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Ions of the same charge inside confining potentials can form crystalline structures which can be controlled by
means of the ion density and of the external trap parameters. In particular, a linear chain of trapped ions exhibits a
transition to a zigzag equilibrium configuration, which is controlled by the strength of the transverse confinement.
Studying this phase transition in the quantum regime is a challenging problem, even when employing numerical
methods to simulate microscopically quantum many-body systems. Here we present a compact analytical
treatment to map the original long-range problem into a short-range quantum field theory on a lattice. We
provide a complete numerical architecture, based on the density matrix renormalization group, to address the
effective quantum φ4 model. This technique is instrumental in giving a complete characterization of the phase
diagram, as well as pinpointing the universality class of the criticality.
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I. INTRODUCTION

Wigner crystals [1] composed of trapped and mutually
repelling ions are an outstanding prototype of tailored con-
densed matter [2–6]. The high degree of control they offer
makes them an ideal platform for quantum information
processing [7–9], quantum communication devices [10–12],
and quantum simulators [13–20]. Moreover, they constitute a
perfect playground for studying general, distinctive features
of condensed-phase systems; above all, phase transitions and
critical phenomena [3,20–28].

One prominent example is the linear ion chain [2,3,29],
which results from the interplay between long-range Coulomb
repulsion and a highly anisotropic confinement due to an ion
trap [30]. This quasiordered structure can become unstable
depending on the trap aspect ratio or on the ion density.
Figure 1 illustrates the two equilibrium configurations: Here,
zigzag order (right panel) becomes energetically favorable at
lower transverse confinements [3,26,29,31,32]. While it was
often argued in the literature that this structural instability is
a continuous phase transition [31,32], in Ref. [26] it was first
demonstrated that it can be rigorously mapped to a Landau
second-order phase transition in the appropriately defined ther-
modynamic limit [33,34]. This structural instability gathered a
lot of interest in recent years as a laboratory system for studying
quenches across critical points [35–38], and also because it is
believed to be a promising channel for transport and storage
of quantum entanglement [10,12].

Quantum effects at the critical point have been theoretically
studied in Ref. [39] for small ion chains. In Refs. [27,40] it has
been argued that in the thermodynamic limit the linear-zigzag
structural instability is a quantum phase transition, which in
two (1 + 1) dimensions can be mapped to an Ising model in
the transverse field, describing a ferromagnetic transition at
zero temperature. This mapping was first proposed for Wigner
crystals of electrons in quantum wires [40], and then derived
in Refs. [27,41] using the emergent Z2 symmetry. In Ref. [41],
in particular, parameter regimes were estimated for which the
quantum phase transition could be experimentally measured. It
was noticed that, while for ions achieving the quantum critical

FIG. 1. (Color online) Linear-zigzag instability in a chain of
interacting atoms: (left) linear and (right) zigzag configurations.
The transition is either controlled by changing the longitudinal
interparticle spacing a or the frequency ωT of the transverse harmonic
confinement [3,26]. The displacement of a particle from the axis
y = 0 plays the role of local order parameter, discriminating between
the disordered (linear) phase and the ordered (zigzag) phase.

region can be experimentally challenging, it could be more
easily accessed with other kinds of strongly correlated systems,
for instance, dipolar atomic gases [42] in elongated traps. In
this context, we mention that theoretical studies of the linear-
zigzag instability with ultracold dipolar systems appeared in
Refs. [43,44]. Related phenomena were identified in arrays of
dipolar tubes [45].

This framework motivates an accurate characterization
of the quantum behavior at criticality, which shall provide
ultimate evidence of the universality class of the quantum
linear-zigzag instability and allow one to determine the
parameter ranges where it can be experimentally measured.
Starting from Ref. [26], where the long-wavelength behavior
at the instability was mapped to a φ4 model, the question
can be posed in more general terms, namely, whether a
Landau-Ginzburg model in 1 + 1 dimensions belongs to the
same universality class of the Ising model in a transverse field
[46]. This problem was already numerically approached in
Refs. [47–50], but only partial conclusions could be reached.
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In this paper we address the quantum scenario of the
linear-zigzag phase transition by means of the density matrix
renormalization group (DMRG) [51], a numerical technique
tailored on correlated quantum many-body systems on a
one-dimensional lattice [52]. With this technique it is possible
to address the quantum phase transition problem, and verify
that the linear-zigzag instability belongs to the universality
class of the Ising model in a transverse field by determining
the relevant critical exponents. Similarly, the simulation can
quantify the quantum corrections to the classical linear-zigzag
transition.

Here we take special care in developing in full detail the
theoretical framework as well as the numerical architecture
employed. The contribution given by this paper is threefold:
First, we provide a compact formulation for the mapping from
a long-range into a short-range linear-zigzag model at any
order of expansion in the displacement. Secondly, we give
a robust and scientifically sound background to the results
some of us previously presented in Ref. [53], as well as
expand that work by adding previously unreported comments.
Finally, we take special care in reporting all the numerical
expedients we adopt so that all of our results will be fully
reproducible.

The paper is organized as follows. In Sec, II we introduce
the model and we describe a quantitatively robust mapping
of the system Hamiltonian into a simpler one, which can be
easily tackled numerically. In Sec. III we review the numerical
strategies that we employ to tailor the effective model into a
DMRG architecture, as well as some techniques for quantum
state analysis and data processing. The phase diagram of the
quantum linear-zigzag phase transition is sketched in Sec. IV.
In Sec. V we determine the relevant critical exponents. The
conclusions are drawn in Sec. VI, while the Appendix provides
details of the mapping presented in Sec. II.

II. QUASI-ONE-DIMENSIONAL WIGNER CRYSTAL

We consider a two-dimensional system of L interacting
atoms, trapped by a harmonic potential with frequency ω along
the y direction. The atoms are identical and have mass M .
Typical distances between atomic ions are of mesoscopic scale
[3], so that they are ultimately distinguishable. This allows us
to write a first-quantization Hamiltonian despite the many-
body character of the dynamics, which reads

H =
L∑

j=1

[
p2

x,j + p2
y,j

2M
+ Mω2

2
y2

j + V�(xj )

]

+ Cint

2

∑
i �=j

[(xi − xj )2 + (yi − yj )2]−α/2, (1)

where the position and canonically conjugated momentum of
atom j in the plane are (xj ,yj ) and (px,j ,py,j ), respectively,
while V�(x) is a weak confinement along the longitudinal
direction, whose shape is conveniently chosen in order to fix
the typical interparticle distance. The atom-atom interaction is
proportional to the coupling constant Cint, which determines
the strength of the interaction, and scales with the interparticle
distance r like ∼1/rα , where the exponent α characterizes the
nature of the atomic interaction. To provide some examples,

for a system of ions we have α = 1 and Cint = Q2/4πε0

(with Q charge and ε0 the vacuum permittivity), while for
transversally pinned dipoles [43–45] it is α = 3, or even α = 6
for Rydberg atoms in the induced dipole-dipole interaction
regime [54]. We remark that in general, one should check the
conditions under which the effects of quantum degeneracy on
the phase of the gas can be discarded. For atomic ions in typical
experimental regimes the particles can be safely considered as
distinguishable [55].

In the following, starting from the Hamiltonian of Eq. (1),
we review and critically discuss the basic steps of the mapping
onto a lattice φ4 model. The latter is the basis of the numerical
DMRG program, which is described in Sec. III.

A. Longitudinal-transverse decoupling and natural units

Although the longitudinal and the transverse motion of
the atoms are coupled by the dynamics governed by the
Hamiltonian in Eq. (1), it was argued in Ref. [26] that the
longitudinal dynamics plays a minor role in the structural
transition and can be treated perturbatively. At lowest order
in a gradient expansion, it was shown there that the zigzag
mode is the soft mode of the transition, which is subject to
a Landau-type potential (that possesses a Glodstone mode in
three dimensions [26]). The mapping to a φ4 model has been
explicitly derived in Refs. [27,35,41], by assuming that the
coupling between longitudinal and transverse vibrations can
be neglected sufficiently close to criticality.

Following the arguments reported in Ref. [27], we employ a
model where only the transverse motion of the ions is included,
namely,

H =
L∑

j=1

[
p2

j

2M
+ Mω2

2
y2

j

]

+ Cint

2

∑
i �=j

[a2(i − j )2 + (yi − yj )2]−α/2, (2)

where pj ≡ py,j and a is the lattice constant. To recast the
problem in dimensionless units, we adopt the lattice constant
a as the natural length scale and E0 = Cint/a

α as the energy
scale. Then we rescale quantities as follows: ỹj = yj/a, H̃ =
H/E0, p̃j = py,j /

√
ME0, and finally ω̃ = ω/

√
E0/Ma2. The

Hamiltonian (2) is thus rewritten as

H = 1

2

L∑
j=1

⎛
⎝p̃2

j + ω̃2ỹ2
j +

∑
i �=j

1

[(i − j )2 + (ỹi − ỹj )2]α/2

⎞
⎠ ,

(3)

where the rescaled transverse trap frequency ω̃ appears
explicitly in the expression and is one of the two residual
effective parameters (aside from α). The other parameter
appears in the commutation relation between the displacement
ỹ and the transverse momentum p̃:

[ỹi ,p̃j ] = ıgδi,j , (4)

and reads

g =
√

�2

Ma2E0
= �

√
aα−2

M Cint
. (5)
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The parameter g is dimensionless and corresponds to the
square root of the ratio between the kinetic and the interaction
energies. It plays an analogous role as the Planck constant in
the rescaled commutator expression and thus provides a rough
estimate of the impact of quantum fluctuations on transverse
ordering. For this reason we refer to it as effective Planck
constant.

Typical values of g depend on the experimental architecture
and on the intrinsic nature of the atomic interaction. In
particular, g ∝ aα/2−1. For ions, g increases with the density
and takes values in the range between 10−5 and 10−4 (for
a ∼ 1–10 μm). On the other hand, for α > 2, which is the
case for dipolar gases and Rydberg-dressed gases, g increases
as the density decreases, taking values g > 10−2, whereas the
lattice constant a now spans from fractions of micrometers up
to a few micrometers [43,44,54]. Here, the quantum behavior
becomes relevant at high densities.

B. Low-energy model

Close to the transition point the critical behavior is deter-
mined by transverse fluctuations whose size is much smaller
than the interparticle distance, namely, the lattice constant.
This limit corresponds to the inequality

√
〈ỹ2

j 〉 	 1, where
the expectation value is taken over the ground state of the
crystal. This condition allows one to substantially simplify the
interaction term appearing in Eq. (3) by expanding the potential
in powers of (ỹj − ỹi). Taylor expanding the interaction gives
[26]

1[
x2

0 + δỹ2
]α/2 =

t−1∑
q=0

∏q−1
r=0 (α + 2r)

(−2)qq!

δỹ2q

|x0|α+2q
+ O[δỹ2t ]

=
t−1∑
q=0

(−1)q 	
(
q + α

2

)
q!	

(
α
2

) δỹ2q

|x0|α+2q
+ O[δỹ2t ]

(6)

for arbitrary longitudinal separation x0 � 1, where 	(·) is the
Euler gamma function. Substituting this expression into Eq. (3)
we obtain

H̃ = E0 +
L∑

j=1

[
p̃2

j

2
+ ω̃2

2
ỹ2

j

]

+ 1

2

t−1∑
q=1

(−1)qbq(α)
∑
i �=j

(ỹi − ỹj )2q

|i − j |α+2q
+ O[δỹ2t ], (7)

where E0 is a constant and corresponds to the classical
ground-state energy of the linear chain [33,56], while bq(α) =
	(q + α

2 )/q!	( α
2 ) is a positive coupling constant. The pre-

vious manipulation makes the problem easier to address by
numerical means, since now the parameter α only enters in the
coupling coefficients [27].

We remark that it is important to truncate the expansion
at an odd t order, as we did in Eq. (7). In fact, this
guarantees that the truncated interaction potential in (6) and (7)
is ultimately bounded from below, which is mandatory for
avoiding convergence/stability issues of any numerical method
we wish to employ.

C. Recasting into a short-range theory

Dealing with a long-range model as in Hamiltonian (7)
is numerically demanding and cumbersome, especially with
DMRG, where it leads to slower computational scaling with
the system size. For this reason we will adopt an approximation
that further simplifies the model.

Based on the arguments introduced in Refs. [26,57], in the
Appendix we show the detailed derivation of a short-range
model capable of mimicking quantitatively the linear-zigzag
quantum phase transition of the Wigner crystal. We stress that
this technique is not based on truncating the interactions at
a finite distance: in fact, due to the collective nature of the
phononic mode driving the instability (soft mode), truncation
would lead to a systematic error in determining the phase
diagram. On the contrary, the mapping we adopt reproduces
the multiphonon dispersion bands around the soft mode
as faithfully as possible with a nearest-neighbor interacting
theory. The starting point is the assumption that at sufficiently
low energies, the soft mode, which has quasimomentum k0 =
π (in natural lattice units where a = 1), interacts primarily
with its neighboring modes in the Brillouin zone [−π,π ].
Therefore, for any expansion term q in Eq. (7) we construct
the corresponding q → q phonon scattering function 
[k],
and approximate it with a short-range interaction matching
up to the second order in δk = (k − k0) around k0 = π . The
algebraic technique employed to achieve this is detailed in
the Appendix. Here we simply report the resulting low-energy
Hamiltonian [41]:

H̃ � 1

2

L∑
j=1

⎡
⎣p̃2

j + ω̃2ỹ2
j +

t−1∑
q=1

(−1)q

× (
Mq(α) ỹ

2q

j − Nq(α)
[
ỹ

q

j − (−ỹj+1)q
]2)⎤

⎦ . (8)

The on-site fields M and coupling constants N are now
functions solely of q and α, and not of other physical
parameters. They read, respectively, as follows:

Mq = (2α+2q − 1)	
(
q + α

2

)
q!2α−1	

(
α
2

) ζ (α + 2q), (9)

N1 =
{

ln 2 for α = 1
2α−2

2α αζ (α) for α > 1,

Nq>1 = 2q − 1

q

(2α+2q−2 − 1)	
(
q + α

2

)
q!2α−1 	

(
α
2

) ζ (α + 2Q − 2) .

(10)

Let us remark that these couplings capture the collective
character of the excitation modes, whose signature is the
presence of the Riemann zeta function ζ (·) in their expression.

We stress that the resulting short-range model (8) success-
fully mimics the dynamics of the original model (7) only when
the excitation energies we are dealing with are small compared
with the energy scale associated with the phononic bandwidth.
When this is the case, then the modes with quasimomentum k

far from k0 (such that 1 � |δk| � π ) play a negligible role in
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the description of the critical behavior. Since we are interested
in the ground-state properties, this requirement is satisfied by
definition, and thus we can safely accept the approximation.

Moreover, we point out that coefficients Mq and Nq grow
for large q roughly as ∼4qq1−α/2: This means that the series
in Eq. (8) converges only close enough to the linear phase, i.e.,
|〈ỹq〉| < 2−q . Again, since we are investigating the critical
behavior, this requirement is easily achieved. Let us finally
remark that the present formulation given by Eqs. (8)–(10) of
the long-range into short-range mapping was first shown in
Refs. [26,57].

D. Fourth-order expansion

In this work, we keep up to four total expansion orders
in the series described in Eq. (8): We include in the picture
the ỹ4

j local term, as well as the (ỹj + ỹj+1)2 interaction,
which is second order in the displacement and second order in
δk. We have checked that neglecting further expansion orders
generates errors that are compatible with or smaller than errors
due to other aspects of the numerical technique we employ
afterwards.

The Hamiltonian we simulate, as a function of all the
residual parameters, reads

H̃ (α,g,ω̃) = 1

2

L∑
j=1

[
−g2 ∂2

∂ỹ2
j

+ [ω̃2 − M1(α)]ỹ2
j

+N1(α)(ỹj + ỹj+1)2 + M2(α) ỹ4
j

]
, (11)

where we already substituted p̃j = −ig(∂/∂ỹj ) to make the
parameter g appear explicitly in the expression. Equation (11)
reveals an important physical aspect of the linear-zigzag
transition: As long as the coupling with the axial vibrations
can be neglected (or just give rise to a renormalization of
the parameters of the transverse Hamiltonian), the critical
behavior at the phase transition does not depend on the
interaction-range scaling exponent α. In fact, given two values
α and α′ it is possible to map Hamiltonian H̃0 = H̃ (α,g,ω̃) into
H̃ ′ = H̃ (α′,g′,ω̃′), by a simple rescaling of energies and length
scales [41]. Precisely, by requiring ỹ ′

j = uỹj and H̃ ′ = vH̃0

we obtain

u =
√
N1(α′)M2(α)

N1(α)M2(α′)
, v = N 2

1 (α′)M2(α)

N 2
1 (α)M2(α′)

, (12)

while the other parameters g and ω̃ must transform as

ω̃′2 = M1(α′) + N1(α′)
N1(α)

[ω̃2 − M1(α)], (13)

g′ = g
M2(α)

M2(α′)

(N1(α′)
N1(α)

)3/2

. (14)

Rephrasing, all the linear-zigzag physics formulated according
to Eq. (11), for various values of α, are equivalent: The critical
behavior shows the same properties and the phase diagrams
in the external parameters space (g and ω̃) transform into one
another according to relations (13) and (14). We remark that
this argument is valid as long as one can safely decouple the

axial from the transverse motion, which appears correct for
ion Coulomb chains.

We will from now on drop the functional dependence of
coefficients M and N on α. Whenever a specific value of α

is implicitly assumed, we will be referring to the ion Wigner
crystal scenario i.e., α = 1. In this setup the coefficients read
M1 = 7 ζ (3)/2 � 4.2072, N1 = ln 2 � 0.6931, and M2 =
93 ζ (5)/8 � 12.0543.

E. Connection with the φ4 model

Remarkably, the effective model in Eq. (11) is closely
related to a φ4 field theory [26,35,41]: It is basically an
antiferromagnetic formulation of the φ4 theory on a lattice. The
typical formalism in field theory, where a real scalar massive
field φ(x,t), undergoing a Klein-Gordon motion, is dressed by
a pointwise interaction of the form φ4, reads

Lφ4 =
∫ [

1

2
∂μφ ∂μφ − m2

2
φ2 − λ

4!
φ4

]
dx, (15)

with flat space-time metric: ∂μφ ∂μφ = (∂tφ)2 − (∂xφ)2, in
units of � = c = 1. We now briefly summarize the steps
showing that a Lagrangian of the type (15) can be obtained
from Eq. (11) by means of three simple steps: field staggeriza-
tion, continuum limit, and canonical rescaling. Precisely, let
φj = (−1)j ỹj be the scalar quantum field. Now, going from a
lattice to continuous space yields

H̃ = 1

2

∫
[g2π2(x) + (ω̃2 − M1)φ2(x)

+N1(∂xφ)2 + M2 φ4(x)]dx, (16)

where we performed the substitution (φj+1 − φj ) → ∂xφ, and
π (x) is the canonically conjugated field, fulfilling the com-
mutation relation at equal times [φ(x),π (x ′)] = iδ(x − x ′). In
order to obtain an equation of type (15), we need to rescale
energies and fields [H̃ → H̃ /g

√
N1, φ → φ (g2/N1)1/4],

followed by a standard Legendre transformation. This leads
to the Lagrangian

L = 1

2

∫ [
(∂tφ)2 − (∂xφ)2 − ω̃2 − M1

N1
φ2 − gM2

N 3/2
1

φ4

]
dx,

(17)

which connects to (15) via the relations

m =
√

ω2 − M1

N1
and λ = 12

gM2

N 3/2
1

. (18)

The one-dimensional φ4 field theory on a lattice has been
already addressed by means of numerical simulation, both by
Monte Carlo methods [47,48] and also by DMRG [49]. In this
paper we provide a complete, exhaustive characterization of its
quantum criticality, while exploring the whole phase-diagram
boundary, therefore extending and complementing the results
we presented in Ref. [53].

III. DMRG SIMULATION DETAILS

The DMRG is a method developed in the early 1990s
[51] which has proven successful for a large variety of
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one-dimensional many-body quantum problems [52]. The
key to its success relies on the fact that the entanglement
description capabilities of the DMRG match exactly the typical
entanglement scaling laws of ground states in one-dimensional
quantum systems (and low-lying energy states too) [58].

Simulating the effective lattice staggered φ4 model of
Eq. (11) with the DMRG is feasible, but it still requires some
additional careful numerical treatment [59]. We will discuss
these expedients in the present section.

A. Local basis selection

Traditional DMRG architectures [51] are tailored to models
where the local space is a finite-dimensional Hilbert space, like
for instance for spin models. In the scenario here considered,
however, the local space is a continuous quantum variable, with
the usual Lie algebra {ỹ,p̃} of the quantum particle motion.
To circumvent this obstacle, we adopt a local space truncation
approach that was thoroughly discussed in Ref. [59]. Namely,
we define a related single-particle quantum problem Hloc, then
find its d lowest-energy eigenfunctions |ψq〉 and adopt them
as local basis {|ψq〉}q=1...d for the many-body problem. If the
many-body Hamiltonian with nearest-neighbor interaction is
H̃ = ∑

j H
(j )
loc + H

(j,j+1)
int , then the simulation is more accurate

for a given d (or it requires smaller d to achieve some target
precision), when the interaction energy 〈Hint〉 is smaller in
modulus; that is, when Hint can be treated as a perturbation.

For the case under study we argue that considering the
whole (ỹj + ỹj+1)2 term as the interaction part is a more
perturbative approach than just taking the double product
2ỹj ỹj+1. Indeed, while in the linear phase the expectation
value on the ground state of two terms is of roughly the same
magnitude, in the zigzag phase the first is definitely closer to
zero, and thus more appropriate to be chosen as the interaction
part. According to this scheme, the local Hamiltonian reads

Hloc = 1

2

[
−g2 ∂2

∂ỹ2
+ (ω̃2 − M1)ỹ2 + M2ỹ

4

]
, (19)

describing the motion of a quantum particle in a harmonic-
quartic potential. Thanks to the translational invariance of
Eq. (11), we just have to solve problem (19) once per
given g and ω̃, and use the resulting basis for every site.
In order to find the low-energy eigenstates of Eq. (19),
we solve Hloc|ψq〉 = Eq |ψq〉 exactly by means of linear
algebra numerical methods to diagonalize tridiagonal matrices.
Afterwards, we express the single-body computational basis as
|qj 〉 ≡ |ψq〉, which corresponds to the atom at site j being in
the orbital state |ψq〉. The resulting many-body computational
basis is made of tensor product states of the single-site
basis states |q1 q2 . . . qL〉 = |q1〉 ⊗ |q2〉 ⊗ · · · ⊗ |qL〉. In this
formalism, the global Hamiltonian then reads

H̃ =
∑

j

(Aj + N1Wj ) + N1Yj ⊗ Yj+1, (20)

where the matrices �j (� = A,W,Y ) are single-
site operators acting on site j , although their ma-
trix elements do not explicitly depend on j thanks
to translational invariance. Specifically, we have Aj =∑d

q=1 Eq |qj 〉〈qj |, then Yj = ∑d
q,q ′ |qj 〉〈ψq | ỹ |ψq ′ 〉〈q ′

j | and

FIG. 2. (Color online) Probability densities |ψq (ỹ)|2 as a func-
tion of ỹ for the lowest five quantum energy eigenstates of the local
Hamiltonian of Eq. (19): q = 1 (red line), q = 2 (green line), q = 3
(blue line), q = 4 (yellow line), and q = 5 (gray line). For easy
reference we also plot the double well potential profile (black thick
line) of the Hamiltonian, in arbitrary energy scale units.

Wj = ∑d
q,q ′ |qj 〉〈ψq | ỹ2 |ψq ′ 〉〈q ′

j |. We explicitly express the
change of basis |ψq〉〈qj | to stress the fact that we are projecting
the space over the first d local states. Notice that, as a
consequence of this, W �= Y 2.

Typical solutions of the local problem defined by Eq. (19),
in the deep quantum regime (g = 0.1), are displayed in Fig. 2.
Both the second and fourth excited states (blue and gray
lines, respectively) show a non-negligible probability density
at the barrier point (ỹ = 0). This reveals that the quantum
fluctuations enhance substantial tunneling between the two
potential wells, thus ultimately making the linear (disordered)
phase energetically favorable.

In order to keep track of the error generated by truncating
the basis |ψq〉 to a dimension d, we performed several
calculations of the same problem (under identical environment
parameters) for various values d ∼ 2 . . . 100, until we located
convergence of the outcomes. Furthermore, we kept track of
the populations of various basis levels on every site: namely, we
verify that the occupation probabilities in the one-site reduced
density matrix decrease roughly exponentially with the level
index q. This provides a meaningful lower bound for the error
generated by the truncation. Figure 3 displays the populations
p(q) of the first eight local basis levels, obtained after the
numerical simulation of the ground state for a given set of
parameters (further levels are of order of magnitude below
10−5 and not shown in the plot). In all the cases we considered,
the populations p(q) decay very rapidly with the level index
q. They can usually be bounded from above by an exponential
decay p(q � 3) � e−�q . For the case in the figure, � � 1.7.

Hamiltonian (20) is ready for simulation, and via standard
DMRG architecture [51] we searched for its ground state for
finite system size L with open boundary conditions (OBC).
The latter choice is due to a natural tendency of DMRG with
respect to OBC: In this scenario it converges faster, and it
has enhanced precision and stability. In the various physical
systems considered, a local basis dimension d ∼ 30 and a
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FIG. 3. (Color online) Probability distribution p(q), plotted as a
function of the local basis number q. p(q) is defined as p(q) =
〈q|�j |q〉, where �j = Trj ′ �=j {|�L

g,ω̃〉〈�L
g,ω̃|} is the reduced density

matrix of an arbitrary site j in the bulk of the many-body ground
state |�L

g,ω̃〉, simulated by the DMRG. Here the system is in the
zigzag phase, but close to critical point (g = 0.03, ω̃2 = 1.0): The first
two levels (symmetric and antisymmetric double peaks, respectively)
have equal populations. The third level probability is two orders of
magnitude smaller, and rapidly decaying.

DMRG bond link D ∼ 50 were sufficient to make the results
converge permanently under our precision (typically 10−10 of
relative numerical precision).

B. Measured order parameter

A final remark regards the identification of the phase across
the transition. A drawback of working on finite-size quantum
samples is the impossibility of achieving a truly spontaneous
symmetry-broken phase. In our problem, the two possible
zigzag configurations bear a nonzero interference term, which
encourages the even superposition of the two as true ground
state, thus restoring the Z2 parity symmetry. A standard
technique known in literature [21] to circumvent this issue
is employing structure-factor-based order parameters, which
are insensitive to symmetry breaking. We briefly review this
strategy for easy reference to the reader. The order parameter
we choose is the square root of the structure-factor density
calculated at the soft mode k0 = π , precisely

ξL(g,ω̃) =
√√√√ 1

L2

L∑
j,j ′

(−1)j−j ′ 〈
�L

g,ω̃

∣∣Yj ⊗ Yj ′
∣∣�L

g,ω̃

〉
, (21)

where |�L
g,ω̃〉 is the many-body ground state calculated via

DMRG under parameters g, ω̃, and size L. This is clearly a
nonextensive quantity, and it can be shown to exactly coincide
with the standard antiferromagnetic order parameter m̄ =
L−1 ∑L

j (−1)j 〈Yj 〉 in the thermodynamical limit. Basically if
we assume that correlations can be split into a classical and a
quantum contribution, i.e., 〈YjYj ′ 〉 � 〈Yj 〉〈Yj ′ 〉 + fq(j − j ′),
respectively, then the quantum part becomes irrelevant when
evaluating ξL. In fact, it is either fq(j − j ′) ∼ |j − j ′|−ν

(critical scenario, with ν > 0), or fq(j − j ′) ∼ e−|j−j ′ |/λ
(noncritical scenario). In both cases it holds∣∣∣∣∣∣

L∑
j,j ′

(−1)(j−j ′)

L2
fq(j − j ′)

∣∣∣∣∣∣ �
fq(1) + ∫ L

1

∣∣fq(x)
∣∣ dx

L
→ 0 .

(22)
Consequently, we obtain

ξL =
√√√√ L∑

j,j ′
(−1)(j−j ′) 〈Yj 〉〈Yj ′ 〉

L2
�

√
m̄2 = m̄, (23)

which tells us that ξL has all the properties of a local antiferro-
magnetization without suffering from finite-size symmetry-
breaking issues, since it is based on two-point correlation
measurements and not on local observations.

IV. PHASE DIAGRAM

Some of the results presented in this and the following
sections were previously reported in Ref. [53], in particular,
Figs. 5, 7, and 8 that we report for completeness and comfort to
the reader. Here we describe the complete numerical derivation
which allows one to process these physical quantities from
raw simulation data, and we give additional comments which
clarify technical issues about those results.

First of all, we characterize the phase of the ground state for
a given point in the parameters space (g,ω̃2). More precisely,
we simulate the same OBC problem for various system sizes
L, typically up to 3000 sites, with the prescriptions detailed in
the previous section. For each simulation, we record the zigzag
order parameter ξL(g,ω̃) introduced in Eq. (21) by measuring
every two-point correlator. Finally, we fit the thermodynamic
limit ξ∞ = limL→∞ ξL and we discriminate whether its value
is zero, which detects the linear phase, or it is nonzero,
thus revealing the zigzag phase. Figure 4 displays the order

FIG. 4. (Color online) Zigzag-order parameter ξL(g,ω̃) as a func-
tion of 1/L. Here the lattice size L ranges within 100 � L � 1600,
while other parameters are g = 0.08 and d = 14. The points have
been numerically evaluated; the lines are a guide to the eyes. Each set
of data corresponds to a different value of the square trap frequency
ω̃2 = 1.30,1.32,1.34, . . . ,1.58,1.60 (from top to bottom). The zigzag
order parameter is obtained via DMRG using the square root of
structure-factor density of Eq. (21).
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FIG. 5. (Color online) Phase diagram of an array of ions (i.e.,
α = 1) in the (g,ω̃2) parameter space, at the thermodynamical limit.
Inset: displacement of the critical square frequency |�ω̃2

c | from the
classical value, as a function of g. Cyan lines represent a power-law
fit of the whole data curve using |�ω̃2

c |(g) = ugv via u and v (see
text).

parameter ξL as a function of the length L of the sample.
Various data sets are plotted, each one corresponding to a
different value of ω̃2 (at the same value of g). Every curve
ξ (L) is fitted via various fit functions, polynomial in the inverse
length, and one clearly sees that the order parameter is typically
a very smooth function of the chain size.

Since we are interested in determining the phase diagram,
we need to discriminate when ξ∞ is zero and when it is not,
regardless of the function used to fit the value. This allows us
to detect the phase boundary in the parameter space (g,ω̃2)
with an uncertainty of the order of 10−3. Figure 5 displays
the phase diagram, which has been derived after locating the
critical trap frequency value ω̃c(g) for several values of g in
the range 10−5 � g � 0.2. As expected, when g increases,
the magnitude of quantum fluctuations increases and with
it the range of the disordered phase. In accordance to this
conjecture, ω̃c(g) is a monotonically decreasing function of
g. We determine the shift of the critical point ω̃2

c (g) with
respect to the one predicted by the classical theory [26], which
is given by ω̃2

c (0) = M1. This corresponds to the quantity
�ω̃2

c (g) ≡ M1 − ω̃2
c (g), and we obtain that it scales with g

according to a power-law behavior given by

�ω̃2
c (g) = (21.91 ± 0.01)g(0.823±0.003).

We remark that we also employed other data-processing
strategies to draw the critical boundary, which will be detailed
in the next section. These are divergence of the correlation
length, area law violation of entanglement entropy, and finite-
size scaling. In all the cases these methods have proven
compatible, albeit less precise, to the structure-factor density
technique.

V. CRITICAL EXPONENTS

The largest local symmetry group under which our model
H̃ is invariant is parity symmetry. Specifically, let R be the
unitary reflection operator along the transverse direction, i.e.,
R ỹ R† = −ỹ. Then R = R†, R2 = 1, which is a representa-

tion of the Z2 group, and it is straightforward to check that it
is a symmetry of the Hamiltonian, i.e., [H̃ ,R⊗L] = 0. In the
thermodynamical limit, the zigzag phase has a twofold degen-
erate ground space, which spontaneously breaks the symmetry
R⊗L. Starting from this symmetry argument, conformal field
theory predicts that the continuous model should exhibit the
same universality class of the one-dimensional quantum Ising
model with transverse field [21,22,46]. We are now going to
test the validity of this claim in the lattice model by numerically
evaluating various critical exponents, and comparing them
with the corresponding theoretical predictions.

A. Anomalous dimension η

The transverse coordinate ỹ of the lattice field model plays
the same role as the interaction Pauli matrix of the Ising model
[27] (namely, σ z if one writes HIsing = ∑

j σ z
j σ z

j+1 + Bσx
j ).

As a result, studying quantum correlation functions in the ỹ

direction, such as

Q(j,j ′) ≡ 〈ỹj ỹj ′ 〉 − 〈ỹj 〉〈ỹj ′ 〉, (24)

should reveal the anomalous dimension critical exponent η

[22]. To make sure that the scaling of correlations depends only
on the distance �j ≡ |j − j ′| of the pair and is insensitive to
boundary effects, we enlarge our system size up to thousands
of sites, and average over the bulk: The expression

G(�j ) = (−1)�j L̃−1
L̃∑
j

Q(j,j + �j ) (25)

is chosen in such a way as to take into account staggerization
as well. We calculate G(�j ) from the numerical data summing
over j sites in (25) such that we disregard sites sitting too close
to the boundary. Namely, we include only pairs {j,j + �j}
located within the central third of the chain.

Moreover, since we are never exactly simulating the critical
point, we must introduce a finite-correlation length λ and
evaluate it altogether. The function we use to fit G(�j ) reads
[21]

Gfit(�j ) = α �j−η exp(−�j/λ) , (26)

where α, η, and λ are fitting parameters. Figure 6 displays
two-point correlation functions G(�j ) numerically evaluated
at distances up to 300 sites, and the fit according to Eq. (26),
which provides in all the scenarios considered an impressive
match to the numerical data.

After sampling results for several points of the critical
boundary, we obtain an average critical exponent of η =
0.258 ± 0.012, in good agreement with the predicted 1/4
value.

B. Finite-size scaling

By means of finite-size scaling [60] it is possible to
acquire two critical exponents: the spontaneous magnetization
exponent β and the correlation length divergence exponent ν.
In accordance with renormalization group analysis, the order
parameter ξL(g,ω̃) in an OBC setup should obey a precise
scaling with the system size L and the parametric distance
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10-3
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G(Δj)

Δj

g

η

FIG. 6. (Color online) Two-point correlations G(�j ) of the dis-
placement ỹ as a function of the distance �j (magenta dots), acquired
via numerical ground-state simulation with the DMRG. Data are fitted
using Gfit(�j ) in Eq. (26) (black solid line). The green and orange
lines show fits via an exponential and a power law, respectively.
Inset: fitted anomalous dimension exponents η over several points
of the critical boundary, characterized by different values of g; the
dashed line shows the average value η = 0.258 ± 0.012 while the
solid line is the value of 1/4 predicted from the Ising model theory.

from the critical point (ω̃ − ω̃c). Specifically

ξL(ω̃) � L−β/νf [(ω̃ − ω̃c)L1/ν], (27)

where f is a nonuniversal function, depending on the mi-
croscopic details of the model. To exploit this picture, first
we tune γ1 = β/ν until we observe a crossing of all the
curves ξL(g,ω̃)Lγ1 as functions of ω̃ in a single point, which
locates the critical frequency ω̃c(g). Then, we find the suitable
value γ2 = −1/ν which makes all the curves ξL[g,ω̃c + (ω̃ −
ω̃c)Lγ2 ]Lγ1 collapse onto one another. Figure 7 shows an ex-
ample of this procedure applied to our problem: After plotting
the order parameter ξL as a function of the trap frequency
ω̃ for a dozen different system lengths 100 � L � 300, we
rescale the coordinates of the data according to this procedure,

 0.1

 0.15

 0.2

 0.34  0.36  0.38  0.4  0.42

ξ

ω̃

f(x)

FIG. 7. (Color online) Order parameter ξL(g,ω̃), obtained via
DMRG, as a function of ω̃, plotted for different system sizes
L = 100,120, . . . ,300, at g = 0.12. Inset: rescaled data ξL(ω̃c +
�ω̃cL

γ2 )Lγ1 , with γ1 = 0.127 and γ2 = 1.04, characterizing f (x)
(see text).

and obtain the plot shown in the inset, where all the data
collapsed onto a single curve, which is the f (x) from Eq. (27).
Critical exponents obtained by employing this strategy read
β = 0.126 ± 0.011 and ν = 1.03 ± 0.05, to be compared with
theoretical predictions of 1/8 and 1, respectively.

C. Central charge c

The central charge critical exponent c is related to the
scaling of quantum entanglement, under a system bipartition
into two blocks, as a function of the shape and size of the blocks
themselves [61,62]. Indeed, for one-dimensional systems, a
logarithmic violation of the area law of entanglement is a
discriminating signature for criticality and a gapless excitation
spectrum [46]. In this framework, the central charge c is
the prefactor of the logarithm itself: At the thermodynamical
limit it reads S(ρ�) � c

3 log � + c′, where c′ is a nonuniversal
constant [63], and

S(ρ�) ≡ −Tr[ρ� ln ρ�] (28)

is the von Neumann entropy of the reduced density matrix ρ� of
� adjacent sites. For a semi-infinite system instead, where the
� sites contain the single boundary, it is S(ρ�) � c

6 log � + c′.
Our scenario is a finite-size OBC system, for which the relation
holds [50,64]

Sth(ρ�) = c

6
log

(
L sin

π�

L

)
+ c′, (29)

where � is the site at which we are considering a left-right
system bipartition, and ρ� is the reduced density matrix of the
left (or right) block. Due to the intrinsic nature of the DMRG
it is straightforward to evaluate it for every partition �, since

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 100  150  200  250  300

 0  90  180
 0.45

 0.5

 0  0.06  0.12

c

L

�g

c

S(ρ�)

FIG. 8. (Color online) Right inset: von Neumann entropy S(ρ�)
(black dots) of the reduced density matrix ρ� calculated applying
Eq. (28) to the ground-state simulation with DMRG, as a function of
the block size �. The data shows remarkable agreement with the fit
using Sth(ρ�) of Eq. (29) via c and c′ (dashed yellow line). Main:
c values as a function of the system size L = 100,120, . . . ,300
for different trap frequencies ω̃2 = 0.383,0.384, . . . ,0.390 (top to
bottom) at g = 0.12. The magenta data set detects the critical point at
ω̃2

c = 0.385, and the corresponding estimated c value (dashed black
line) is c = 0.486. Left inset: estimated central charge c values at
various points in the critical boundary, as a function of the parameter
g. The dashed line corresponds to the average of c = 0.487, while
the solid line is the theoretical prediction cth = 1/2.
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the Schmidt coefficients are automatically provided from the
algorithm. We fit numerical data using Eq. (29) via c and c′ for
various system lengths L, as shown in Fig. 8, right inset. At
the critical point Eq. (29) should reproduce the correct scaling
of the entanglement, and thus the fitted c values should be
constant as a function of L. This is actually the case, as shown
in Fig. 8, main plot: The magenta line corresponds to the
critical point and is roughly constant with L. This procedure
provides an additional method for locating the critical point,
albeit less precise than the previously discussed ones, and
quantifies the critical central charge at the same time. After
averaging over several points of the critical boundary (Fig. 8,
left inset), we acquire an estimate of c = 0.487 ± 0.015, in
good accordance with the theoretical value of 1/2.

VI. CONCLUSIONS

In this work we numerically studied the quantum linear-
zigzag transition in quasi-one-dimensional Wigner crystals by
means of extensive numerical simulations based on the density
matrix renormalization group.

We first introduced the theoretical framework which lets
us describe the phenomenon as a quantum lattice model, as
well as the approximations we employed to make it amenable
to simulation with DMRG. According to this picture, we
provided an analytical mapping from the original long-range
theory to an effective short-range model. We argued that such
a mapping is possible as long as the excitation energies in
the many-body state are small compared to the phononic
bandwidth M1. Applying this mapping leads to a critical
speedup of the numerical calculation, as we could employ
traditional nearest-neighbor model DMRG techniques to an
otherwise difficult problem.

The phase diagram of the phase transition in the reduced
external parameter space was determined. We detected the
universality class of the criticality by extracting several critical
exponents with high precision. These results ultimately show
that the linear-zigzag transition is of the same universality class
as the quantum Ising model in transverse field.

Our model can be applied to strongly interacting systems,
such as ions in traps, dipolar gases, and Rydberg atom chains:
In fact, as long as the interaction is repulsive and described
by a power law, the exponent α determining the strength of
the interparticle potential just enters the coefficients of the
transverse Hamiltonian, but does not change its form (as long
as α � 1). On the other hand, the study we performed is based
on the assumption that transverse and longitudinal vibrations
are decoupled. This assumption is correct for ion Coulomb
systems, but has to be checked for dipolar and Rydberg
systems, where the effect of quantum fluctuations may modify
the nature of the transition [65].
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APPENDIX: SHORT-RANGE MAPPING FORMAL
DERIVATION

Here we are going to sketch the algebraic technique that
we adopt to recast the long-range interacting model into a
nearest-neighbor interacting theory, provided that we want
to faithfully reproduce the structural transition phenomenon.
In particular, the following framework will treat every term
in the displacement expansion of Eq. (7) independently, and
renormalize it into a finite-range object. For this reason we
recast Hamiltonian H̃ , Eq. (7), as H̃ = H0 + 1

2

∑
q Wq , where

H0 = 1
2

∑L
j [p̃2

j + ω̃2ỹ2
j ] is the local part and

Wq = (−1)q bq(α)
L∑

j=1

∑
� �=0

1

|�|α+2q
(ỹj+� − ỹj )2q (A1)

is the qth order of the Taylor expansion of the Coulomb
interaction. In order to reveal the role played by the soft
mode within Wq , we move to Fourier space. Therefore we
temporarily assume periodic boundary conditions and move
to the discrete complex Fourier basis

ỹj = 1√
L

∑
k

Yke
ıjk, Yk = 1√

L

L∑
j=1

ỹj e
−ıjk, (A2)

where L is the total chain length, and the allowed k values
belong to the Brillouin zone grid, i.e., they are of the form k =
±πn/L, with |n| � N/2 and integer (again in tight-binding
lattice units a = 1). Plugging this substitution inside (A1)
yields

Wq = 22q+1

Lq−1
bq

∑
k1...k2q−1

Yk1 . . . Yk2Q−1Y− ∑
k
[�k], (A3)

where each one of the ka values is chosen in the Brillouin grid.
Let us express the array of {ka} values as a 2q − 1 dimensioned
vector �k, and the scattering function 
[�k] reads


[�k] = −
∑
�>0

1

�α+2Q
sin

(∑
k

2
�

) 2Q−1∏
t=1

sin

(
kt�

2

)
. (A4)

In Figs. 9 and 10 we show two examples of scattering functions,
in the ion chain scenario α = 1: respectively, we show 
[k] for
q = 1 in Fig. 9 (purple curve), and 
[�k] for q = 2 along some
high-symmetry lines of the Brillouin zone in Fig. 10 (purple
curve). So far the treatment is exact; now we make some
approximations. Since we are only interested in the mechanics
related to the transition, which is primarily driven by the soft
mode k0 = π , we wish to keep only two orders of Taylor
expansion of 
[�k] around �π = (π, . . . ,π). We will show in this
section that it is possible to build a nearest-neighbor interaction
term which matches the scattering function up to the second
order.

First of all, let us calculate the expansion coefficients. The
zeroth order reads


[�π] = (−1)q
2α+2q − 1

2α+2q
ζ (α + 2q), (A5)
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π-π

FIG. 9. (Color online) Original long-range single-phonon (i.e.,
q = 1) band profile 
[k1] of Eq. (A4), for α = 1 (purple curve).
The parabola (dashed line) is the second-order expansion around the
soft mode k = π , the green curve is the dispersion relation for the
corresponding model with nearest-neighbor interaction, and matches
the original dispersion band up to δk2 around π .

with ζ (·) being the Riemann zeta function. The second order
must be treated carefully: Here we will restrict our study to
terms with q � 2. The first term q = 1 requires a slightly
different treatment, which is reported in Ref. [26]. Let us now
write the Hessian matrix of the scattering function 
 in �π , by
respectively writing the nondiagonal elements

∂2
[�k]

∂ka∂kb �=a

∣∣∣∣∣
�π

= (−1)q+1 2α+2q−2 − 1

2α+2q
ζ (α + 2q − 2), (A6)

and the diagonal ones, whose value is exactly twice as much,

∂2
[�k]

∂k2
a

∣∣∣∣∣
�π

= 2
∂2
[�k]

∂ka∂kb �=a

∣∣∣∣∣
�π
. (A7)

Now since the Yk operators commute, by a simple relabeling
of ka indices in expression (A3), it is possible to reshape the
Hessian: As long as the diagonal and off-diagonal elements are
not mixed, the sum in (A3) is left unchanged. More precisely,
we reshape the matrix Tab = ∂ka

∂kb

[�π] as follows. Starting

from

T =

⎛
⎜⎜⎜⎜⎝

2 1 · · · 1

1 2 · · · 1
...

...
. . .

...

1 1 · · · 2

⎞
⎟⎟⎟⎟⎠ dimension 2q − 1, (A8)

we end up with

T ′ = 2
2q − 1

q

⎛
⎜⎜⎝

1 · · · 1
...

. . .
...

1 · · · 1

⎞
⎟⎟⎠ dimension q. (A9)

Therefore, including the 1/2! factor from the second-order
Taylor expansion in k, we obtain

Wq � 1

2Lq−1

∑
k1...k2q−1

Yk1 . . . Yk2q−1Y−∑
k

× (−1)q[Mq − Nq(k1 + · · · + kq − qπ )2] (A10)

with Mq and Nq coefficients given by Eqs. (9) and (10). As a
last step, we substitute the expression (k1 + · · · + kq − qπ )2

inside Eq. (A10) with a cosine function which, again, matches
two Taylor orders in k around �π , so that we are not increasing
the error order, i.e., we are not adding further approximation.
Precisely

[K − qπ ]2 → 2[1 − (−1)q cos K] (A11)

with K = k1 + · · · + kq . If we now transform back into real
space we end up with a nearest-neighbor interaction term,
which reads

Wq � 1

2

L∑
j=1

{
Mq(α)ỹ2q

j − Nq(α)
[
ỹ

q

j − (−ỹj+1)q
]2}

.

(A12)

This corresponds exactly to Eq. (8) and thus concludes the
treatment. The green lines in Figs. 9 and 10 show how
the scattering functions 
[�k] are modified according to this
approximation: The match around the soft mode point �k = �π
is evident.

Γ Xπ� | π�M

FIG. 10. (Color online) q = 2 scattering function 
[k1,k2,k3] of Eq. (A4), along some high-symmetry lines of the cubic Brillouin zone, of
the original long-range model (purple line), encompassing 	 = (0,0,0) (the center of the cube), X = (0,0,π ) (the face center), and M = (0,π,π )
(the edge center). The dashed line is the second-order expansion around the soft mode point �π ; the green line is the effective short-range model.
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We remark that this procedure extends the analysis intro-
duced in Refs. [41,57], where the first two Taylor expansion
terms W1 and W2 were considered in the mapping from long to

short range, for arbitrary power-law scaling α � 1 of the origi-
nal two-body interaction. Equations (9), (10), and (A12) gener-
alize this method to every q → q phononic scattering channel.
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