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Oscillator tunneling dynamics in the Rabi model
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The familiar Rabi model, comprising a two-level system coupled to a quantum harmonic oscillator, continues to
produce rich and surprising physics when the coupling strength becomes comparable to the individual subsystem
frequencies. We construct approximate solutions for the eigenstates and energies in the regime in which the
oscillator frequency is small compared to that of the two-level system and the coupling strength matches or
exceeds the oscillator frequency. The resulting oscillator dynamics closely resembles that of a particle tunneling
in a classical double-well potential. Relating our calculation to an earlier semiclassical approximation in which
coupling to the two-level system creates an effective potential for the oscillator, we examine the extent to which
this picture is valid. We find that, for certain parameter regimes, the interpretation of the oscillator dynamics in
terms of tunneling holds to a good approximation despite the fundamentally entangled nature of the joint system.
We assess the prospects for observation of oscillator tunneling in the context of nano- or micromechanical
experiments and find that it should be possible if suitably high coupling strengths can be engineered.
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I. INTRODUCTION

When Jaynes and Cummings introduced their theory of the
molecular beam maser in 1963 [1], they presumably had no
idea that their modest quantum model comprising a two-level
system coupled to a quantized harmonic oscillator would
still be the subject of active research fifty years later. The
sheer simplicity of the model, and the fact that it features
the interaction of two of the most basic quantum systems,
have allowed it to be applied to numerous experimental
systems beyond the original maser setting. For many years,
the primary experimental realization was in cavity quantum
electrodynamics (cavity QED), in which an atom interacts
with the electromagnetic field inside an optical or microwave
cavity [2,3]. In the absence of a full analytical solution,
theoretical treatments were dominated by the rotating-wave
approximation (RWA) applied by Jaynes and Cummings,
which provides an excellent description of the energies and
eigenstates within the parameter regimes accessible in cavity
QED experiments [4]. However, recent years have seen a
proliferation of engineered quantum systems whose behavior
is well described by the same model, including several types
of superconducting qubits coupled to microwave waveguide
resonators [5–7], LC resonators [8], or mechanical resonators
[7,9–11]; intersubband transitions in semiconductor micro-
cavities [12]; photochromic molecules in metallic cavities
[13]; quantum wells coupled to split-ring resonators [14];
and a photonic analog in waveguide superlattices [15]. Such
systems are capable of accessing very different parameter
regimes, particularly much larger coupling strengths than those
available in cavity QED, which has in turn inspired a revival
of theoretical interest in the model.
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The Hamiltonian for the two-level system—oscillator
system may be written as

H = ��

2
σx + �ω0a

†a + �λσz(a
† + a), (1)

where � is the energy difference between the levels of the
two-level system (for which we will use the term “qubit”),
ω0 is the frequency of the oscillator, and λ is the strength of
the coupling between them. This is often called the (quantum)
Rabi model or the single-mode spin-boson Hamiltonian, since
the term “Jaynes-Cummings model” has become synonymous
with the RWA.

In recent years, considerable progress has been made in
understanding the full model without the RWA. Formally
exact mathematical solutions have finally been found [16,17],
after many years of uncertainty as to whether such solutions
even existed. At a more intuitive level, the model may be
divided into several regimes depending on the ratios �/ω0 and
λ/ω0. It is now well understood that the RWA is suitable for
near-resonance, �/ω0 ≈ 1, and small coupling, λ/ω0 � 0.1.
Away from resonance, the small coupling limit λ/ω0 � 1 may
be treated with standard perturbation theory. Hence current
theoretical research is mostly focused on the strong coupling
limit, λ/ω0 � 0.1.

For the regime in which �/ω0 < 1, an excellent ap-
proximation may be obtained from lowest-order degenerate
perturbation theory in the basis of states obtained by setting
� = 0 in Eq. (1), for which we will use the term “adiabatic
approximation” [18]. The same expressions can also be derived
by other methods [19–23]. This approximation provides
good agreement with the numerically determined eigenstates
and energies for arbitrary coupling values when �/ω0 � 1.
Although the adiabatic approximation is derived on the
assumption of small �, qualitative agreement with numerics
persists over the full range of coupling strengths as long as
�/ω0 � 1 [23]. A number of techniques have been proposed
to make quantitative corrections to the states and energies but
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the corrections generally prove to be small, reaching their
largest values for the lowest levels and as � approaches ω0

[24–26].
The situation becomes more complicated for �/ω0 � 1.

Variational treatments based on the form of the adiabatic
approximation have been shown to improve the ground-state
energies and wave functions for larger values of � [27–30].
However, the excited states cannot generally be treated in this
way. As � becomes equal to or greater than ω0, resonances
occur in the excited-state spectrum at small coupling values
[31–33]; the effect of this is that unphysical level crossings
appear in the adiabatic energy levels. This represents a
qualitative change in the eigenstates and energies which
must be treated by different methods [23,24,26,29,32–35]. At
larger coupling, the effect of these resonances is no longer
observed and the adiabatic approximation still works well,
both qualitatively and quantitatively [23,36]. This regime has
been termed the “deep strong coupling” limit in the literature
[25] and the criterion usually given for achieving this limit is
λ/ω0 ∼ 1 [25,36].

It has been known for quite some time that a critical point
at λc = 1

2

√
�ω0 exists in some semiclassical approximations

in the slow-oscillator limit, at which the nature of the system’s
wave function undergoes a sharp change [20,23,29]. The
behavior of various system observables in this region has
been studied in detail by Ashhab [37]. The existence of
the critical point implies that the criterion for achieving the
deep strong coupling limit, when the adiabatic approximation
becomes a good description, must be modified: rather than
λ/ω0 ∼ 1, it should instead be λ � λc. Similarly, the criterion
for when the weak coupling theory ceases to work should
probably be λ ∼ λc, rather than simply λ/ω0 ∼ 0.1. This
leaves a wide intermediate coupling region, including the
critical point itself, in which the behavior of the system may
be expected to deviate strongly from both weak-coupling
theory and the adiabatic approximation. There is evidence that
squeezing of the oscillator state is involved to some extent
near the critical point. A number of authors have incorpo-
rated squeezing into variational studies of the ground state
[27–29,38,39], and numerical calculations have shown how
the squeezing parameter in the ground state scales with �/ω0

and λ/ω0 [23,37]. The dynamics of squeezing in wave-packet
evolution has been discussed by Sandu et al. [40] and Larson
[41]. However, the properties of the system, particularly its
dynamics, in this intermediate coupling regime are still far
from fully understood.

In this paper, we address the case of � > ω0, for couplings
above the critical point but below the region in which the
adiabatic approximation becomes valid. We present an approx-
imate solution for both ground and excited states and show that,
under certain conditions, it predicts tunnelinglike behavior for
the oscillator. In Sec. II, we derive the approximation for
the energies and wave functions of the system, discuss its
range of validity, and calculate dynamics of both oscillator
and qubit observables. Section III contains a discussion of
several ways to interpret the dynamical behavior in terms of
effective double-well potentials. Prospects for experimental
observations of the tunneling dynamics in nanomechanical
systems are outlined in Sec. IV, and we draw some brief
conclusions in Sec. V.

II. APPROXIMATE SOLUTION IN THE
SLOW-OSCILLATOR LIMIT

The Hamiltonian (1) can also be expressed as

H = ��

2
(| + z〉〈−z| + | − z〉〈+z|) + HL| + z〉〈+z|

+HR| − z〉〈−z| − �λ2

ω0
, (2)

where HL and HR are the Hamiltonians of oscillators displaced
to the left and right, respectively:

HL,R = �ω0
(
a† ± λ/ω0

)
(a ± λ/ω0) . (3)

If the qubit energy term [first term in (1) and (2)] is neglected,
the energy eigenstates are simply displaced number states of
the oscillator, associated with either the | + z〉 state of the qubit
(left-displaced) or the | − z〉 state (right-displaced). This is the
starting point of the adiabatic approximation [18], in which
the � term is treated perturbatively. Here, however, we are
interested in studying the case �/ω0 > 1.

One approach that has been taken previously is to treat
the displacement of the oscillators as a variational parameter
and minimize the ground-state energy with respect to the
displacement. While this does improve upon the ground state
of the adiabatic approximation, it is not particularly accurate in
the intermediate coupling regime and, furthermore, produces
unphysical “kinks” in the values of various observables
including the energy [27,30].

We begin instead with a variational test function in which
both the oscillator displacement and the rotation of the qubit
state are taken as variational parameters:

|ψ0〉 = |α〉 ⊗
(

cos
θ

2
| + x〉 + sin

θ

2
| − x〉

)
, (4)

where |α〉 is a coherent state, with wave function, in the
coordinate representation,

〈q|α〉 =
(mω0

π�

)1/4
exp

[
−mω0

2�
(q − qα)2

]

=
(mω0

π�

)1/4
exp

[
−

(√
mω0

2�
q − α

)2
]

, (5)

where qα ≡ α
√

2�/mω0 with m the mass of the oscillator.
Assuming α to be real, the expectation value of H in the state
|ψ0〉 is

〈ψ0|H |ψ0〉 = ��

2
cos θ + 2�λα sin θ + �ω0α

2. (6)

We may search for the ground-state energy by minimizing (6)
with respect to the parameters α and θ . If 4λ2/�ω0 < 1 there
is only one minimum, at α = 0 and θ = π , but if instead the
condition

1

ε
≡ 4λ2

�ω0
> 1 (7)

holds, there are two minima, given by α = ±α0 and θ = ±θ0,
with

cos θ0 = −�ω0

4λ2
= −ε (8)
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and

α0 = − λ

ω0
sin θ0 = − λ

ω0

√
1 −

(
�ω0

4λ2

)2

= − λ

ω0

√
1 − ε2.

(9)

In the remainder of this paper, we will assume that condition
(7) always holds. Also, for definiteness, assume that θ0 is
chosen so that sin θ0 � 0, which makes α0 � 0. Then there are
two degenerate states, |ψ0,L〉=|α0〉(cos θ0

2 |+x〉+ sin θ0
2 |−x〉)

(left-displaced) and |ψ0,R〉=| − α0〉(cos θ0
2 |+x〉− sin θ0

2 |−x〉)
(right-displaced), with energy

E(α0,θ0) = −�λ2

ω0
− ��2ω0

16λ2
= −�λ2

ω0
(1 + ε2). (10)

Neither of these functions, however, are eigenstates of the
parity operator P̂ = exp[iπ (a†a + 1

2σx − 1
2 )] that commutes

with H ; see, e.g., Ref. [20]. States of definite parity may be
obtained by taking the superpositions

|�±,0〉 = 1√
2N±,0

(|ψ0,L〉 ± |ψ0,R〉), (11)

where N±,0 is an appropriate normalization factor, which is
needed because |ψ0,L〉 and |ψ0,R〉 are not, in general, orthog-

onal. Indeed, using N±,0 =
√

1 ∓ ε e−2α2
0 [see Eqs. (14) and

(16) below], one can show that 〈�−,0|H |�−,0〉 < E(α0,θ0) as
long as (7) holds, and hence |�−,0〉 is a better approximation
to the ground state of the system.

This suggests that we consider the set of states defined by

|�±,N 〉 = 1√
2N±,N

(|ψN,L〉 ± |ψN,R〉) (12)

in terms of the left- and right-displaced states:

|ψN,L〉 = D̂[α0]|N〉 ⊗
(

cos
θ0

2
| + x〉 + sin

θ0

2
| − x〉

)
,

|ψN,R〉 = D̂[−α0]|N〉 ⊗
(

cos
θ0

2
| + x〉 − sin

θ0

2
| − x〉

)
,

(13)

and the normalization coefficients

N±,N =
{

1 ∓ ε e−2(λ2/ω2
0)(1−ε2)LN

[
4λ2

ω2
0

(1 − ε2)

]}1/2

.

(14)

In Eq. (13), D̂[α] ≡ exp[α(a† − a)] is a displacement operator,
and the D̂[±α0]|N〉 are displaced number states, which (for
given α0) constitute two equivalent, alternate bases for the
oscillator Hilbert space. The generic displaced number state
D̂[α]|N〉 can also be written as |α,N〉, and the inner product
of number states displaced in different directions is given by a
Laguerre polynomial:

〈−α,N |α,N〉 = e−2α2
LN (4α2). (15)

For large N , the right-hand side of Eq. (15) decays as
1/(N1/4α1/2).

The states |ψN,L〉 and |ψN,R〉 may be thought of as arising
from the same variational calculation that yielded |ψ0,L〉 and

|ψ0,R〉, only starting from a field state which is a displaced
number state (note that a coherent state is equivalent to a
displaced vacuum state). The calculation yields the same
optimal values α0 and θ0 for all values of N . All the |ψN,L〉
are orthogonal for different N , as are the |ψN,R〉, but the
left- and right-displaced states, as indicated above, are not
orthogonal to each other. For the same N , |ψN,L〉 and |ψN,R〉
are degenerate in energy, and this, together with the parity
considerations, is what leads us to consider the positive and
negative superpositions given by Eq. (12).

It is easy to see that the states |�±,N 〉, taken together, form
a complete but not an orthogonal set. The parity of the state
|�±,N 〉 is ±(−1)N , and states of opposite parity are orthogonal,
but states of the same parity in general are not; their overlap
is proportional to terms of the form 〈−α,N |α,M〉, which
are given by associated Laguerre polynomials. However, just
like (15), the overlap decreases at least as fast as 1/α1/2 for
large N and M . Recalling expression (9) for the displacement
α0, it appears that these states can provide an approximately
orthogonal basis in the limit λ � ω0. Additionally, the overlap
terms are all suppressed by a factor cos θ = −ε [see Eq. (8)],
which is also small for large coupling constant λ.

In this limit, then, we shall approximate the energy eigenval-
ues of H by the expectation values E±,N = 〈�±,N |H |�±,N 〉,
that is to say, the diagonal elements of the Hamiltonian in
the approximately orthogonal basis (12). The justification is,
again, that the off-diagonal elements can be made small for
sufficiently large α0. Explicitly, the approximate energies E±,N

are given by

E±,N = �

1 ∓ εe−2α2
0 LN

(
4α2

0

) {
−�

2
ε + Nω0 − λ2

ω0
(1 − ε2)

±
[
�

2
− Nω0ε + λ2

ω0
ε(1 − ε2)

]
e−2α2

0 LN

(
4α2

0

)}

= �

1 ∓ εe−2α2
0 LN

(
4α2

0

) {
−�

2

[
ε ∓ e−2α2

0 LN

(
4α2

0

)]}

+ �Nω0 − �
λ2

ω0
(1 − ε2). (16)

To give an idea of how well this approximation works,
Fig. 1 shows the first twenty eigenvalues of H calculated
by numerical diagonalization of the full Hamiltonian together
with the corresponding values from Eq. (16), for � = 3ω0 and
two coupling values, λ = 2ω0 and λ = 1.3ω0. The first case,
where agreement is overall quite good, corresponds to ε =
0.19 and α0 = −1.96, whereas the second case corresponds to
ε = 0.44 and α0 = −1.16. Even though the latter case pushes
the approximation to its limits, we note that the agreement is
still fairly good for the lowest eigenvalues: the approximate
values for the lowest doublet are (−2.10, − 1.94) whereas
the exact ones are (−2.17, − 2.01), a difference of less than
4 percent.

The approximation is also reasonably good for the eigen-
functions. Figure 2 shows the projections of the ground and
first excited state wave functions along | ± z〉, plotted in
position space, for λ = 2ω0,1.3ω0. These plots demonstrate
clearly the need to treat the spin rotation as a variational
parameter. The right (left) peak in the | + z〉 (| − z〉) projection
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0

FIG. 1. Energy values for � = 3ω0 given by the approximation
of Eq. (16) (open symbols) and by numerical diagonalization of the
full Hamiltonian (solid symbols). Squares (circles) correspond to
λ = 2ω0 (λ = 1.3ω0) and black (grey) denotes negative (positive)
parity.

would be absent for θ0 fixed at π/2, as it would be in a standard
variational displacement calculation. A similar, albeit more
general, ansatz for the ground-state energy of the spin-boson
model has been studied by Bera et al. [30], who have shown
that including “antipolaronic” terms, in which the oscillator
is displaced in the opposite direction to that predicted by the
adiabatic approximation, provides a significant improvement
over the simple variational displacement. Although it is clear
from Figs. 2(c) and 2(d) that the approximation is starting to
break down for λ = 1.3ω0, the overlap in amplitude of |�−,0〉
with the numerically calculated ground state is still 0.977,
and the overlap of |�+,0〉 with the next-highest numerically
calculated state is 0.991.

More importantly, the approximation we have developed
here offers an intuitive means of understanding the dynamics
of the system. As shown in Eq. (11), both |�−,0〉 and |�+,0〉
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d

FIG. 2. (Color online ) Oscillator wave functions projected along
| + z〉 (black) and | − z〉 (red) in position space with � = 3ω0.
Position is plotted as a function of q̃ = √

2�/mω0q. Solid lines are
obtained by numerical diagonalization of the full Hamiltonian, while
dashed lines correspond to Eq. (11). Shown are the ground state (a)
and first excited state (b) for λ = 2ω0 and the ground state (c) and
first excited state (d) for λ = 1.3ω0.

involve a superposition of displaced coherent states, | ± α0〉.
Ignoring the small difference between N±,0 and 1, one expects
|�−,0〉 + |�+,0〉 to be proportional to the left-displaced coher-
ent state |α0〉 (recall α0 is negative), and |�−,0〉 − |�+,0〉 to
be proportional to the right-displaced coherent state | − α0〉.
Suppose that the system is initially prepared in the state

|�(t = 0)〉 = |ψ0,L〉 = |α0〉
(

cos
θ0

2
| + x〉 + sin

θ0

2
| − x〉

)

� 1√
2

(|�−,0〉 + |�+,0〉). (17)

The time evolution can be approximated by

|�(t)〉 = e−iE−,0t/�

√
2

(|�−,0〉 + e−iωt |�+,0〉), (18)

where ω is the frequency difference for the ground-state
doublet:

ω = E+,0 − E−,0

�
= �(1 − ε2)e−2α2

0

1 − ε2e−4α2
0

� �(1 − ε2)e−2α2
0 ,

(19)

where in the last expression we have neglected higher powers
of e−2α2

0 . As indicated above, at the initial time t = 0 the state
(18) corresponds to the oscillator being localized mostly on
the left (coherent state |α0〉), whereas at the time t = π/ω

it will be localized on the right (coherent state | − α0〉).
At the intermediate time t = π/2ω, it will have a doubly
peaked position probability distribution corresponding to a
superposition of two coherent states. This is standard tunneling
motion, as in the classic double-well potential.

Figure 3 compares the dynamics of the oscillator’s position-
space probability distribution given by the approximation of
Eq. (19) [Fig. 3(a)] and a numerical calculation with the
full Hamiltonian [Fig. 3(b)], for � = 3ω0 and λ = 1.3ω0.
Even for these parameters, which push its limits of validity,
the approximation captures the coarse-grained dynamics of
the oscillator surprisingly well. The characteristic tunneling
behavior, in which the probability to be localized on the left
or right oscillates in time while the probability to be found at
the origin remains negligible, can clearly be seen in both the
approximation and the full numerical calculation. Note that
the approximate result (19) for the frequency of the tunneling

1
0.6
0.4
0.2
0.0

0
2 0

0.75

0.25
02

0
−2 −2

0.0

q

2Πt/�Ω

0.2
0.4~

~ q~

P(q)~P(q)

0.5

1

(a) (b)

0.75

0.25
2Πt/�Ω0.5

FIG. 3. (Color online) Time evolution of the oscillator probabil-
ity distribution in position space with � = 3ω0 and λ = 1.3ω0, with
the initial condition �(t = 0) = ψ0,L. Position is plotted as a function
of q̃ = √

2�/mω0q; the time axis is scaled by the tunneling period
2π/ω where ω is given by Eq. (19). (a) Approximate evolution
given by Eq. (18), and (b) numerically calculated evolution with the
full Hamiltonian.
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1.0
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0.0

0.5

1.0

2πt

FIG. 4. (Color online) Time evolution of 〈σz〉 (black) and 〈σx〉
(red) with � = 3ω0 and λ = 1.3ω0, with the initial condition �(t =
0) = ψ0,L. The time axis is scaled by the tunneling period 2π/ω

where ω is given by Eq. (19). Dashed lines: approximate evolution
given by Eq. (18); solid lines: numerically calculated evolution with
the full Hamiltonian.

motion (here 0.164, in units of ω0) agrees well with the
numerically calculated one (here 0.156).

The corresponding dynamics of the qubit observables
〈σz〉 and 〈σx〉 are plotted in Fig. 4. Expressions for these
quantities are easily calculated from Eq. (18), giving 〈σz〉 =
sin θ0 cos(ωt) and 〈σx〉 = cos θ0. The substantial deviation
of 〈σx〉 from 0 indicates that these parameters lie well outside
the regime in which the adiabatic approximation holds. Again,
the approximation captures the envelope of the qubit dynamics
well, although it does not reproduce the small-amplitude fast
oscillations present in the numerical solution. Physically, the
large oscillations in 〈σz〉 arise because the high-frequency qubit
is able to adiabatically follow the tunneling motion of the
oscillator [23].

III. EFFECTIVE POTENTIAL BARRIER

In the previous section, we have shown that the Hamiltonian
(1) exhibits, in the ε < 1 parameter region, the kind of
“tunneling” motion normally associated with a double-well
system. The ground state is split into a doublet, with energy
difference �ω, and a state initially localized near the bottom
of one of the wells ends up tunneling back and forth at
a frequency ω. A characteristic feature of this tunneling
motion is that the probability to find the system in the region
of the potential barrier, that is, right in between the two wells,
is always very low, so we could say that the system manages
to make it from point A to point B without ever having a
significant probability to be found at the intermediate point
C. Formally, there is never a probability peak at the barrier,
something which is also ensured by the fact that the wave
function must be concave at that point, as we shall discuss
below.

It is natural to ask if the tunnelinglike motion described
in the previous section can be understood in terms of some
effective potential barrier for the oscillator in our problem.
The very early work of Graham and Höhnerbach [20], recently
revisited by Ashhab and Nori [23], does, indeed, show one

way in which such an effective potential can be constructed.
Here, without necessarily duplicating that work, we wish to
present another couple of ways to look at the problem, which
is complicated by the fact that the full Hilbert space includes
qubit as well as oscillator degrees of freedom.

We begin by briefly summarizing the adiabatic approach of
Graham and Höhnerbach [20], which provides a useful basis
for comparison. Working in position space, the eigenstates of
the system may be written in the form |ψ〉 = ψ1(q)| + x〉
+ ψ2(q)| − x〉, where q is the position coordinate of the
oscillator. In this calculation, the oscillator position q is treated
as a classical variable, making the semiclassical nature of the
approach evident. Inserting this state into the Schrödinger
equation yields a pair of coupled differential equations
corresponding to the two orthogonal spin components. If
the kinetic energy term is negligible (corresponding to the
low-frequency/high-inertia limit of the oscillator), the problem
reduces to a pair of coupled algebraic equations that may
be solved for energy as a function of position. Graham and
Höhnerbach find two potential energy bands, but as we are
primarily interested in low-lying energy levels, we will only
look at the lower band, which is given by

Eb(q) = mω2
0

2
q2 −

√
2�mω0λ2q2 + �2�2

4
− �ω0

2
. (20)

This energy band may be thought of as an effective potential
for the boson, created by the coupling to the (high-frequency)
spin. The point λ2 = �ω0/4 corresponds to a bifurcation point
of the function: for smaller values of λ it has a single minimum
at q = 0, but above this critical value the function develops a
double-well structure.

The semiclassical calculation outlined above provides one
way of arriving at an effective double-well potential that leads
to tunnelinglike dynamics of the boson. In the remainder of
this section, we present some alternative ways of arriving at
this interpretation, together with some analysis of the extent
to which the effective potential picture can be justified.

A. Curvature of the probability distribution

For a single particle in one dimension, it is always possible
to obtain the potential V (q) from any energy eigenfunction
ψE(q), by inverting the Schrödinger equation:

V (q) = 1

ψE(q)

(
�

2

2m

d2ψE

dq2

)
+ E. (21)

In our case, the oscillator generally does not possess a wave
function of its own, since the states of the oscillator and the
qubit are typically entangled. Instead, we may work with the
probability distribution ρ(q) for the position of the oscillator,
which can always be calculated from the total state vector |�〉
as ρ(q) = 〈�|q〉〈q|�〉. If the oscillator had a separate wave
function ψ (assumed real for simplicity), then we would have
ρ = ψ2, and a little algebra yields

ψ ′′

ψ
= ρ ′′

2ρ
−

(
ρ ′

2ρ

)2

. (22)
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We may then work out what the effective potential V (q) would
look like by calculating

V (q) = �
2

2m

[
ρ ′′

2ρ
−

(
ρ ′

2ρ

)2
]

+ E (23)

for several stationary states; if the results obtained for different
energies E agree well with each other, this may be taken to
support the “effective potential” picture. We note in passing
that at the center of the well, by symmetry, ρ ′ = 0, and hence
the curvature of ρ determines whether V (0) is greater than E

(concave ρ) or the opposite. A positive ρ ′′(0), therefore, is con-
sistent with the picture of a trapped bound state, with energy
below the barrier; that is, a conventional tunneling scenario.

It is tempting at this point to try to obtain analytical results
by using the approximate eigenstates derived in the previous
section. The form of ρ±,0 for the ground-state doublet is
especially simple: up to a normalization factor, one has

ρ±,0(q) = |〈q|α0〉|2 + |〈q| − α0〉|2
± 2 cos θ 〈q|α0〉〈q| − α0〉, (24)

where 〈q|α〉 is just the wave function of a coherent state with
real parameter α, given by Eq. (5). A little algebra then yields
the result

V (0) − E±,0 = �ω0

2

(
4α2

0

1 ∓ ε
− 1

)
� 2

�λ2

ω0
− �ω0

2
± ��

2
,

(25)

where the approximation assumes ε � 1. One must, however,
be wary of trying to extract such sensitive information from
what is, after all, only a variational wave function; there is,
indeed, no guarantee that the curvature of the real ρ(q) is well
matched at all by these approximations. As we shall see below,
the result (25) is indeed correct in order of magnitude only.
We may also extract from it an approximate condition to have
at least one bound state with energy below the barrier, namely,
2λ > ω0

√
ω0 + �; again, a better criterion will be provided

below.
Instead of the approximate variational eigenstates, Eq. (23)

may be evaluated using the numerically calculated eigenstates,
which are in principle arbitrarily exact. For the case � = 3ω0

and λ = 1.3ω0, Fig. 5(a) shows the result of considering the
four lowest eigenstates, two of positive parity (solid lines) and
two of negative parity (dashed lines). The various calculated
V (q) agree fairly well, except near the points where ρ(q)
almost vanishes (more on this below); moreover, except in
these regions, they also agree very well with the black dashed
line, which is the effective potential Eb(q) given by Eq. (20).
Figure 5(b) shows the case � = 3ω0 and λ = 2ω0. A total of
six eigenstates (three of positive and three of negative parity)
have been used, and again the agreement between the dashed
line representing Eb(q) and the effective potentials calculated
via Eq. (23) for all these states is very good except for a few
isolated spots (including the center of the barrier, q = 0).

To understand these discrepancies, it should be noted that
they are not actual singularities of Eq. (23), although they
do occur around points where ρ(q) nearly vanishes. If the
oscillator were actually described by the potential energy
Eb(q), then these points would be exact nodes of the corre-

3 2 1 0 1 2 3
2.5
2.0
1.5
1.0
0.5
0.0
0.5
1.0

q

E
ω
0

a

4 2 0 2 4
5
4
3
2
1
0
1
2

q
E

ω
0

b

FIG. 5. (Color online) (a) Effective potentials, as a function of
q̃ = √

2�/mω0q, calculated from Eq. (23) for � = 3ω0 and λ =
1.3ω0. Negative (positive) parity results are given by black (red) lines;
within each subspace the ground state (first excited state) is indicated
by solid (dashed) lines. The numerically calculated energies for the
four eigenstates are given by the corresponding horizontal lines. For
comparison, Eb(q) [Eq. (20)] is plotted as a thick, dashed black line.
(b) Same as (a) but for λ = 2ω0. Three positive and three negative
parity results are shown, given by (solid, dashed, dotted) lines. Note
that the energy splitting of the lowest two doublets cannot be resolved
on the scale of this figure.

sponding eigenfunctions ψE , and, by Schrödinger’s equation,
ψE in the neighborhood of one of these points would have
an expansion of the form ψE(q) � a(q − q0) + b(q − q0)3

with some coefficients a and b; then ρ(q) would have the
form ρ(q) � a2(q − q0)2 + 2ab(q − q0)4, and taking limits in
Eq. (23) would yield V (q0) ∝ 6b/a. On the other hand, for the
coupled system considered here the actual ρ(q) is not derived
from an underlying wave function, and there is no reason for
it to vanish exactly at q0; rather, it takes the approximate form

ρ(q) � c + a′2(q − q0)2 + . . . (26)

with a very small c, and substitution in Eq. (23) yields V (q0) ∝
a′2/c, where a′2/c is typically very large.

Put differently, the plots in Fig. 5 magnify the discrepancies
between the exact probability distribution ρ(q) and the
solutions to the effective potential Eb(q), but they do that
precisely near the “unimportant” regions where the probability
to find the particle is very small anyway. This includes, for the
lowest energy states, the middle of the potential barrier, q = 0.
Keeping this in mind, we can assert that the potential Eb(q)
of Eq. (20) does provide a remarkably good approximation,
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especially when one considers that the oscillator does not even
have a true wave function of its own, since it is typically in a
highly entangled state with the spin.

A simple calculation shows that the potential Eb(q) does
predict, for ε < 1, the two minima at the same locations
as the variational calculation, q = ±(mω0/2�)(λ/ω0)

√
1 − ε2

[compare Eq. (9)]. The value of the potential at these minima is

(Eb)min = −�λ2

ω0
(1 + ε2) − �ω0

2
. (27)

If one assumes that the lowest energy eigenstate will have
an energy �ω0/2 above the bottom of the band, one obtains
a good approximation to the ground-state energy predicted
by the variational method [compare to Eqs. (10) and(16)].
Analogously, the height of the barrier predicted by Eb is

Eb(q = 0) = −��

2
− �ω0

2
. (28)

Assuming that the lowest levels are spaced by about �ω0,
one can combine these results to predict approximately the
number N of tunneling doublets, i.e., pairs of states with
energies below the barrier [note that the energy of the N th
doublet would be (N − 1/2)�ω0 above the bottom of the
band, that is, we start counting states from 1, not from 0]:

N <
λ2

ω2
0

(1 + ε2) − �

2ω0
+ 1

2
. (29)

For the cases illustrated in Fig. 3, Eq. (29) predicts,
respectively, N < 1.02 and N < 3.14, which agrees with the
figures. An alternative way to predict N is developed in the
next section.

Finally, we would like to emphasize that the effective
potential Eb(q) appears to work well for the higher excited
states as well, and not just for the states below the barrier.

B. Effective barrier from the doublet energies

Typically, in a double-well situation, the lowest-lying
energy eigenstates form doublets of closely-spaced energies,
where the energy difference gives the rate of tunneling through
the barrier; this increases as the overall energy increases and
the states move closer to the top of the barrier. The formula
for the energies, Eq. (16), derived in Sec. I from variational
considerations, does indeed exhibit this behavior for the lowest
few eigenstates, and one can use this to establish an effective
“barrier height” as follows.

First, we note that Eq. (16) can be simplified by expanding
the normalization factor, since we are typically interested only
in situations where both the parameter ε and the overlap factor
e−2α2

0 LN (4α2
0) are small. To lowest order in the overlap factor,

then, we obtain the simpler result

E±,N = −�
�

2
ε + �Nω0 − �

λ2

ω0
(1 − ε2)

± �
�

2
(1 − ε2)e−2α2

0 LN

(
4α2

0

)
. (30)

For the cases illustrated in Fig. 1, the spectra predicted by
Eq. (30) are virtually indistinguishable from those predicted
by Eq. (16).

We next observe that the functions e−x[Ln(x)]2 can be used
to define probability distributions in the interval x ∈ [0,∞),
with expectation value x̄ = 2n + 1 and variance σ 2 =
2n2 + 2n + 1. Observation then shows that e−x/2Ln(x) decays
rapidly for x greater than x̄ plus about two standard deviations;
hence, a condition to have tightly spaced doublets in Eq. (30)
can be expressed as 4α2

0 � 2n + 1 + 2
√

2n2 + 2n + 1, or,
again numbering the doublets beginning with 1 instead of 0,

2N − 1 + 2
√

2N2 − 2N + 1 � 4α2
0 . (31)

For N = {1,2,3,4}, the left-hand side of (31) has the values
{3,7.47,12.2,17}, whereas, for the case depicted in Fig. 3(a),
we have 4α2

0 = 5.38, and for the case in Fig. 3(b) we have
4α2

0 = 15.4. Hence this equation appears to predict well the
number of tunneling doublets in both cases (one in the first
instance and three in the second; see Fig. 5). For large N , the
left-hand side can be expanded to yield

N � 0.83
λ2

ω2
0

(1 − ε2) + 1

2
. (32)

To leading order, this agrees with all the previous estimates
of an effective barrier, whose height at q = 0 is of the order
of �λ2/ω0, although clearly there are differences between the
estimates as well.

From the foregoing considerations, it appears that the
predictions of the fully quantized system, both from the
approximation developed in Sec. II and from numerical
calculations of the full Hamiltonian, are consistent with the
semiclassical picture: the interaction with the high-frequency
qubit creates an effective potential that takes on a double-well
shape for couplings that satisfy 4λ2/�ω0 > 1. Within this
potential, an initial state of the oscillator that is localized
in one well tunnels through the barrier and back again.
It is worth noting here that the dynamics displayed in Fig. 3
is distinctly different to that of an oscillator coherent state
in a single-well potential; see, for comparison, Fig. 1 of
Ref. [42]. Our approximation provides a simple but effective
means of calculating the tunneling doublet energy splittings
and hence the tunneling frequency, as well as predicting how
many doublets lie below the energy barrier and thus display
tunneling behavior.

IV. EXPERIMENTAL PROSPECTS

The tunneling effect discussed here could potentially be
realized in a number of different systems. Perhaps the most
exciting experiments from a fundamental point of view would
involve a nano- or micromechanical resonator as the oscillator
component, whose dynamics could then be interpreted as
quantum tunneling of a macroscopic object with a direct
everyday classical analog. Significant advances over the
past few years have shown that this idea is not entirely
unrealistic. Mechanical resonators have been cooled very
close to the quantum ground state (〈n〉 � 1, where 〈n〉 =
[exp(�ω0/kBT ) − 1]−1 is the average number of thermal
phonons in a resonator of frequency ω0 at temperature T ) by
cryogenic techniques [11] and by sideband cooling via cou-
pling to microwave [43–45] or optical [46,47] fields. Coupling
between mechanical resonators and superconducting qubits
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has been achieved [7,9–11], and Rabi oscillations involving
the exchange of a single quantized excitation between a qubit
and a resonator have been observed [11]. Further evidence of
the quantum nature of a mechanical resonator was provided by
a measurement of the distinctively quantum asymmetry in the
noise spectrum [45]. A few theoretical proposals for creating
double-well potentials in which mechanical tunneling could
be observed have also been put forward [48–51].

In trying to set up a tunneling experiment, one faces two
conflicting difficulties. On the one hand, if the tunneling
states have energies well below the barrier, so that the
probability to find the system in between the two wells is
very small, the energy splitting will be exceedingly small, and
the tunneling time will become too long for the system to
remain undisturbed. On the other hand, if the states are near
the top of the barrier, so that the tunneling time is reasonable,
then thermal activation becomes a potential problem that may
mask the tunneling signal.

The time scales for tunneling in the qubit-oscillator system
compare well with decoherence times in state-of-the-art
mechanical experiments. For a typical superconducting qubit
frequency of � = 10 GHz and a resonator frequency ω0 =
�/3 = 3.3 GHz, a coupling value of λ/ω0 = 1.3 gives one
tunneling doublet near the top of the barrier [see Eq. (31) and
Fig. 5(a)]. The time for one transit of the barrier tQ = π/ω,
with ω given by Eq. (19), is then 5.9 ns. This is very close to
the resonator energy relaxation time of 6.1 ns measured for a
6 GHz dilatational resonator in the experiments of O’Connell
et al. [11]; in the same experiment, the qubit relaxation time
was found to be an anomalously short 17 ns. Although high
resonator frequency is desirable for shortening the tunneling
time, higher frequency comes at the cost of significantly shorter
decay times. As another example, take a 100 MHz oscillator
with the same 10 GHz qubit. In this case the fractional coupling
needed to have one doublet below the barrier is larger, about
λ/ω0 = 5.1. The resulting tunneling time is tQ = 0.22 μs,
which compares favorably with the typical 1 μs decoherence
time of superconducting qubits. Resonators with frequencies in
the range of 10–100 MHz typically have Q values on the order
of 105–106 [43,44,52,53]. For these low-frequency oscillators,
the important parameter is the rate at which thermal quanta
are exchanged with the relatively hot environment, quantified
by the thermal decoherence time τth ≈ �Q/kBTenv, where
Tenv is the environment temperature [46,47]. While exact
values depend on the details of the environment, Palomaki
et al. estimated τth ≈ 90 μs in an experiment on a 10.5-MHz
resonator [53]. Therefore the qubit decoherence time is likely
to be the limiting factor when a low-frequency resonator is
used.

While a full treatment of thermal effects is beyond the
scope of this paper, a rough estimate of the thermal activation
rate �th can be made using the Arrhenius rate equation [50]:
�th = ω0/(2π ) exp(−V/kBT ), where V is the difference
in potential between the bottom of the well and the top of the
barrier [54]. The crossover temperature Tc at which the thermal
activation rate drops below the quantum tunneling rate can be
found by setting �th = 1/tQ, giving

Tc = −V

kB

[
ln

(
2ω

ω0

)]−1

, (33)

where V can be estimated from Eqs. (27) and (28) and ω

is given by Eq. (19). For the first set of parameters considered
above, Tc = 12 mK, within the range of modern dilution
refrigerators. At lower resonator frequencies, the crossover
temperature becomes more challenging to achieve: for the
second set of parameters above, Tc = 24 μK. Thus while
lower frequency resonators have the advantage of much higher
quality factors and consequently longer thermal decoherence
times, high frequency provides a significant advantage in
distingushing quantum tunneling from thermal activation over
the barrier.

The time scales and temperatures required for observation
of quantum tunneling in our scenario are within the reach of
current nanomechanics technology. However, one outstanding
technical challenge remains, which is achieving the very large
qubit-oscillator coupling strength needed to reach the double-
well regime. Values for λ/ω0 in current experiments range
from about 1% for the dilatational resonator system [11] to
5%–6% for flexural resonators [7,9,10]. This is about two
orders of magnitude smaller than required to create a double-
well potential. Suh et al. [10] remark that a factor of 10 increase
in λ should be possible by modifying the geometry. Other
types of systems have come closer to achieving the required
coupling strength [6,8,12–15], and a number of proposals for
reaching or simulating the ultrastrong and deep strong coupling
regimes have recently appeared [55–57]. This is an area of
active research, so further advances are to be expected in the
near future.

V. CONCLUSIONS

We have derived an approximation for the Rabi model
in the slow-oscillator regime, � > ω0, and intermediate
coupling strength. As well as giving analytical expressions
for the energies and eigenstates of the system in this regime,
the approximation allows us to interpret the dynamics of
the oscillator and qubit in an intuitive way. An initially
localized state of the oscillator displays dynamics similar
to that of a particle tunneling in a double-well potential;
the high-frequency qubit adiabatically follows the oscillator
motion, resulting in slow, large-amplitude oscillations of 〈σz〉.
This behavior may be interpreted via a semiclassical picture
in which the interaction with the qubit creates an effective
double-well potential for the oscillator. Within this picture, the
fully quantum approximation presented here gives reasonable
estimates for the height of the potential barrier, the number of
tunneling states trapped below the barrier, and the tunneling
frequency of each pair of states. We find that the timescales
and temperatures required for realization of qubit-mediated
oscillator tunneling are within the reach of cutting-edge micro-
and nanomechanics experiments; the only major obstacle is
achieving the large coupling strengths required.
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S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider,
M. Beck, and J. Faist, Science 335, 1323 (2012).

[15] A. Crespi, S. Longhi, and R. Osellame, Phys. Rev. Lett. 108,
163601 (2012).

[16] D. Braak, Phys. Rev. Lett. 107, 100401 (2011).
[17] H. Zhong, Q. Xie, M. T. Batchelor, and C. Lee, J. Phys. A Math.

Theor. 46, 415302 (2013).
[18] E. K. Twyeffort Irish, J. Gea-Banacloche, I. Martin, and K. C.

Schwab,  Phys. Rev. B 72, 195410 (2005).
[19] S. Schweber, Ann. Phys. (NY) 41, 205 (1967).
[20] R. Graham and M. Höhnerbach, Zeitschrift für Phys. B Condens.

Matter 57, 233 (1984).
[21] M. D. Crisp, Phys. Rev. A 46, 4138 (1992).
[22] T. Sandu, Phys. Lett. A 373, 2753 (2009).
[23] S. Ashhab and F. Nori, Phys. Rev. A 81, 042311 (2010).
[24] T. Liu, K. L. Wang, and M. Feng, Europhys. Lett. 86, 54003

(2009).
[25] J. Casanova, G. Romero, I. Lizuain, J. J. Garcı́a-Ripoll, and

E. Solano, Phys. Rev. Lett. 105, 263603 (2010).
[26] J. Hausinger and M. Grifoni, Phys. Rev. A 82, 062320 (2010).
[27] H. Shore and L. Sander, Phys. Rev. B 7, 4537 (1973).
[28] J. Stolze and L. Müller, Phys. Rev. B 42, 6704 (1990).

[29] M.-J. Hwang and M.-S. Choi, Phys. Rev. A 82, 025802
(2010).

[30] S. Bera, S. Florens, H. Baranger, N. Roch, A. Nazir, and
A. Chin, arXiv:1301.7430.

[31] I. D. Feranchuk, L. I. Komarov, and A. P. Ulyanenkov, J. Phys.
A. Math. Gen. 29, 4035 (1996).

[32] M. Amniat-Talab, S. Guerin, and H. R. Jauslin, J. Math. Phys.
46, 042311 (2005).

[33] E. K. Twyeffort Irish, Phys. Rev. Lett. 99, 173601 (2007).
[34] A. Pereverzev and E. R. Bittner, Phys. Chem. Chem. Phys. 8,

1378 (2006).
[35] I. Feranchuk and A. Leonov, Phys. Lett. A 373, 4113 (2009).
[36] F. A. Wolf, F. Vallone, G. Romero, M. Kollar, E. Solano, and

D. Braak, Phys. Rev. A 87, 023835 (2013).
[37] S. Ashhab, Phys. Rev. A 87, 013826 (2013).
[38] H. Chen, Y.-M. Zhang, and X. Wu, Phys. Rev. B 39, 546 (1989).
[39] H. Chen, Y.-M. Zhang, and X. Wu, Phys. Rev. B 40, 11326

(1989).
[40] T. Sandu, V. Chihaia, and W. Kirk, J. Lumin. 101, 101 (2003).
[41] J. Larson, Phys. Scr. 76, 146 (2007).
[42] T. G. Philbin, arXiv:1311.1920.
[43] T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A.

Clerk, and K. C. Schwab, Nature (London) 463, 72 (2010).
[44] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman,

K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and
R. W. Simmonds, Nature (London) 475, 359 (2011).

[45] A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre,
A. Krause, and O. Painter, Phys. Rev. Lett. 108, 033602 (2012).

[46] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill,
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