice of stability threshold along the ranked
list of compounds; the bottom left of the plot represents
declaring all compounds unstable, the top right point classifies
all compounds as stable, and the more relevant intermediate
thresholds trace the curves. A perfect classifier (indicated) has
a TPR of 1 and an FPR of 0. The y = x line on the plot gives
the result of random guessing, or randomly shuffling the list of
compounds and choosing arbitrary stability thresholds along
the resulting list; any classifiers above that line (all three, in
this case) are superior to guessing.

Figure 2(b) demonstrates that, at the 100 meV/atom
stability criterion considered here, the ML model alone is
superior to the heuristic alone, even though the heuristic gave
a better R2 score when comparing to DFT formation energies
[Fig. 2(a)]. However, we find that a combined model—formed
by averaging the heuristic and ML rankings for a given
compound—performs best in the region of ROC space most
relevant to us: the bottom left, where the models rank the
highest-priority discoveries associated with a very stringent

cutoff on the ranked list of compounds. In general, we expect
that only the most promising predictions of our model for
new ternary compounds will undergo further investigation,
and this observation corresponds to a conservative model:
one in which only a few top compounds are classified as
stable (i.e., attractive for discovery). As indicated in the inset
to Fig. 2(b), the combined model rises faster than either
model alone, and maintains its performance lead over the
ML model until FPR � 0.3. The superior performance of
our hybrid model is a direct result of ensembling, which is a
well-established machine learning strategy to create combined
models whose predictions are more reliable than any of the
constituent methods alone [32].

With the robustness of both the heuristic and ML stability-
ranking models established, we turn now to discovery with
an ensemble of the two methods, which yielded the best
performance at our stability-ranking task. We use the combined
model to conduct “virtual combinatorial chemistry” in search
of heretofore-undiscovered stable ternary compounds of the
form AxByCz. The elements A, B, and C are drawn from
a list of essentially all technologically relevant elements (83
total). Within the corresponding C(83,3) = 91 881 ternary
systems, we evaluate our stability predictor on compositions
that are statistically the most common in the ICSD (though our
method also works on arbitrary compositions). For example,
our statistical search reveals that the most-abundant ternary
composition is ABC3, the second is ABC2, the third is ABC,
and so on. In the case of compositions containing preferentially
ionic elements such as O and F, we require that the resulting
composition satisfy charge balance by considering common
oxidation states for cationic and anionic species. This enu-
meration procedure results in a list of 1.6 million physically
reasonable candidate compositions for evaluation.

We run these 1.6 million compositions through both
the heuristic and ML models, ranking the compositions
by the degree to which the models predict them to be
thermodynamically preferred to any combination of known
compounds. Note that this ranking is possible in minutes with
the models we have constructed, in contrast to the tens of
thousands of processor years that a DFT-based crystal structure
prediction method would require. As described above, we then
combine the results of the two models by averaging their
rankings for each composition. This combined model ranks
the input compositions by the likelihood that they form a
compound.

Figure 3 gives four representative slices of our full ternary
stability map; brighter colors indicate higher rankings. We em-
phasize that these heat maps are just four example components
of an essentially complete description of ternary energetics
across a combinatorial search space of elemental compositions
and stoichiometries, which would be entirely impractical to
achieve either experimentally or with existing computational
methods.

Figure 3 offers a number of compelling discovery results
that emerge automatically from our composition scan. First, in
keeping with our intuition, novel oxides generally rank highly
in our survey; where they remain undiscovered, their formation
energies relative to known compounds are expected to be
large. In particular, we predict many new oxides containing
Tc, Rh, and Pa, which is sensible given that these chemistries
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FIG. 3. (Color online) Representative heat maps of ternary compositions’ stability rankings, upon fixing one component of the ternary to
either H, O, Si, or Pd. Brighter colors imply higher rankings (greater likelihood of stability). Each heat map cell specifies the average ranking of
ternary compounds containing the element in the heat map title and the two additional elements given on the x and y axes. Because the element
labels are necessarily small, we demarcate each period for greater clarity. For each of the four elements we consider here, we list the top three
additional elements most conducive to ternary stability, along with their percentiles among the 1.6 million compositions we evaluated. Thus,
O-Tc-X ternaries are on average very stable, in the 87th percentile of our ranked list. Black bars on the plot correspond to either noble gases or
several exotic heavy elements that we did not consider in our survey.

are likely to be less explored among possible transition metal
and rare earth oxides. We also highlight Pd-containing oxides,
fluorides, and chlorides as promising candidates for discovery,
which may be relevant in catalysis applications and provides
further insight into the nobility (or lack thereof) of Pd. Turning
to Si-containing ternaries, Si-transition metal (TM)–rare earth
(RE) intermetallics represent a particularly bright region of
the Si heat map. These unique chemistries, combining p-
block, d-block, and f -block elements, could possess unusual
electronic and physical properties. Finally, our search for
new hydrides yields regions of promise among H-TM-RE
and H-RE-semimetal chemistries. A broader understanding
of metal hydride systems could aid in the design of effective
hydrogen storage materials.

To estimate the total number of possible new compounds
highlighted in our study, we conservatively limit the count
to just one new material per A-B-C ternary system, require
that both the heuristic and ML models predict the compound
to be at least 0.2 eV/atom more stable than any possible
mixture of known compounds (an energetic threshold greater
than the models’ MAE values from Fig. 2), and discard
any very dilute compositions. Based on these criteria, we
identify about 4500 predicted new ternary compounds in
the present work; the full list appears in the Supplemental
Material [21]. Encouragingly, some of the highest-ranking
predictions correspond to compounds that seem intuitively
reasonable based on analogy with known compounds, but may
not have yet been synthesized in the laboratory: For example,
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SiYb3F5 S2(VF6)Pa2O(SiO6)

P3(BrCs4) Te3Y4N2

U2O(PO4)2
†

Pm2S3 Ba(TeS3) †

FIG. 4. (Color online) Example high-ranking compositions from our ternary compound screen whose stability we explicitly confirmed with
database-search crystal structure prediction. Our method is successful at identifying new stable compounds across a wide variety of chemistries.
“†” indicates a model prediction associated with a known stable ternary compound that had been missing from our DFT thermodynamic database;
the prediction is thus confirmed, but no crystal structure search was necessary.

the model suggests a set of rare-earth phosphates, sulfates,
nitrates, and selenates as very likely to be stable.

Our final objective in this work is to explicitly confirm a
chemically diverse set of predictions that have emerged from
our approach. We achieve this goal by systematically selecting
several high-ranking stability predictions, and investigating
them with a full DFT crystal structure search. We consider
a prediction successful if we locate a structure at the target
composition whose total energy within DFT is lower (i.e.,
more favorable) than any combination of existing compounds
or elements at that composition, implying that a new compound
should form there.

To evaluate our approach’s ability to identify new com-
pounds across a variety of chemistries, we explore several
high-ranking ternary systems according to the following logic.
First, we generated charge-balanced compositions having
plentiful candidate crystal structures within the four top-ranked
ternary systems: Si-Yb-F (SiYb3F5), Si-Pa-O (SiPa2O7), U-
P-O (U2P2O9), and V-F-S (VS2F6). Next, we consider the
top-ranked ternary excluding any O- or F-containing systems,
to obtain a very different chemistry: Pm-S-Se (top composition
Pm12S19Se, which we interpret as a very interesting “binary”
Pm2S3 prediction from our ternary model). We then exclude,
in order, rare earths (obtaining Rb2N3Cl), Cl (obtaining
Cs4BrP3), Br and P (obtaining Te3Y4N2), and N (obtaining
BaTeS3). Again, we emphasize that the intention behind
exploring our list in this fashion is to generate an interesting,
chemically distinct set of compositions to test; for example,
many of the top-ranked compositions correspond to various
elements’ phosphates, but for illustrative purposes we only
explicitly investigate a uranium phosphate.

Among the nine compositions we identify above, we
successfully confirm eight as new ternary compounds with
a DFT crystal structure database search; each search involved
calculating �40–200 candidate structures. The eight successes

are shown in Fig. 4. Our best-obtained structure for Rb2N3Cl
is about 30 meV/atom less stable than a mixture of known
compounds; this near miss (kT at room temperature is
26 meV/atom) suggests that unconstrained crystal structure
prediction or an alternative composition may yet yield a stable
compound. Our 89% success rate is extremely high, given
that only about 11% of ternary systems have any known
compounds, and only 0.5% of the 1.6 million enumerated com-
positions we scanned correspond to already-known materials.
We also emphasize that the set of 4500 predictions we report
in this study would—if experimentally confirmed—represent
a more than 10% increase in the total number of ternary
compounds discovered to date.

IV. SUMMARY

Here we described an approach for an extremely rapid
computational materials screening method, based on coupling
a physically motivated heuristic and an advanced machine
learning model to a large database of quantum mechanical
calculations on known materials. Our data-driven approach
has learned the rules of chemistry from DFT, makes energetic
predictions for new compositions at six orders of magnitude
lower computational expense, and requires no knowledge
of crystal structure. We took as an example application the
evaluation of thermodynamic stability of 1.6 million ternary
compositions, which we ranked by their probability to exist as a
stable compound in nature; this search revealed a total of about
4500 heretofore-unknown, yet likely stable, ternary materials.
Our comprehensive survey greatly expands our understanding
of ternary composition space, lays the foundation for entirely
new phase diagrams, suggests additional contributions to
existing phase diagrams, and provides a large list of interesting
new chemistries that may now be mined for technological ap-
plications. This survey would be computationally prohibitive
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with full quantum mechanical methods, as well as impractical
to conduct in the laboratory. We suggest that, beyond guiding
ternary compound synthesis, our method could be used in a
very wide range of crucial materials discovery tasks, wherein
instead of predicting thermodynamic stability, one would
predict, e.g., Li capacity (a feature of batteries), band gap
(a feature of solar cells), or magnetic moment (a feature of
permanent magnets).
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