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We study theoretically the phonon-induced relaxation (T1) and decoherence times (T2) of singlet-triplet qubits in
lateral GaAs double quantum dots (DQDs). When the DQD is biased, Pauli exclusion enables strong dephasing
via two-phonon processes. This mechanism requires neither hyperfine nor spin-orbit interaction and yields
T2 � T1, in contrast to previous calculations of phonon-limited lifetimes. When the DQD is unbiased, we find
T2 � 2T1 and much longer lifetimes than in the biased DQD. For typical setups, the decoherence and relaxation
rates due to one-phonon processes are proportional to the temperature T , whereas the rates due to two-phonon
processes reveal a transition from T 2 to higher powers as T is decreased. Remarkably, both T1 and T2 exhibit a
maximum when the external magnetic field is applied along a certain axis within the plane of the two-dimensional
electron gas. We compare our results with recent experiments and analyze the dependence of T1 and T2 on system
properties such as the detuning, the spin-orbit parameters, the hyperfine coupling, and the orientation of the DQD
and the applied magnetic field with respect to the main crystallographic axes.
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I. INTRODUCTION

The spin states of quantum dots (QDs) are promising plat-
forms for quantum computation [1,2]. In particular, remarkable
progress has been made with S-T0 qubits in lateral GaAs
double quantum dots (DQDs) [3–7], where a qubit is based
on the spin-singlet (S) and -triplet (T0) states of two electrons
in the DQD. In this encoding scheme, rotations around the z

axis of the Bloch sphere can be performed on a subnanosecond
time scale [4] through the exchange interaction, and rotations
around the x axis are enabled by magnetic field gradients
across the QDs [5].

The lifetimes of S-T0 qubits have been studied with great
efforts. When the qubit state precesses around the x axis,
dephasing mainly results from Overhauser field fluctuations,
leading to short dephasing times T ∗

2 ∼ 10 ns [4,8–12]. This
low-frequency noise can be dynamically decoupled with echo
pulses [4,13–15], and long decoherence times T2 > 200 μs
have already been measured [14]. In contrast to x rotations,
precessions around the z axis dephase predominantly due
to charge noise [16,17]. Rather surprisingly, however, recent
Hahn echo experiments by Dial et al. [16] revealed a relatively
short T2 � 0.1–1 μs and a power-law dependence of T2 on
the temperature T . The origin of the observed decoherence is
so far unknown, although the dependence on T suggests that
lattice vibrations (phonons) may play an important role.

In this work, we calculate the phonon-induced lifetimes of
an S-T0 qubit in a lateral GaAs DQD. Taking into account
the spin-orbit interaction (SOI) and the hyperfine coupling,
we show that one- and two-phonon processes can become the
dominant decay channels in these systems and may lead to
qubit lifetimes on the order of microseconds only. While the
decoherence and relaxation rates due to one-phonon processes
scale with T for the parameter range considered here, the
rates due to two-phonon processes scale with T 2 at rather high
temperatures and obey power laws with higher powers of T

as the temperature decreases. Among other things, the qubit
lifetimes depend strongly on the applied magnetic field, the
interdot distance, and the detuning between the QDs. Based
on the developed theory, we discuss how the lifetimes can be
significantly prolonged.

The paper is organized as follows. In Sec. II, we present
the Hamiltonian and the basis states of our model. In the main
part, Sec. III, we discuss the calculation of the lifetimes in a
biased DQD and investigate the results in detail. In particular,
we show that two-phonon processes lead to short dephasing
times and identify the magnetic field direction at which the
lifetimes peak. The results for unbiased DQDs are discussed
in Sec. IV, followed by our conclusions in Sec. V. Details and
further information are appended.

II. SYSTEM, HAMILTONIAN, AND BASIS STATES

We consider a lateral GaAs DQD within the two-
dimensional electron gas (2DEG) of an AlGaAs/GaAs het-
erostructure that is grown along the [001] direction, referred
to as the z axis. Confinement in the x-y plane is generated by
electric gates on the sample surface, and the magnetic field B is
applied in plane to avoid orbital effects. When the DQD is oc-
cupied by two electrons, the Hamiltonian of the system reads as

H =
∑
j=1,2

(
H

(j )
0 + H

(j )
Z + H

(j )
SOI + H

(j )
hyp + H

(j )
el-ph

)
+HC + Hph, (1)

where the index j labels the electrons, H0 comprises the
kinetic and potential energy of an electron in the DQD
potential, HZ is the Zeeman coupling, HSOI is the SOI, Hhyp

is the hyperfine coupling to the nuclear spins, Hel-ph is the
electron-phonon coupling, HC is the Coulomb repulsion, and
Hph describes the phonon bath.

The electron-phonon interaction has the form

Hel-ph =
∑
q,s

Ws(q)aqse
iq·r + H.c., (2)

where r is the position of the electron, q is a phonon wave
vector within the first Brillouin zone, s ∈ {l,t1,t2} stands for the
longitudinal (l) and the two transverse (t1,t2) phonon modes,
and “H.c.” is the Hermitian conjugate. The coefficient Ws(q)
depends strongly on q and s, and is determined by material
properties such as the relative permittivity εr , the density ρ,
the speed vl (vt ) of a longitudinal (transverse) sound wave,
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and the constants � and h14 for the deformation potential and
piezoelectric coupling, respectively. The annihilation operator
for a phonon of wave vector q and mode s is denoted by aqs .
The Hamiltonian

HSOI = α(px ′σy ′ − py ′σx ′ ) + β(py ′σy ′ − px ′σx ′ ) (3)

contains both Rashba and Dresselhaus SOI. Here, px ′ and
py ′ are the momentum operators for the x ′ and y ′ axes,
respectively. The latter coincide with the crystallographic
axes [100] and [010], respectively, and σx ′ and σy ′ are the
corresponding Pauli operators for the electron spin. We take
into account the coupling to states of higher energy by
performing a Schrieffer-Wolff transformation that removes
HSOI in lowest order [18–24]. The resulting Hamiltonian H̃ is
equivalent to H , except that HSOI is replaced by

H̃SOI � gμB(rSOI × B) · σ , (4)

where g is the in-plane g factor, σ is the vector of Pauli
matrices, and

rSOI =
(

y ′

lR
+ x ′

lD

)
e[100] −

(
x ′

lR
+ y ′

lD

)
e[010]. (5)

Here, x ′ and y ′ are the coordinates of the electron along the
main crystallographic axes, whose orientation is provided by
the unit vectors e[100] and e[010], respectively. The spin-orbit
lengths are defined as lR = �/(meffα) and lD = �/(meffβ),
where meff is the effective electron mass in GaAs and α (β)
is the Rashba (Dresselhaus) coefficient. For our analysis, the
most relevant effect of the nuclear spins is the generation of
an effective magnetic field gradient between the QDs, which
is accounted for by Hhyp. We note that this magnetic field
gradient may also result from a nearby positioned micromagnet
[25–27]. For details of H and H̃ , see Appendix B.

The S-T0 qubit in this work is formed by the basis states
|(1,1)S〉 and |(1,1)T0〉, where the notation (m,n) means that m

(n) electrons occupy the left (right) QD. In first approximation,
these states read as

|(1,1)S〉 = |�+〉 |S〉 , (6)

|(1,1)T0〉 = |�−〉 |T0〉 , (7)

with

|�±〉 =
∣∣	(1)

L 	
(2)
R

〉 ± ∣∣	(1)
R 	

(2)
L

〉
√

2
, (8)

where the 	L,R(r) are orthonormalized single-electron wave
functions for the left and right QD, respectively (see also

FIG. 1. (Color online) The energy spectrum of the DQD calcu-
lated for the parameters described in the text. The S-T0 qubit is formed
by the eigenstates of type |(1,1)S〉 and |(1,1)T0〉.
Appendix A) [28,29]. The spin singlet is

|S〉 = |↑↓〉 − |↓↑〉√
2

, (9)

whereas

|T0〉 = |↑↓〉 + |↓↑〉√
2

, (10)

with the quantization axis of the spins along B. Analo-
gously, one can define the states |(1,1)T+〉 = |�−〉 |↑↑〉 and
|(1,1)T−〉 = |�−〉 |↓↓〉, which are energetically split from the
qubit by ±gμB |B|. For our analysis of the phonon-induced
lifetimes, a simple projection of H̃ onto this four-dimensional
(4D) subspace of lowest energy is not sufficient because∑

j

(〈�+| H (j )
el-ph |�+〉 − 〈�−| H (j )

el-ph |�−〉) = 0. (11)

That is, corrections from higher states must be taken into
account in order to obtain finite lifetimes [23,30]. The spectrum
that results from the states considered in our model is plotted
in Fig. 1. Depending on the detuning ε between the QDs,
the lifetimes of the qubit are determined by admixtures from
|(2,0)S〉, |(0,2)S〉, or states with excited orbital parts.

III. REGIME OF LARGE DETUNING

A. Effective Hamiltonian and Bloch-Redfield theory

We first consider the case of a large, positive detuning
ε at which the energy gap between |(0,2)S〉 and the qubit
states is smaller than the orbital level spacing �ω0. In this
regime, contributions from states with excited orbital parts are
negligible, and projection of H̃ onto the basis states |(1,1)T0〉,
|(1,1)S〉, |(1,1)T+〉, |(1,1)T−〉, |(0,2)S〉, and |(2,0)S〉 yields

H̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

PT
δbB

2 0 0 0 0
δbB

2 V+ − V− + PT
�√

2
− �√

2
−√

2t + P
†
S −√

2t + PS

0 �√
2

EZ + PT 0 0 0

0 − �√
2

0 −EZ + PT 0 0

0 −√
2t + PS 0 0 −ε + U − V− + PSR 0

0 −√
2t + P

†
S 0 0 0 ε + U − V− + PSL

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ Hph. (12)
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Here, PT , PS , P †
S , PSL, and PSR are the matrix elements of the

electron-phonon interaction, t is the tunnel coupling, U is the
onsite repulsion, V± = 〈�±|HC |�±〉, EZ = gμB |B|,
� = gμB[〈	L|(rSOI × B)z|	L〉 − 〈	R|(rSOI × B)z|	R〉],

(13)

and δbB = 2〈(1,1)S|Hhyp|(1,1)T0〉 (see also Appendix B 5).
We note that the energy in Eq. (12) was globally shifted
by 〈(1,1)T0| (H (1)

0 + H
(2)
0 + HC) |(1,1)T0〉. Furthermore, we

mention that the state |(2,0)S〉 is very well decoupled when ε

is large and positive. In Eq. (12), |(2,0)S〉 is mainly included
for illustration purposes, allowing also for large and negative
ε and for an estimate of the exchange energy at ε � 0.

In order to decouple the qubit subspace
{|(1,1)S〉,|(1,1)T0〉}, we first apply a unitary transformation to
H̃ that diagonalizes H̃ − ∑

j H
(j )
el-ph exactly. Then, we perform

a third-order Schrieffer-Wolff transformation that provides
corrections up to the third power in the electron-phonon
coupling, which is sufficient for the analysis of one- and
two-phonon processes. The resulting effective Hamiltonian
can be written as Hq + Hq-ph(τ ) + Hph in the interaction
representation, where the time is denoted by τ to avoid
confusion with the tunnel coupling. Introducing the effective
magnetic fields Beff and δB(τ ) and defining σ ′ as the vector
of Pauli matrices for the S-T0 qubit,

Hq = 1
2gμB Beff · σ ′ (14)

describes the qubit and

Hq-ph(τ ) = 1
2gμBδB(τ ) · σ ′ (15)

describes the interaction between the qubit and the phonons.
The time dependence results from

Hq-ph(τ ) = eiHphτ/�Hq-phe
−iHphτ/�. (16)

For convenience, we define the basis of σ ′ such that Beff,x =
0 = Beff,y . Following Refs. [20,31], the decoherence time (T2),
the relaxation time (T1), and the dephasing contribution (Tϕ)
to T2 of the qubit can then be calculated via the Bloch-Redfield
theory (see also Appendix E), which yields

1

T2
= 1

2T1
+ 1

Tϕ

, (17)

1

T1
= J+

xx(ωZ) + J+
yy(ωZ), (18)

1

Tϕ

= J+
zz (0), (19)

where �ωZ = Jtot = |gμB Beff | and

J+
ii (ω) = g2μ2

B

2�2

∫ ∞

−∞
cos(ωτ )〈δBi(0)δBi(τ )〉dτ. (20)

The correlator 〈δBi(0)δBi(τ )〉 is evaluated for a phonon
bath in thermal equilibrium and depends strongly on the
temperature T .

B. Input parameters

The material properties of GaAs are g = −0.4,
meff = 6.1 × 10−32 kg, εr � 13, ρ = 5.32g/cm3, vl � 5.1 ×
103m/s, and vt � 3.0 × 103m/s (see also Appendix B 6 a)
[32–34], h14 � −0.16As/m2 [33–35], and � ≈
−8 eV [36,37]. In agreement with ω0/(2π ) = 30 GHz [16],
we set lc = √

�/(meffω0) � 96 nm, which is the confinement
length of the QDs due to harmonic confining potential in the
x-y plane. For all basis states, the orbital part along the z

axis is described by a Fang-Howard wave function [38] of
width 3az = 6 nm (see Appendix A). Unless stated otherwise,
we set lR = 2 μm and lD = 1 μm [39–41], where lD is
consistent with the assumed az (see also Appendix I) [41]. We
note, however, that adapting az to lD is not required because
changing the width of the 2DEG by several nanometers
turns out not to affect our results. All calculations are
done for |B| = 0.7 T [6,12], δbB = −0.14 μeV, in good
agreement with, e.g., Refs. [12,16], and an interdot distance
of 2a = 400 nm. For Figs. 1–5 (large ε), we use U = 1 meV,
t = 7.25 μeV, and V+ = 40 μeV [29]. We choose here
V− = 39.78 μeV such that the resulting energy splitting
Jtot(ε) between the qubit states is mostly determined by
the hyperfine coupling at ε → 0, as commonly realized
experimentally [4,16]. The detuning ε is then set such that
0 < U − V± − ε < �ω0 and Jtot = 1.43 μeV, and we note
that this splitting is within the range studied in Ref. [16].

C. Temperature dependence

Figures 1–3 consider B applied along the x axis that
connects the two QDs, assuming that the x axis coincides
with the crystallographic [110] direction. The geometry x ‖
[110] is realized in most experiments [13,15,17], particularly
because GaAs cleaves nicely along [110]. In stark contrast
to previous theoretical studies of phonon-limited lifetimes,
where T2 = 2T1 [20,42–45], Fig. 2(a) reveals T2 � T1 at
30 mK � T � 1 K considered here, which implies Tϕ � T1.
In the discussion following, we therefore focus on the details of
the temperature dependence of �2 = 1/T2. We note, however,
that the contributions to �2 and �1 = 1/T1 from one-phonon
processes scale similarly with T , and analogously for two-
phonon processes. Defining �

1p
2 (�2p

2 ) as the decoherence
rate due to one-phonon (two-phonon) processes, Fig. 2(b)
illustrates �

2p
2 � �

1p
2 , and so �2 = �

1p
2 + �

2p
2 � �

2p
2 . In the

considered range of temperatures, we find �
1p
2 ∝ T . This

behavior results from the fact that �ωZ/(kBT ) < 1 for our
parameters, where kB is the Boltzmann constant. Therefore,
the dominant terms in the formula for �

1p
2 are proportional to

Bose-Einstein distributions defined as

nB(ω) = 1

e�ω/(kBT ) − 1
(21)

and may all be expanded according to nB(ω) � kBT /(�ω),
keeping in mind that the nB(ω) contributing to �

1p
2 are

evaluated at ω = ωZ because of energy conservation. The
time 1/�

2p
2 due to two-phonon processes smoothly changes

its behavior from C1 + C2T
−5 at T ∼ 40 mK to T −2 with

increasing temperature, where Cn are constants. This transition
is explained by the fact that, in the continuum limit, the
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(a)

(b)

FIG. 2. (Color online) (a) Temperature dependence of the deco-
herence time (T2, blue) and relaxation time (T1, red) for the parameters
in the text. The solid line corresponds to a power-law fit to T2 for
0.1 K � T � 0.2 K, which yields T2 ∝ T −3 and good agreement with
recent experiments [16]. We note that T2 � T1. (b) The decoherence
time due to one-phonon (1/�

1p
2 ) and two-phonon processes (1/�

2p
2 )

and the full decoherence time T2 = 1/�2 = 1/(�1p
2 + �

2p
2 ) as a

function of temperature. We note that 1/�
2p
2 changes its behavior

from ∝C1 + C2T
−5 to ∝T −2, where C1 and C2 are constants, whereas

1/�
1p
2 ∝ T −1 for the range of T considered here.

rate corresponds to an integral over the phonon wave vector
q, where the convergence of this integral is guaranteed by
the combination of the Bose-Einstein distribution and the
Gaussian suppression that results from averaging over the
electron wave functions. More precisely, the decay rate is

FIG. 3. (Color online) Dependence of the decoherence time T2

on the temperature for the parameters in the text and different
spin-orbit lengths. Keeping the splitting Jtot between the qubit states
constant, the values chosen for the detuning ε are 0.896 meV
(black), 0.912 meV (blue), 0.918 meV (green), and 0.933 meV (red),
increasing with increasing SOI. Within the range T = 100–200 mK,
T2 ∝ T −3 in all cases. We note that the best quantitative agreement
with the experiment [16] is obtained for the strongest SOI (red), where
lR = 1 μm and lD = 0.5 μm.

obtained by integrating over the wave vectors of the two
involved phonons. Due to conservation of the total energy,
however, considering only one wave vector q is sufficient for
this qualitative discussion. For �

2p
2 , we find that the dominating

terms decay with q due to factors of type

fs(q) = e−(q2
x +q2

y )l2
c nB(ωqs)[nB(ωqs) + 1], (22)

where qx and qy are the projections of q onto the x and y axes,
respectively, and �ωqs = �vs |q| is the phonon energy. Whether
the Bose-Einstein part or the Gaussian part from fs(q) provides
the convergence of the integral depends on lc, vs ∈ {vl,vt }, and
mainly T , as the latter can be changed significantly. When
the Gaussian part exp[−(q2

x + q2
y )l2

c ] cuts the integral, �
2p
2 ∝

T 2 due to the expansion nB(nB + 1) � (kBT )2/(�ωqs)2 that
applies in this case. When nB(nB + 1) affects the convergence
of the integral, terms with higher powers of T occur. The
resulting temperature dependence is rather complex, but is
usually well described by 1/�

2p
2 = Cm + CnT

−ν with ν �
2 for different ranges of T [see Fig. 2(b)]. The temperature
ranges for the different regimes are determined by the details of
the setup and the sample. For the parameters considered here,
a power-law approximation T2 ∝ T η for T = 100–200 mK
yields η � −3 mainly because of the dephasing due to two-
phonon processes (see Figs. 2 and 3), which agrees well with
the experimental data of Ref. [16].

Figure 3 shows the resulting temperature dependence of T2

for different spin-orbit lengths. Remarkably, the calculation
yields short T2 even when SOI is completely absent. Keeping
Jtot = 1.43 μeV fixed by adapting the value of ε, one finds
that T2 decreases further with increasing SOI. As seen in
Eq. (12), H̃SOI couples |(1,1)S〉 to the triplet states |(1,1)T+〉
and |(1,1)T−〉. An important consequence of the resulting
admixtures is that greater detunings are required in order
to realize a desired Jtot. In Fig. 3, for instance, ε increases
from 0.896 meV (no SOI) to 0.933 meV (lR = 1 μm, lD =
0.5 μm). As explained in the following, increasing ε decreases
the lifetimes because it enhances the effects of |(0,2)S〉 through
reduction of the energy gap (see also Fig. 1).

D. Origin of strong dephasing

The results discussed thus far have revealed two special
features of the phonon-mediated lifetimes of S-T0 qubits in
biased DQDs. First, T2 � T1, as seen in Fig. 2(a). Second, the
strong decay does not require SOI, as seen in Fig. 3. These
features have not been observed in previous calculations for,
e.g., spin qubits formed by single-electron [20,39] or single-
hole [42,43] or two-electron [23] states in GaAs QDs, hole-
spin qubits in Ge/Si nanowire QDs [44], or electron-spin qubits
in graphene QDs [45]. Therefore, we discuss the dominant
decay mechanism for S-T0 qubits in DQDs in further detail
and provide an intuitive explanation for our results.

Assuming again a large, positive detuning ε, with 0 <

U − V± − ε < �ω0, and setting � = 0 (no SOI), the states
|(1,1)T+〉, |(1,1)T−〉, and |(2,0)S〉 of Eq. (12) are practically
decoupled from the qubit. The relevant dynamics are then very
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FIG. 4. Decoherence time T2 as a function of temperature from
two different models. The dotted line is also shown in Fig. 3 and was
calculated via Eq. (12), using the parameters in the text with � = 0
(no SOI) and ε = 0.896 meV. The crosses result from Eq. (25), using
exactly the same parameters. We note that the associated Jtot differ
only slightly. The remarkable agreement demonstrates that the simple
model of Sec. III D accounts for the dominant decay mechanism. At
T � 50 mK, the curves start to deviate because relaxation is no longer
negligible. When the hyperfine coupling in Eq. (23) is not omitted,
excellent agreement is obtained also at low temperatures.

well described by

H̃ =

⎛⎜⎝ 0 δbB

2 0
δbB

2 V+ − V− −√
2t + P

†
S

0 −√
2t + PS −ε + U − V− + P̃

⎞⎟⎠ + Hph,

(23)

with |(1,1)T0〉, |(1,1)S〉, and |(0,2)S〉 as the basis states and

P̃ = PSR − PT . (24)

In the absence of SOI, the hyperfine interaction (δbB) is
the only mechanism that couples the spin states and enables
relaxation of the S-T0 qubit. We note that even when � is
nonzero, the relaxation times T1 are largely determined by
the hyperfine coupling instead of the SOI for the parameters
considered in this work. At sufficiently large temperatures,
where T2 � T1, δbB is negligible in the calculation of T2,
leading to pure dephasing T2 = Tϕ . In addition, the matrix
element PS turns out to be negligible for our parameters.
Following Appendix G, we finally obtain

1

T2
= 1

Tϕ

= 2t4

�2(�′
S)6

∫ ∞

−∞
〈P̃ 2(0)P̃ 2(τ )〉dτ (25)

from this simple model, where

�′
S =

√
(U − V+ − ε)2 + 8t2 (26)

corresponds to the energy difference between the eigenstates
of type |(1,1)S〉 and |(0,2)S〉 (using δB = 0). We note that
terms of type a

†
qsaqs and aqsa

†
qs must be removed from P̃ 2

in Eq. (25), as the Bloch-Redfield theory requires 〈δB(τ )〉 to
vanish (see also Appendix G) [46]. In Fig. 4, we compare T2

from Eq. (25) with T2 derived from Eq. (12) for � = 0 (see
also Fig. 3), and find excellent agreement at T � 50 mK where
relaxation is negligible.

The above analysis provides further insight and gives
explanations for the results observed in this work. First,

Eq. (25) illustrates that dephasing requires two-phonon pro-
cesses and can not be achieved with a single phonon only. As
dephasing leaves the energy of the electrons and the phonon
bath unchanged, the single phonon would have to fulfill
ωqs = 0 = |q|. However, phonons with infinite wavelengths
do not affect the lifetimes, which can be explained both
via eiq·r → 1 [see Eq. (2)] and via the vanishing density
of states at ωqs → 0 for acoustic phonons in bulk. Thus,
�

1p
2 = �

1p
1 /2 in all our calculations, where �

1p
1 is the relaxation

rate due to one-phonon processes. Second, as discussed above,
we find that the hyperfine interaction in combination with
electron-phonon coupling presents an important source of
relaxation in this system [24]. Third, the strong dephasing at
large detuning ε results from two-phonon processes between
states of type |(1,1)S〉 and |(0,2)S〉. This mechanism is very
effective because the spin state remains unchanged. Therefore,
the dephasing requires neither SOI nor hyperfine coupling, and
we note that Eq. (25) reveals a strong dependence of Tϕ on the
tunnel coupling t and the splitting �′

S . Hence, the short Tϕ in
the biased DQD can be interpreted as a consequence of the
Pauli exclusion principle. When the energy of the right QD
is lowered (ε > 0), the singlet state of lowest energy changes
from |(1,1)S〉 toward |(0,2)S〉 since the symmetric orbital part
of the wave function allows double occupancy of the orbital
ground state in the right QD. The triplet states, however, remain
in the (1,1) charge configuration. While this feature allows
tuning of the exchange energy and readout via spin-to-charge
conversion on the one hand [4], it enables strong dephasing
via electron-phonon coupling on the other hand: effectively,
phonons lead to small fluctuations in ε; due to Pauli exclusion,
these result in fluctuations of the exchange energy and, thus,
in dephasing. This mechanism is highly efficient in biased
DQDs, but strongly suppressed in unbiased ones, as we show
in Sec. IV and Appendix H.

E. Angular dependence

We also calculate the dependence of T1 and T2 on the
angle between B and the x axis, assuming that x ‖ [110].
The results for T = 100 mK and Jtot = 1.43 μeV are plotted
in Fig. 5. Remarkably, the phonon-induced lifetimes of the
qubit are maximal when B ⊥ x and minimal when B ‖ x.
The difference between minimum and maximum increases
strongly with the SOI, and for lR = 1 μm and lD = 0.5 μm
we already expect improvements by almost two orders of
magnitude. These features can be understood via the matrix
elements of the effective SOI [22–24]

� = FSOI(a,lc)EZ

lDcos(θB − θ ) + lRcos(θB + θ )

lDlR
, (27)

where θB (θ ) is the angle between B (the x axis) and the
crystallographic axis [110], and FSOI(a,lc) is a function of a

and lc. From this result, we conclude that there always exists an
optimal orientation for the in-plane magnetic field for which
the effective SOI is suppressed and, thus, for which the phonon-
mediated decay of the qubit state is minimal (comparing the
lifetimes at fixed Jtot). Remarkably, one finds for x ‖ [110]
(θ = 0) that this suppression always occurs when B ⊥ x (θB =
π/2), independent of lR and lD . In the case where � = 0, the
finite T2 in our model results from admixtures with |(0,2)S〉,
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FIG. 5. (Color online) Dependence of the relaxation (T1) and
decoherence time (T2) on the angle θB between the in-plane magnetic
field B and the x axis that connects the QDs. When B ⊥ x (θB =
π/2), both T1 and T2 exhibit a maximum. Red (black) corresponds
to the spin-orbit lengths lR = 2 μm and lD = 1 μm (lR = 1 μm and
lD = 0.5 μm). For the stronger SOI, the lifetimes increase by almost
two orders of magnitude. For details, see text.

as explained in Sec. III D. Due to the hyperfine interaction,
these admixtures also lead to finite T1. We wish to emphasize,
however, that suppression of the effective SOI only results in
a substantial prolongation of the lifetimes when the spin-orbit
lengths are rather short, as the dominant decay mechanism in
biased DQDs is very effective even at � = 0.

IV. REGIME OF SMALL DETUNING

All previous results were calculated for a large detuning
ε ∼ U − V±. Now, we consider an unbiased DQD, i.e., the
region of very small ε. The dominant decay mechanism in
the biased DQD is strongly suppressed at ε � 0, where the
basis states |(2,0)S〉 and |(0,2)S〉 are both split from |(1,1)S〉
by a large energy U − V+. Adapting the simple model behind
Eq. (25) to an unbiased DQD yields

8t4

�2(U − V+)6

∫ ∞

−∞
〈P̃ 2(0)P̃ 2(τ )〉dτ (28)

as the associated dephasing time (see Appendix H for details).
Comparing the prefactor with that of Eq. (25) results in a
remarkable suppression factor below 10−4 for the parameters
in this work. As explained in Appendix H, this suppression
factor may also be estimated via (�′

S)4/(U − V+)4 for fixed
Jtot, where �′

S is the splitting between the eigenstates of type
|(1,1)S〉 and |(0,2)S〉 at large ε and U − V+ is the above-
mentioned splitting at ε � 0.

Consequently, the lifetimes T1 and T2 in the unbiased DQD
are no longer limited by |(2,0)S〉 or |(0,2)S〉, but by states with
an excited orbital part (see Fig. 1). We therefore extend the
subspace by the basis states |(1∗,1)S〉, |(1∗,1)T0〉, |(1∗,1)T+〉,
and |(1∗,1)T−〉, and proceed analogously to the case of large
detuning (see Appendixes A and C for details). The asterisk
denotes that the electron is in the first excited state, leading to
an energy gap of �ω0 compared to the states without asterisk.
Setting B ‖ x ‖ [110], the orbital excitation is taken along the
x axis because states with the excitation along y turn out to
have negligible effects on the qubit lifetimes. From symmetry
considerations, states with the excited electron in the right QD

FIG. 6. (Color online) Temperature dependence of the decoher-
ence time (T2) and its one-phonon (1/�

1p
2 ) and two-phonon (1/�

2p
2 )

parts for the detuning ε � 0, where excited states are taken into
account. For this plot, U = 1 meV, V+ = 50 μeV, V− = 49.5 μeV,
t = 24 μeV, Jtot = 1.41 μeV, and the other parameters as described
in the text. We note that T2 � 2T1.

should only provide quantitative corrections of the lifetimes
by factors on the order of 2 and are therefore neglected in
this analysis. The resulting temperature dependence of T2,
1/�

1p
2 , and 1/�

2p
2 is shown in Fig. 6. The plotted example

illustrates that two-phonon processes affect T2 only at rather
high temperatures when ε is small, leading to T2 ∝ T −1 for
a wide range of T due to single-phonon processes. In stark
contrast to the biased DQD, we find T2 � 2T1. Remarkably,
the absolute value of T2 is of the order of milliseconds, which
exceeds the T2 at large ε by 2–3 orders of magnitude. For B ⊥
x, x ‖ [110], and typical sample temperatures T ∼ 0.1 K, we
find that the lifetimes can be enhanced even further.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we showed that one- and two-phonon
processes can be major sources of relaxation and decoherence
for S-T0 qubits in DQDs. Our theory provides a possible
explanation for the experimental data of Ref. [16], and we
predict that the phonon-induced lifetimes are prolonged by
orders of magnitude at small detunings and, when the SOI is
strong, at certain orientations of the magnetic field. Our results
may also allow substantial prolongation of the relaxation time
recently measured in resonant exchange qubits [47].

While the model developed in this work applies to a
wide range of host materials, the resulting lifetimes depend
on the input parameters and, thus, on the setup and the
heterostructure. By separately neglecting the deformation
potential coupling (� = 0) and the piezoelectric coupling
(h14 = 0), we find that the qubit lifetimes of Figs. 2–6 for
GaAs DQDs are limited by the piezoelectric electron-phonon
interaction, the latter providing much greater decay rates
than the deformation potential coupling. Consequently, the
phonon-limited lifetimes of singlet-triplet qubits may be long
in group-IV materials such as Ge or Si [48–50], where the
piezoelectric effect is absent due to bulk inversion symmetry.

Essentially, there are two different schemes for manipu-
lating singlet-triplet qubits in DQDs electrically. The first
and commonly realized approach is based on biased DQDs
and uses the detuning to control the exchange energy [4].
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Alternatively, the exchange energy can be controlled by tuning
the tunnel barrier [1] rather than the detuning. Our results
suggest that the second approach is advantageous, as it applies
to unbiased DQDs for which the phonon-mediated decay
of the qubit state is strongly suppressed. In addition, one
finds dJtot/dε ∝ ε at very small detunings ε [28], which
implies that not only dJtot/dε � 0 but also 〈dJtot/dε〉 � 0
at ε � 0, where 〈· · · 〉 now stands for the average over some
random fluctuations of ε. Therefore, singlet-triplet qubits in
unbiased DQDs are also protected against electrical noise.
The latter, for instance, turned out to be a major obstacle
for the implementation of high-fidelity controlled-phase gates
between S-T0 qubits [6]. Keeping in mind that two-qubit
gates for singlet-triplet qubits may also be realized with
unbiased DQDs [7], we conclude that operation at ε � 0
with a tunable tunnel barrier is a promising alternative to the
commonly realized schemes that require nonzero detuning.
As single-qubit gates for S-T0 qubits correspond to two-qubit
gates for single-electron spin qubits, the regime ε � 0 is also
beneficial for many other encoding schemes.
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APPENDIX A: BASIS STATES

We consider a GaAs/AlGaAs heterostructure that contains
a two-dimensional electron gas (2DEG). Electric gates on the
top of the sample induce a double quantum dot (DQD) poten-
tial that confines electrons and enables the implementation of
a singlet-triplet qubit. Assuming that this spin qubit is based
on low-energy states of two electrons in the DQD, we consider
the four states of lowest energy

|(1,1)S〉 = |�+〉|S〉, (A1)

|(1,1)T+〉 = |�−〉|T+〉, (A2)

|(1,1)T0〉 = |�−〉|T0〉, (A3)

|(1,1)T−〉 = |�−〉|T−〉, (A4)

two states with a doubly occupied quantum dot (QD)

|(0,2)S〉 = |�R〉|S〉, (A5)

|(2,0)S〉 = |�L〉|S〉, (A6)

and four additional states that feature one electron in a first
excited orbital state

|(1∗,1)S〉 = |�e
+〉|S〉, (A7)

|(1∗,1)T+〉 = |�e
−〉|T+〉, (A8)

|(1∗,1)T0〉 = |�e
−〉|T0〉, (A9)

|(1∗,1)T−〉 = |�e
−〉|T−〉, (A10)

as the basis in this problem. In the notation used above, the first
and second indices in parentheses correspond to the occupation
number of the left and right QD, respectively. The asterisk
denotes that the electron in the QD is in the first excited state.
The spin part of the wave functions consists of the singlet |S〉
and the triplets |T0〉, |T+〉, and |T−〉:

|S〉 = |↑↓〉 − |↓↑〉√
2

, (A11)

|T0〉 = |↑↓〉 + |↓↑〉√
2

, (A12)

|T+〉 = |↑↑〉 , (A13)

|T−〉 = |↓↓〉 , (A14)

where ↑ (↓) corresponds to an electron spin oriented along
(against) the externally applied magnetic field (see Ap-
pendix B).

As the two minima in the DQD potential may be approxi-
mated by the confining potential of a 2D harmonic oscillator,
the one-particle wave functions for ground and first excited
states can be constructed from the eigenstates of the harmonic
oscillators [28]. Defining the growth axis of the heterostructure
as the z axis, we consider harmonic confinement potentials
around (x,y) = (±a,0) with lc = √

�/(meffω0) as the confine-
ment length in the QDs. The x axis connects the two QDs,
pointing from the left to the right one. The interdot distance
is L = 2a, meff is the effective mass of electrons in GaAs,
and �ω0 is the orbital level spacing in each QD. With these
definitions, the orbital parts of the 2D harmonic oscillator
wave functions (ground, excited along x, excited along y) can
be written as

φL,R(x,y) = 1√
πlc

e−[(x±a)2+y2]/(2l2
c ), (A15)

φx
L,R(x,y) =

√
2

πl4
c

(x ± a)e−[(x±a)2+y2]/(2l2
c ), (A16)

φ
y

L,R(x,y) =
√

2

πl4
c

ye−[(x±a)2+y2]/(2l2
c ). (A17)

The confining potential along the z axis may be considered as
a triangular potential of type

V (z) =
{∞, z < 0
Cz, z > 0 (A18)

where C is a positive constant with units energy/length and
z = 0 corresponds to the interface between AlGaAs (z < 0)
and GaAs (z > 0). The ground state in such a potential can be
approximated by the Fang-Howard wave function [38]

φFH(z) = θ (z)
z√
2a3

z

e−z/(2az), (A19)

with az as a positive length and

θ (z) =
{

0, z < 0
1, z > 0 (A20)
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as the Heaviside step function. The Fang-Howard wave
function from Eq. (A19) is normalized and fulfills

〈φFH| z |φFH〉 = 3az, (A21)

which may be interpreted as the width of the 2DEG.
Following Refs. [28,29,51] for constructing wave functions

in the DQD potential, we define overlaps between the harmonic
oscillator wave functions:

s = 〈φL|φR〉 = e
− a2

l2c , (A22)

sx = 〈
φx

L

∣∣φx
R

〉 = s

(
1 − 2a2

l2
c

)
, (A23)

sy = 〈
φ

y

L

∣∣φy

R

〉 = s, (A24)

and

g = 1 − √
1 − s2

s
, (A25)

gx = 1 − √
1 − s2

x

sx

, (A26)

gy =
1 −

√
1 − s2

y

sy

= g. (A27)

Then, the normalized orbital parts of the one-particle wave
functions for the DQD are

	L,R(r) = φL,R(x,y) − gφR,L(x,y)√
1 − 2sg + g2

φFH(z), (A28)

	
e,x
L,R(r) = φx

L,R(x,y) − gxφ
x
R,L(x,y)√

1 − 2sxgx + g2
x

φFH(z), (A29)

	
e,y

L,R(r) = φ
y

L,R(x,y) − gφ
y

R,L(x,y)√
1 − 2sg + g2

φFH(z). (A30)

We note that these six states form an orthonormal set of
basis states to a very good accuracy. The only nonzero scalar
products among different states are 〈	L|	e,x

L 〉, 〈	R|	e,x
R 〉,

〈	L|	e,x
R 〉, and 〈	R|	e,x

L 〉. Even though there is a nonzero
overlap, the absolute values of these scalar products are
small (∼0.01–0.1 depending on the parameters of the DQD),
which indicates that Eqs. (A28)–(A30) present a very good
approximation for an orthonormal basis. It is, however,
important to note that we set 〈	L|	e,x

L 〉, 〈	R|	e,x
R 〉, 〈	L|	e,x

R 〉,
and 〈	R|	e,x

L 〉 equal to zero when calculating the matrix
elements of the effective Hamiltonian later on, in order to
avoid artifacts from the finite overlap of these basis states.

Given the six basis states for the orbital part of single elec-
trons, we can construct the two-particle wave functions [28,29]

�±(r1,r2) = 	L(r1)	R(r2) ± 	R(r1)	L(r2)√
2

, (A31)

�
e,ν
± (r1,r2) = 	

e,ν
L (r1)	R(r2) ± 	R(r1)	e,ν

L (r2)√
2

, (A32)

�L,R(r1,r2) = 	L,R(r1)	L,R(r2), (A33)

where ν ∈ {x,y}. The calculations for Fig. 6 were done with the
orbital excitation along the x axis only, �e

± = �
e,x
± , because

the rates resulting from �
e,y
± are much smaller than those from

�
e,x
± in this setup. For some special configurations, such as

B ‖ y and x ‖ [110], where B is the external magnetic field,
the calculations for �e

± = �
e,y
± lead to lifetimes similar to or

even shorter than those for �e
± = �

e,x
± , and so states with the

excitation along the y axis should be taken into account in these
special cases. States of type (1,1∗) with the excited electron in
the right QD will change the results only by factors around 2,
and therefore were not included for simplicity.

APPENDIX B: HAMILTONIAN

The Hamiltonian of the considered system is

H =
∑
j=1,2

(
H

(j )
0 + H

(j )
Z + H

(j )
SOI + H

(j )
hyp + H

(j )
el-ph

)
+HC + Hph, (B1)

where the index j denotes the electron, H0 takes into account
the motion of the electron in the double dot potential, HZ

is the Zeeman term, HSOI is the spin-orbit interaction (SOI),
Hhyp is the hyperfine coupling, Hel-ph is the electron-phonon
interaction, HC is the Coulomb repulsion, and Hph is the
Hamiltonian of the phonon bath. Following, we discuss the
contributions to H in further detail.

1. Hamiltonian H0

Due to az � lc, the wave function along the z axis is
the same for all basis states in our model. The one-particle
Hamiltonian H0 can therefore be written as an effective 2D
Hamiltonian

H0 = p2
x + p2

y

2meff
+ V (x,y), (B2)

where px (py) is the momentum along the x (y) axis and
V (x,y) is the confining potential in the transverse directions.
The potential V (x,y) is provided by the electric gates and
features a finite barrier between the two QDs. It also accounts
for electric fields applied along the DQD axis that effectively
shift the electron energy in the left QD by the detuning ε

compared to the right QD.

2. Coulomb repulsion

The Hamiltonian that describes the Coulomb interaction
between the two electrons is

HC = 1

4πε0εr

e2

|r1 − r2| , (B3)

where e is the elementary positive charge, ε0 is the vacuum
permittivity, and εr is the relative permittivity of GaAs.

3. Zeeman term

We consider an in-plane magnetic field B = |B|eB = BeB

with arbitrary orientation in the x-y plane. Here and in the
following, ek (eη) stands for the unit vector along the direction
of some vector k (axis η). As the 2DEG is only a few
nanometers wide, orbital effects due to an in-plane magnetic
field are negligible. The Hamiltonian for the Zeeman coupling
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reads as

HZ = EZ

2
σB, (B4)

where EZ = gμBB is the Zeeman energy, g is the in-plane g

factor, μB is the Bohr magneton, B = |B| is the magnetic field
strength, and

σB = σ · eB, (B5)

with σ as the vector of Pauli matrices, denotes the Pauli
operator for the electron spin along the magnetic field.

4. Spin-orbit interaction

We assume that the heterostructure was grown along the
[001] direction, referred to as both the z and z′ directions.
Consequently, the SOI due to Rashba and Dresselhaus SOI
reads as

HSOI = α(px ′σy ′ − py ′σx ′ ) + β(py ′σy ′ − px ′σx ′ ) (B6)

for a single electron, where the axes x ′ and y ′ correspond to
the main crystallographic axes [100] and [010], respectively.

Using the anti-Hermitian operator

S1 = i
meff

�
[α(x ′σy ′ − y ′σx ′ ) + β(y ′σy ′ − x ′σx ′ )], (B7)

which fulfills the commutation relation

[S1,H0] = S1H0 − H0S1 = −HSOI, (B8)

we can remove the SOI to lowest order via a unitary (Schrieffer-
Wolff) transformation [18–24]

H̃ = eSHe−S = e(
∑

j S
(j )
1 +··· )He−(

∑
j S

(j )
1 +··· )

�
∑
j=1,2

(
H

(j )
0 + H

(j )
Z + H

(j )
hyp + H

(j )
el-ph

) + HC + Hph

+
∑
j=1,2

([
S

(j )
1 ,H

(j )
Z

] + 1

2

[
S

(j )
1 ,H

(j )
SOI

])
. (B9)

The perturbation theory applies when both the SOI and the
Zeeman coupling are weak compared to the confinement
(spin-orbit length � confinement length; Zeeman splitting
� orbital level splitting), which is well fulfilled in the system
under study. Exploiting the commutation relations [σx ′ ,σy ′ ] =
2iσz′ (and analogously for cyclic permutations) of the Pauli
matrices, one finds

[S1,HZ] = gμB(rSOI × B) · σ , (B10)

where we defined the SOI-dependent vector operator

rSOI =
(

y ′

lR
+ x ′

lD

)
e[100] +

(
−x ′

lR
− y ′

lD

)
e[010]. (B11)

The unit vector along the [100] axis, i.e., the x ′ direction,
is denoted by e[100] = ex ′ , and analogously for all other
crystallographic directions. The spin-orbit lengths lR and lD
are defined as

lR = �

meffα
, (B12)

lD = �

meffβ
. (B13)

The contribution due to [S1,HSOI]/2 is less important when
B is sufficiently large, and considering B ∼ 0.7 T [6,12] we
therefore omit it in our model. Nevertheless, we provide the
result for completeness [21]

1
2 [S1,HSOI] = −meff(α

2 + β2) + meff

�
(β2 − α2)lz′σz′ .

(B14)

Here, the operator lz′ = (x ′py ′ − y ′px ′ ) corresponds to the an-
gular momentum along the axis of strong confinement. Again,
orbital effects (canonical momentum �= kinetic momentum)
are negligible when the magnetic field is applied in plane.
Finally, we mention that corrections of type [S1,Hhyp] were
neglected in Eq. (B9) because HZ is assumed to be much
larger than the hyperfine coupling Hhyp that we discuss next.

5. Hyperfine interaction

The hyperfine interaction between the electron and the
nuclear spins can be described in terms of an effective magnetic
field. The latter can be split into a sum field, which is present
in both QDs, and a gradient field, which accounts for the
difference in the hyperfine field between the dots. As the sum
field is usually small compared to the external magnetic field,
and, moreover, may largely be accounted for by HZ , we use
Hhyp to quantify the gradient field between the dots. Hence,
this Hamiltonian reads as

Hhyp = δb · σ

4
(PL − PR) , (B15)

where δb arises from the hyperfine field gradient between the
QDs. The operators PL and PR are projectors for the left and
right QD, respectively, and can be written as

PL = |	L〉〈	L| + ∣∣	e,x
L

〉〈
	

e,x
L

∣∣ + ∣∣	e,y

L

〉〈
	

e,y

L

∣∣ , (B16)

PR = |	R〉〈	R| + ∣∣	e,x
R

〉〈
	

e,x
R

∣∣ + ∣∣	e,y

R

〉〈
	

e,y

R

∣∣ (B17)

for the basis states defined in Appendix A.
We note that

〈(1,1)S| Hhyp |(1,1)T0〉 = δbB

2
, (B18)

where

δbB = δb · eB (B19)

is the component of δb along the external magnetic field B.
Because it turns out that all other matrix elements of Hhyp

within the basis of Appendix A are negligible for the lifetimes
of the qubit, we approximate the hyperfine coupling by

Hhyp � δbB

2
|(1,1)S〉 〈(1,1)T0| + H.c., (B20)

with the Hermitian conjugate abbreviated as “H.c.” We set
δbB = −0.14 μeV in our calculations, in good agreement with
Refs. [12,16].

6. Electron-phonon coupling

The electron-phonon interaction

Hel-ph = Hdp + Hpe (B21)
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comprises the deformation potential coupling Hdp and the
piezoelectric coupling Hpe. Both mechanisms can be derived
from the displacement operator, which we therefore recall
first. Most of the information summarized in this Appendix
on electron-phonon coupling is described in great detail in
Refs. [32,33,36,52–55], and we refer to these for further
information.

a. Displacement operator

Acoustic phonons in an isotropic crystal (bulk) lead to the
displacement operator

u =
∑
q,s

eqs(cqse
iq·raqs + c∗

qse
−iq·ra†

qs), (B22)

where cqs is an arbitrary coefficient with normalization condi-
tion |cqs |2 = �/(2ρV ωqs), ρ and V are the density and volume
of the crystal, and ωqs is the angular frequency of the acoustic
phonon of type s with wave vector q. For the longitudinal
mode s = l, the dispersion relation at small q = |q| is ωql =
q
√

(λ + 2μ)/ρ = qvl , while for the transverse modes s =
t1 and s = t2 one finds ωqt1 = ωqt2 = ωqt = q

√
μ/ρ = qvt ,

where λ and μ are the Lamé parameters of the material and
vl (vt ) is the speed of sound for longitudinal (transverse)
waves [32]. The operators a

†
qs and aqs create and annihilate

a corresponding phonon, and fulfill the commutation relations
[a†

qs ,a
†
q ′s ′ ] = 0, [aqs ,aq ′s ′ ] = 0, and [aqs ,a

†
q ′s ′ ] = δq,q ′δs,s ′ , with

δq,q ′ and δs,s ′ as Kronecker deltas. For each wave vector q, the
three real-valued polarization vectors eqs form an orthonormal
basis with eql ‖ q. The summation over q runs over all wave
vectors within the first Brillouin zone.

With a suitable choice of the polarization vectors eqs ,
the displacement operator from Eq. (B22) can be simplified
further. We choose these vectors in such a way that the relations

e−ql = −eql , (B23)

e−qt1 = −eqt1 , (B24)

e−qt2 = eqt2 (B25)

are fulfilled. The advantages of this definition become obvious
later on when we write the Hamiltonian for the electron-
phonon coupling. In short terms, this choice allows one to
define eql = q/q and to represent the vectors eqs via a simple
right-handed basis. Setting cqs = √

�/(2ρV ωqs), and making
use of Eqs. (B23) to (B25) and of the property ω−qs = ωqs , the
displacement operator can be written in the convenient form

u =
∑
q,s

√
�

2ρV ωqs

eqs(aqs ∓s a
†
−qs)e

iq·r , (B26)

where

∓s =
{− for s = l,t1,

+ for s = t2.
(B27)

This representation of the displacement operator [Eq. (B26)]
will now be used to derive the Hamiltonian for the electron-
phonon coupling. We note that the time dependence u →
u(τ ) and Hel-ph → Hel-ph(τ ) in the interaction picture (see
Appendix E) is simply obtained via aqs → aqs(τ ) = aqse

−iωqs τ

and a
†
qs → a

†
qs(τ ) = a

†
qse

iωqs τ .

It is worth mentioning how we choose the values for the
speeds of sound in GaAs. The three elastic stiffness coefficients
for GaAs are c11 = 118, c12 = 53.5, and c44 = 59.4, each in
units of 109N/m2. These values were taken from Ref. [32] and
are in very good agreement with those in, e.g., Refs. [33,34].
It makes sense to approximate these coefficients by c̃11, c̃12,
and c̃44, respectively, for which the condition c̃11 = c̃12 + 2c̃44

of an isotropic material is fulfilled. By postulating that the
relative deviation for each of the three constants should
be the same, we find λ = c̃12 = 43.5 × 109N/m2 and μ =
c̃44 = 48.3 × 109N/m2, corresponding to a relative deviation
of 18.7%. The resulting sound velocities in the isotropic
approximation are vl = √

c̃11/ρ = 5.1 × 103m/s and vt =√
c̃44/ρ = 3.0 × 103m/s. We note that basically the same

values are obtained by simply averaging over the speeds of
sound along the [100], [110], and [111] directions (longitudinal
or transverse waves, respectively), as listed, for instance, in
Refs. [33,34].

b. Deformation potential coupling

The first coupling mechanism is the deformation potential
coupling. In the presence of strain, the energy of the conduction
band changes. For GaAs, a cubic semiconductor with the
conduction band minimum at the � point, the shift of the
conduction band edge is determined by the simple Hamiltonian

Hdp = �∇ · u = �(εxx + εyy + εzz), (B28)

where � is the hydrostatic deformation potential, ∇ is the
Nabla operator, and εij are the strain tensor elements, which
are related to the displacement via

εij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
. (B29)

The trace of the strain tensor ∇ · u = εxx + εyy + εzz cor-
responds to the relative change in the volume. One finds
� ≈ −8 eV for GaAs [36,37], and so compression increases
the energy of the conduction band edge. Exploiting ∇eiq·r =
iqeiq·r and defining eql = q/q, substitution of Eq. (B26)
into (B28) yields

Hdp = i�
∑

q

√
�

2ρV ωql

q(aql − a
†
−ql)e

iq·r . (B30)

We note that only the longitudinal mode contributes to
the deformation potential coupling. This is different for the
piezoelectric electron-phonon interaction that we derive next.

c. Piezoelectric coupling

In crystals without inversion symmetry, lattice vibrations
(i.e., phonons) result in a finite polarization density Pphon

p and,
consequently, lead to an effective electric field Ep. The latter
is characterized by the equation

0 = ε0 Ep + Pdiel
p + Pphon

p = ε0εr Ep + Pphon
p , (B31)

where we set the electric displacement on the left-hand side
to zero due to the absence of free charges in this mechanism.
The vector Pdiel

p = ε0(εr − 1)Ep is the polarization density
induced by the field Ep, ε0 is the vacuum permittivity, and εr

is the relative permittivity of the material (εr � 13 in GaAs).
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In contrast to Pdiel
p , the term Pphon

p results directly from the
strain that is caused by the lattice vibrations. The polarization
density Pphon

p is related to the strain tensor elements via

P
phon
p,i =

∑
j,k

hijkεjk, (B32)

where the hijk are the elements of the third-rank piezoelectric
tensor. In zinc-blende structures such as GaAs, the hijk take
on a rather simple form

hijk = h14|εijk| =
{
h14 for |εijk| = 1,

0 for |εijk| = 0.
(B33)

Here, εijk is the Levi-Civita symbol, and the xi , xj , and xk

related to the indices i, j , and k, respectively, correspond to
the main crystallographic axes.

We now proceed to calculate the electric field Ep via the
relation [54]

Ep = − Pphon
p

ε0εr

, (B34)

which results directly from Eq. (B31). In order to improve
readability, we use a short-hand notation in the remainder
of this subsection for convenience: x, y, and z correspond
to the coordinates along the main crystallographic axes,
with ex , ey , and ez as the unit vectors along the [100],
[010], and [001] directions, respectively. Substitution of
Eqs. (B26), (B29), (B32), and (B33) into Eq. (B34) yields

Ep = − ih14

ε0εr

∑
q,s

⎛⎜⎝qye
z
qs + qze

y
qs

qze
x
qs + qxe

z
qs

qxe
y
qs + qye

x
qs

⎞⎟⎠
×

√
�

2ρV ωqs

(aqs ∓s a
†
−qs)e

iq·r , (B35)

where

q = qxex + qyey + qzez, (B36)

eqs = ex
qsex + ey

qsey + ez
qsez, (B37)

and the three components of the vector refer to the basis {ex ,
ey , ez}. The phonon-induced electric field Ep can be split into
two parts

Ep = E‖
p + E⊥

p , (B38)

where the “longitudinal” part

E‖
p = − ih14

ε0εr

∑
q,s

2
(
qxqye

z
qs + qyqze

x
qs + qzqxe

y
qs

)
q2

q

×
√

�

2ρV ωqs

(aqs ∓s a
†
−qs)e

iq·r (B39)

contains the contributions parallel to q for each mode,
while the “transverse” part E⊥

p = Ep − E‖
p comprises the

remaining components perpendicular to q. The longitudinal

and transverse parts fulfill

∇ × E‖
p = 0, (B40)

∇ · E⊥
p = 0, (B41)

respectively. As a consequence, one can write E‖
p as the

gradient of a scalar potential 	p, and E⊥
p as the curl of a

vector potential Ap,

E‖
p = −∇	p, (B42)

E⊥
p = ∇ × Ap. (B43)

From Eqs. (B39) and (B42), one finds

	p = h14

ε0εr

∑
q,s

fqs

√
�

2ρV ωqs

(aqs ∓s a
†
−qs)e

iq·r (B44)

for the scalar potential, where we introduced

fqs = 2
(
qxqye

z
qs + qyqze

x
qs + qzqxe

y
qs

)
q2

. (B45)

The vector potential Ap and, hence, the transverse part E⊥
p

are usually omitted for the piezoelectric electron-phonon
interaction. Reasons for this omission may be inferred from
Maxwell’s equations.

In accordance with common practice, we neglect the vector
potential Ap in the following and consider only the scalar
potential 	p. Using an explicit representation for the unit
vectors eqs , the result from Eq. (B44) can be simplified further.
We choose

eql = q
q

=

⎛⎜⎝cos φq sin θq

sin φq sin θq

cos θq

⎞⎟⎠, (B46)

eqt1 =

⎛⎜⎝ sin φq

− cos φq

0

⎞⎟⎠, (B47)

eqt2 =
⎛⎝cos φq cos θq

sin φq cos θq

− sin θq

⎞⎠, (B48)

in agreement with Eqs. (B23) to (B25), where 0 � φq < 2π

is the azimuthal angle and 0 � θq < π is the polar angle of
q in spherical coordinates. Again, the vector components in
Eqs. (B46) to (B48) refer to the basis {ex , ey , ez}, i.e., to the
unit vectors for the main crystallographic directions (note the
special definition of x, y, and z in this section). Also, we note
that the {eql , eqt1 , eqt2} defined above form a right-handed,
orthonormal set of basis vectors for any q. With this convenient
representation, which is similar to the one chosen in Ref. [55],
the expression fqs from Eq. (B45) simplifies to

fql = 3 cos θq sin2 θq sin(2φq), (B49)

fqt1 = − sin(2θq) cos(2φq), (B50)

fqt2 = −(3 sin2 θq − 2) sin θq sin(2φq), (B51)
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where we mention that trigonometric identities allow one to
rewrite the above relations in many different ways. Finally, the
potential energy of an electron in the phonon-induced electric
field, i.e., the Hamiltonian for the piezoelectric electron-
phonon coupling, corresponds to

Hpe = −e	p, (B52)

where −e is the charge of the electron.

7. Phonon bath

The Hamiltonian for the phonon bath is

Hph =
∑
q,s

�ωqs

(
a†

qsaqs + 1

2

)
, (B53)

where the sum runs again over all modes s and all wave vectors
q within the first Brillouin zone.

APPENDIX C: MODEL HAMILTONIAN
AT SMALL DETUNING

As described in detail in the main text, we study the lifetimes
of the singlet-triplet qubit at both small and large detuning ε.
In this Appendix, we explain the details of our model at small
detunings ε � 0.

1. Exchange energy and orbital level spacing

In the unbiased DQD, the energy of |(0,2)S〉 and |(2,0)S〉
is much larger than that of (1∗,1)-type states with an excited
orbital part. This allows us to calculate the lifetimes with an
8×8 matrix [see Eq. (C7)] that is based on states of type (1,1)
and (1∗,1) only. Even though |(0,2)S〉 and |(2,0)S〉 are not part
of the basis, their presence can be accounted for as described
in the following.

Considering the basis states introduced in Appendix A
and shifting the energy globally by 〈(1,1)T0| (H (1)

0 + H
(2)
0 +

HC) |(1,1)T0〉, the Hamiltonian H
(1)
0 + H

(2)
0 + HC can be

approximated via

H
(1)
0 + H

(2)
0 + HC ≈ −JS |(1,1)S〉 〈(1,1)S| + �E(|�e

+〉 〈�e
+|

+ |�e
−〉 〈�e

−|), (C1)

where the exchange energy JS results from admixtures with
|(0,2)S〉 and |(2,0)S〉. The energy gap �E � �ω0 is well
described by the level spacing �ω0 in the left QD and

corresponds to the energy difference between the four states of
lowest energy in the DQD and the states with excited orbital
part.

We note that JS can be estimated [28,29,51]
by projecting H

(1)
0 + H

(2)
0 + HC onto the subspace

{|(2,0)S〉 , |(0,2)S〉 , |(1,1)S〉} through a projector PS3, which
yields the Hamiltonian

HS3 = PS3
(
H

(1)
0 + H

(2)
0 + HC

)
PS3 (C2)

with matrix representation

HS3 =

⎛⎜⎝U − V− 0 −√
2t

0 U − V− −√
2t

−√
2t −√

2t V+ − V−

⎞⎟⎠. (C3)

Here,

t = −〈	L|H0|	R〉 − 1√
2
〈�+|HC |�R〉 (C4)

is the hopping amplitude (also referred to as the tunnel
coupling), U = 〈�R|HC |�R〉 is the onsite repulsion, V± =
〈�±|HC |�±〉, and the energy was globally shifted as men-
tioned before. Diagonalization of HS3 results in

H̃S3 = U
†
S3HS3US3

=
⎛⎝U − 2V− + V+ + JS 0 0

0 U − V− 0
0 0 −JS

⎞⎠, (C5)

where US3 is the matrix for the unitary transformation and

JS = 1
2 (

√
16t2 + (U − V+)2 − U − V+ + 2V−) (C6)

is the resulting exchange splitting between |(1,1)S〉 and
|(1,1)T0〉. Considering ε � 0, the formulas for JS and US3 from
this estimate allow us to account for admixtures of |(2,0)S〉 and
|(0,2)S〉 to the qubit state of type |(1,1)S〉 and, consequently,
to study the effects of these admixtures on the phonon-induced
lifetimes of the qubit.

2. Matrix representation

We analyze the qubit lifetimes in an unbiased DQD
by projecting the Hamiltonian H̃ [Eq. (B9)] onto the
basis {|(1,1)S〉, |(1,1)T0〉, |(1,1)T+〉, |(1,1)T−〉, |(1∗,1)S〉,
|(1∗,1)T+〉, |(1∗,1)T0〉, |(1∗,1)T−〉}. The basis states are de-
scribed in detail in Appendix A, and the projection yields

H̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−JS + PSS
δbB

2
�√

2
− �√

2
P e

cr
�1√

2
0 − �1√

2
δbB

2 PT 0 0 0 − �1√
2

P e
cr − �1√

2
�√

2
0 EZ + PT 0 �1√

2
P e

cr − �1√
2

0

− �√
2

0 0 −EZ + PT − �1√
2

0 − �1√
2

P e
cr

P
e†
cr 0 �1√

2
− �1√

2
�E + P e �2√

2
0 − �2√

2
�1√

2
− �1√

2
P

e†
cr 0 �2√

2
�E + EZ + P e − �3√

2
0

0 P
e†
cr − �1√

2
− �1√

2
0 − �3√

2
�E + P e − �3√

2

− �1√
2

− �1√
2

0 P
e†
cr − �2√

2
0 − �3√

2
�E − EZ + P e

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ Hph.

(C7)
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Here, the � with different indices quantify the matrix elements
resulting from the SOI. Defining

RSOI = (rSOI × eB)z, (C8)

one obtains

� = EZ (〈	L|RSOI|	L〉 − 〈	R|RSOI|	R〉) , (C9)

�1 = EZ〈	L|RSOI

∣∣	e,ν
L

〉
, (C10)

�2 = EZ

(〈
	

e,ν
L

∣∣RSOI

∣∣	e,ν
L

〉 − 〈	R|RSOI|	R〉) , (C11)

�3 = EZ

(〈
	

e,ν
L

∣∣RSOI

∣∣	e,ν
L

〉 + 〈	R|RSOI|	R〉) . (C12)

Analogously, the electron-phonon coupling is denoted by P

with different labels:

PT = 〈	R|Hel-ph|	R〉 + 〈	L|Hel-ph|	L〉, (C13)

P e = 〈
	

e,ν
L

∣∣Hel-ph

∣∣	e,ν
L

〉 + 〈	R|Hel-ph|	R〉, (C14)

P e
cr = 〈	L|Hel-ph

∣∣	e,ν
L

〉
. (C15)

The above expressions for �1, �2, �3, P e, and P e
cr correspond

to �e
± = �

e,ν
± , for which the orbital excitation is chosen along

the axis ν ∈ {x,y}.
In order to account for the finite admixtures from the

states |(0,2)S〉 and |(2,0)S〉, we set the matrix element
〈(1,1)S| (H (1)

el-ph + H
(2)
el-ph) |(1,1)S〉 of the electron-phonon in-

teraction to PSS . The latter is a linear combination of PSL,
PSR , PS , and P

†
S , where

PSL = 2〈	L|Hel-ph|	L〉, (C16)

PSR = 2〈	R|Hel-ph|	R〉, (C17)

PS =
√

2〈	R|Hel-ph|	L〉. (C18)

The coefficients of the linear combination depend on U , V+,
V−, and t . We find these coefficients by projecting H

(1)
el-ph +

H
(2)
el-ph onto the subspace {|(2,0)S〉 , |(0,2)S〉 , |(1,1)S〉},

PS3
(
H

(1)
el-ph + H

(2)
el-ph

)
PS3 =

⎛⎝PSL 0 P
†
S

0 PSR PS

PS P
†
S PT

⎞⎠, (C19)

which allows calculation of PSS via

PSS = (
U

†
S3PS3

(
H

(1)
el-ph + H

(2)
el-ph

)
PS3US3

)
33. (C20)

For further information on the transformation matrix US3, see
Appendix C 1.

We note, however, that the above-mentioned contributions
from |(2,0)S〉 and |(0,2)S〉 to PSS turn out to be negligibly
small because setting PSS = PT does not affect the lifetimes in
our calculations. Furthermore, two-phonon processes based on
admixtures from |(2,0)S〉 and |(0,2)S〉 are strongly suppressed
at ε � 0 and can be omitted, as we explain in detail in
Appendix H. In conclusion, we find for the parameters in this
work that the qubit lifetimes in unbiased DQDs are determined
by the basis states with excited orbital parts. The corrections
from |(2,0)S〉 and |(0,2)S〉 are negligible.

APPENDIX D: MODEL HAMILTONIAN
AT LARGE DETUNING

When |ε| ∼ U − V± such that the energy gap between the
qubit and either |(2,0)S〉 (negative ε) or |(0,2)S〉 (positive
ε) is smaller than the orbital level spacing 0 < U − V± −
|ε| < �ω0, the effects of higher orbitals on the lifetimes are
negligible. In the regime of large detuning, we therefore project
H̃ [Eq. (B9)] onto the basis {|(1,1)T0〉, |(1,1)S〉, |(1,1)T+〉,
|(1,1)T−〉, |(0,2)S〉, |(2,0)S〉} and investigate the lifetimes via
this 6×6 matrix. The explicit form of the matrix is shown in
Eq. (12) of the main text, and details for all its matrix elements
are provided in Appendix C.

APPENDIX E: BLOCH-REDFIELD THEORY

Having identified a suitable matrix representation for small
and large detunings, we apply a unitary transformation to H̃

that diagonalizes H̃ − ∑
j=1,2 H

(j )
el-ph exactly. In order to de-

couple the qubit subspace {|(1,1)S〉, |(1,1)T0〉} perturbatively
from the remaining states, we then perform a third-order
Schrieffer-Wolff transformation, leading to corrections up
to the third power in the electron-phonon coupling. The
perturbation theory applies when the matrix elements for
the electron-phonon coupling are smaller than the energy
separation between the qubit and the other states.

The resulting effective Hamiltonian Heff = Hq + Hq-ph +
Hph for the S-T0 qubit, its interaction with the phonon bath,
and the bath itself can be described in terms of a coupled
spin- 1

2 system and allows application of the Bloch-Redfield
theory [20,31,46]. Introducing the effective magnetic fields
Beff and δB, we write the Hamiltonian of the qubit as

Hq = 1
2gμB Beff · σ ′, (E1)

and the Hamiltonian for the interaction between the qubit and
the phonon bath reads as

Hq-ph(τ ) = 1
2gμBδB(τ ) · σ ′. (E2)

Here, σ ′ is the vector of spin- 1
2 Pauli matrices for the S-T0

qubit, τ is the time, and the time-dependent Hq-ph(τ ) is written
in the interaction representation

Hq-ph(τ ) = eiHphτ/�Hq-phe
−iHphτ/�. (E3)

Next, following Refs. [20,31], we define the spectral functions

Jij (ω) = g2μ2
B

2�2

∫ ∞

0
e−iωτ 〈δBi(0)δBj (τ )〉dτ, (E4)

where the temperature-dependent correlators 〈δBi(0)δBj (τ )〉
with i,j ∈ {x,y,z} are calculated for a phonon bath in thermal
equilibrium. More precisely, we assume that the density matrix
ρph that describes the mixed state of the phonon bath is diagonal
when represented via standard Fock states for the phonons
considered here (i.e., occupation numbers referring to acoustic
phonons classified by the wave vectors q and modes s),
with the probabilities on the diagonal provided by Boltzmann
statistics. The correlator 〈δBi(0)δBj (τ )〉 corresponds to the
expectation value of the operator δBi(0)δBj (τ ) and, thus, is
equal to the trace of ρphδBi(0)δBj (τ ). In particular, one obtains
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〈a†
qsaq ′s ′ 〉 = δq,q ′δs,s ′nB(ωqs), where

nB(ω) = 1

e�ω/(kBT ) − 1
(E5)

is the Bose-Einstein distribution, kB is the Boltzmann constant,
and T is the temperature.

Using the formulas (C16) and (C25)–(C27) from Ref. [31],
it is possible to express the lifetimes of the qubit in terms
of the above-mentioned spectral functions. For convenience,
we define the basis of σ ′ such that only the z component of
the effective magnetic field Beff is nonzero. In this case, the
lifetimes depend solely on the quantities

J+
ii (ω) = Re[Jii(ω) + Jii(−ω)]

= g2μ2
B

2�2

∫ ∞

−∞
cos(ωτ )〈δBi(0)δBi(τ )〉dτ. (E6)

The last equality holds because the δBi(τ ) are Hermitian
and the correlators are time-translational invariant. We finally
calculate the relaxation time T1 of the qubit via

1

T1
= J+

xx(ωZ) + J+
yy(ωZ), (E7)

where �ωZ = |gμB Beff | is the effective Zeeman splitting. The
time Tϕ that accounts for pure dephasing is obtained through

1

Tϕ

= J+
zz (0), (E8)

and the decoherence time T2 can then be expressed in terms of
T1 and Tϕ :

1

T2
= 1

2T1
+ 1

Tϕ

. (E9)

Considering one- and two-phonon processes in our calcu-
lations, the third-order contribution to δBi(0) [δBi(τ )] enters
the correlator 〈δBi(0)δBi(τ )〉 in Eq. (E6) together with the
first-order contribution to δBi(τ ) [δBi(0)]. As a consequence,
the third-order terms in δB can not contribute to the dephasing
rate 1/Tϕ (see also Appendix G). Furthermore, we expect
only a negligible effect on the relaxation rate 1/T1, as the
rates that arise from third-order corrections can be considered
small compared to those from single-phonon processes that
are based solely on the first-order terms. For simplicity, the
third-order contributions to δB are therefore omitted in the
calculations for Figs. 2–6.

APPENDIX F: CONTINUUM LIMIT

For the investigation of the phonon-induced lifetimes of
the qubit, we consider the continuum limit and replace the
summation over the phonon wave vectors q by an integral.
Furthermore, the low temperatures discussed here allow
integration up to infinite q because the effects resulting from
terms with wave vectors outside the first Brillouin zone are
clearly negligible. We therefore substitute∑

q

→ V

(2π )3

∫ ∞

0
dq q2

∫ π

0
dθq sin θq

∫ 2π

0
dφq (F1)

in our calculations. For details of the electron-phonon interac-
tion, see Appendix B 6.

APPENDIX G: SIMPLE MODEL FOR DEPHASING
AT LARGE DETUNING

As discussed in Sec. III D of the main text, the relevant
dynamics at 0 < U − V± − ε < �ω0 and � = 0 is very well
described by the Hamiltonian

H̃ =

⎛⎜⎝ 0 δbB

2 0
δbB

2 V+ − V− −√
2t + P

†
S

0 −√
2t + PS V+ − V− + �S + P̃

⎞⎟⎠ + Hph

(G1)

with basis states |(1,1)T0〉, |(1,1)S〉, and |(0,2)S〉. Compared
to Eq. (12), we omitted here the decoupled states |(1,1)T+〉,
|(1,1)T−〉, and |(2,0)S〉, subtracted PT from the diagonal
(global shift, no effect on the lifetimes), and introduced

P̃ = PSR − PT (G2)

as a matrix element for the electron-phonon coupling and

�S = U − V+ − ε (G3)

as the bare splitting between |(1,1)S〉 and |(0,2)S〉.
The hyperfine coupling δB is the only mechanism in

Eq. (G1) that couples the spin states and, hence, is crucial
for the relaxation of the S-T0 qubit. In fact, we find for the
parameters in this work that the relaxation times T1 are mainly
determined by the hyperfine coupling rather than the SOI. In
order to derive a simple model for the short decoherence times
[T2 � T1, Fig. 2(a)], we neglect δB in the following, resulting
in pure dephasing, and so T2 = Tϕ . Furthermore, we find that
the matrix element PS is negligible for our parameter range.
Defining

H̃ = Hs + Hs-ph + Hph (G4)

and omitting δB and PS , one obtains

Hs =
⎛⎝0 0 0

0 V+ − V− −√
2t

0 −√
2t V+ − V− + �S

⎞⎠ (G5)

for the part that describes the electronic system, and

Hs-ph =
⎛⎝0 0 0

0 0 0
0 0 P̃

⎞⎠ (G6)

for the interaction with the phonon bath.
The Hamiltonians Hs and Hs-ph can be rewritten in a

different basis {|(1,1)T0〉, |(1,1)S ′〉, |(0,2)S ′〉} as

Hs =
⎛⎝0 0 0

0 −Jtot 0
0 0 −Jtot + �′

S

⎞⎠ (G7)

and

Hs-ph = P̃

⎛⎜⎝0 0 0

0 v2
s ′d vs ′dvd ′d

0 vs ′dvd ′d v2
d ′d

⎞⎟⎠, (G8)

where

�′
S =

√
�2

S + 8t2 (G9)
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and

Jtot = V− − V+ + �′
S − �S

2
. (G10)

The basis states

|(1,1)S ′〉 = vs ′s |(1,1)S〉 + vs ′d |(0,2)S〉 , (G11)

|(0,2)S ′〉 = vd ′s |(1,1)S〉 + vd ′d |(0,2)S〉 (G12)

are normalized eigenstates of Hs. The notation |(1,1)S ′〉 and
|(0,2)S ′〉 is justified because we consider �S > 0, and so
|vs ′s |2 > 1/2 and |vd ′d |2 > 1/2. In Eq. (G8), vs ′d and vd ′d are
assumed to be real. A suitable choice for the coefficients is,
e.g.,

vs ′s = �S + �′
S

D+
, (G13)

vs ′d = 2
√

2t

D+
, (G14)

vd ′s = �S − �′
S

D−
, (G15)

vd ′d = 2
√

2t

D−
, (G16)

where the denominator

D± =
√

(�S ± �′
S)2 + 8t2 (G17)

ensures normalization.
Following the steps explained in Appendix E, one finds

gμBBeff,z = Jtot (G18)

and

gμBδBz = −v2
s ′d P̃ + v2

s ′dv
2
d ′d

�′
S

P̃ 2

+ v2
s ′dv

2
d ′d

(
v2

s ′d − v2
d ′d

)
(�′

S)2
P̃ 3 (G19)

from the third-order Schrieffer-Wolff transformation. We
recall that δBx = 0 = δBy due to omission of the hyperfine
coupling, and so T2 = Tϕ (pure dephasing). Furthermore,
we note that the Bloch-Redfield theory requires 〈δB(τ )〉 to
vanish [46]. Therefore, terms of type a

†
qsaqs and aqsa

†
qs must

be removed from the second-order contributions to δB and,
consequently, from the part ∝P̃ 2 in Eq. (G19). The terms
removed from δB can be considered as minor corrections
to Beff , with a

†
qsaqs → nB(ωqs) and aqsa

†
qs → nB(ωqs) + 1,

where nB(ω) is the Bose-Einstein distribution [Eq. (E5)]. In
this work, we simply neglect these corrections to Beff because
of their smallness.

The decoherence time T2 = Tϕ is calculated via

1

T2
= g2μ2

B

2�2

∫ ∞

−∞
〈δBz(0)δBz(τ )〉dτ (G20)

(see Appendix E). Remarkably, the only nonzero contribution
after insertion of Eq. (G19) into Eq. (G20) is

1

T2
= v4

s ′dv
4
d ′d

2�2(�′
S)2

∫ ∞

−∞
〈P̃ 2(0)P̃ 2(τ )〉dτ. (G21)

In particular, one finds that single-phonon processes can not
lead to dephasing, ∫ ∞

−∞
〈P̃ (0)P̃ (τ )〉dτ = 0. (G22)

As there is no energy transfer between the electrons and the
phonon bath [evaluation of J+

zz (ω) at ω = 0], the left-hand
side of Eq. (G22) can only be nonzero for a phonon with
ωqs = 0 = q, for which, however, the expression vanishes as
well. An analogous explanation applies to∫ ∞

−∞
〈P̃ 3(0)P̃ (τ )〉dτ = 0 =

∫ ∞

−∞
〈P̃ (0)P̃ 3(τ )〉dτ. (G23)

Consequently, the dephasing in our model results purely from
two-phonon processes that are based on the second-order
contributions to δBz.

Finally, using Eqs. (G14) and (G16) in Eq. (G21) yields

1

T2
= 2t4

�2(�′
S)6

∫ ∞

−∞
〈P̃ 2(0)P̃ 2(τ )〉dτ. (G24)

We note that in the case of |t | � �S and negligibly small
V+ − V−, one finds Jtot � 2t2/�′

S in this model and

2t4

�2(�′
S)6

� J 2
tot

2�2(�′
S)4

(G25)

for the prefactor.

APPENDIX H: DEPHASING VIA SINGLET STATES
AT SMALL DETUNING

In order to estimate the dephasing due to the states |(2,0)S〉
and |(0,2)S〉 in an unbiased DQD, ε � 0, we study a model
similar to that of Appendix G. Using |(2,0)S〉, |(0,2)S〉,
|(1,1)S〉, and |(1,1)T0〉 as the basis states, we consider

Hs =

⎛⎜⎜⎝
U − V− 0 −√

2t 0
0 U − V− −√

2t 0
−√

2t −√
2t V+ − V− 0

0 0 0 0

⎞⎟⎟⎠ (H1)

as the Hamiltonian for the electronic system and

Hs-ph =

⎛⎜⎜⎜⎝
−P̃ 0 0 0

0 P̃ 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ (H2)

as the electron-phonon interaction. Again, we removed here
PT from the diagonal and neglected the off-diagonal matrix
elements PS and P

†
S . Furthermore, we exploited the relation

PSL − PT = −(PSR − PT ) = −P̃ . (H3)
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This relation is based on the properties

〈	L| cos(q · r) |	L〉 = 〈	R| cos(q · r) |	R〉 , (H4)

〈	L| sin(q · r) |	L〉 = −〈	R| sin(q · r) |	R〉 . (H5)

Using the states |	L,R〉 defined in Appendix A [Eq. (A28)],
it is straightforward to show that these equations apply to
our calculations (at least in very good approximation, given
the small width of the 2DEG). Proceeding analogously to
Appendix G and exploiting |t | � U − V+, the calculation of
T2 = Tϕ with Eqs. (H1) and (H2) yields

1

T2
= 8t4

�2(U − V+)6

∫ ∞

−∞
〈P̃ 2(0)P̃ 2(τ )〉dτ, (H6)

which is formally equivalent to Eq. (G24).
Operation of the qubit at ε � 0 requires control over the

tunnel coupling t , which can be achieved by changing the tun-
nel barrier of the DQD with electric gates [1]. Consequently,
the value of t at ε � 0 is usually different from that at large ε.
As a simple estimate, using |t | � U − V+ and assuming that
V+ − V− and δB are negligible, one finds Jtot � 4t2/(U − V+)
through Taylor expansion of JS [Eq. (C6)]. Analogously, one
obtains

8t4

�2(U − V+)6
� J 2

tot

2�2(U − V+)4
(H7)

for the prefactor in Eq. (H6). Considering Jtot to be the same
in the biased and unbiased DQD, comparison with Eq. (G25)
yields a suppression factor on the order of (�′

S)4/(U − V+)4.
For the parameters in this work, the associated dephasing times
at ε � 0 are therefore several orders of magnitude longer than
those at large ε. The strong suppression allows omission of
this mechanism in our model for an unbiased DQD described
in Appendix C.

The matrix elements PS and P
†
S of the electron-phonon

interaction provide a direct coupling between the state |(1,1)S〉
and the states |(0,2)S〉 and |(2,0)S〉. Consequently, these
matrix elements enable dephasing via two-phonon processes
even at t = 0. In the case of large detuning ε, the effect of
PS and P

†
S on the dephasing time Tϕ (and on the lifetimes in

general) turns out to be negligible. At ε � 0, this two-phonon-
based contribution to Tϕ is suppressed even further, by a factor
on the order of 4�2

S/(U − V+)2, and can therefore be neglected
in the calculation with excited orbital states (see Appendix C).

APPENDIX I: SUMMARY OF INPUT PARAMETERS

Table I lists the values that were used for the results
discussed in the main text. We note that the results are
independent of the sample volume V because the volume
cancels out in the calculation.

It is worth mentioning that the values lD ∼ 0.5–1 μm [39–
41] for the Dresselhaus SOI are consistent with the assumed
width of the 2DEG. Neglecting orbital effects, the general form
of the Dresselhaus SOI for an electron in GaAs is

HD = b6c6c
41

[(
k2
y ′ − k2

z′
)
kx ′σx ′ + c.p.

]
, (I1)

where �ki is the momentum along the i axis, σi is the
corresponding Pauli operator for spin 1

2 , the axes x ′, y ′,

TABLE I. Input parameters used for the calculations in the main
text.

Parameter Value References

εr 13
ρ 5.32 g/cm3

vl 5.1 × 103 m/s [32–34], Appendix B 6 a
vt 3.0 × 103 m/s [32–34], Appendix B 6 a
� −8 eV [36,37]
h14 −0.16 As/m2 [33–35]
g −0.4
B 0.7 T [6,12]
meff 6.1 × 10−32 kg
�E = �ω0 124 μeV [16]
lD 1, 0.8, 0.5 μm [39–41], Appendix I
lR 2, 1.6, 1 μm
3az 6 nm Appendix I
L = 2a 400 nm
δbB −0.14 μeV [12,16]
U 1 meV [29]
V+ 40, 50 μeV [29]
V− 39.78, 49.5 μeV [29], AppendixI
t 7.25, 24 μeV [29], Appendix I

and z′ are the main crystallographic axes [100], [010], and
[001], respectively, “c.p.” stands for cyclic permutations, and
b6c6c

41 � 28 Å3 eV [41]. For our 2DEG with strong confinement
along the [001] direction (z axis), the Dresselhaus SOI can be
well approximated by

HD � b6c6c
41 〈φFH| k2

z |φFH〉 (
ky ′σy ′ − kx ′σx ′

)
, (I2)

where z′ = z and φFH(z) is the Fang-Howard wave function of
Eq. (A19). Using 〈φFH| k2

z |φFH〉 = 1/(4a2
z ), one finds

lD � 4�
2a2

z

meffb
6c6c
41

(I3)

from comparison with Eqs. (B6) and (B13). With meff =
0.067mel [41] as the effective electron mass in GaAs and mel as
the bare electron mass, evaluation of Eq. (I3) with 3az = 6 nm
yields lD � 0.65 μm, in good agreement with the values used
in the calculation.

The splitting between the eigenstates of type |(1,1)S〉 and
|(1,1)T0〉 after diagonalization is denoted by Jtot = �ωZ . When
Jtot � |δbB |, the spin states of these eigenstates are |S〉 and
|T0〉 with high accuracy, and the state of the S-T0 qubit
precesses around the z axis of the Bloch sphere. When the
splitting is provided by the hyperfine coupling δbB instead
of the exchange interaction, the eigenstates are of type |↑↓〉
and |↓↑〉, leading to precessions around the x axis. In
experiments, Jtot � |δbB | is commonly realized for a biased
DQD (large detuning) and the hyperfine coupling dominates
in the unbiased case [4,16]. In order to account for this feature,
we set the parameters in Sec. III such that Jtot at ε � 0 would be
largely provided by δbB . Using U , V+, V−, and t approximately
as in Ref. [29], we do this by adapting t (or V−) such that
JS � |δbB |, where JS is the bare exchange splitting at ε = 0
[Eq. (C6)]. The lifetimes in Figs. 2–5 were calculated with U =
1 meV, V+ = 40 μeV, V− = 39.78 μeV, and t = 7.25 μeV,
for which JS � |δbB | is fulfilled. The detuning ε ∼ 0.9 meV
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in these calculations was chosen such that Jtot = 1.43 μeV,
and we note that the excited states are negligible due to 0 <

U − V± − ε < �ω0. In Fig. 6, where we consider operation
at small detuning, the parameters U = 1 meV, V+ = 50 μeV,

and V− = 49.5 μeV are similar to before. However, in order
to achieve Jtot = 1.41 μeV at ε � 0, we use a larger tunnel
coupling t = 24 μeV. Experimentally, this can be realized by
tuning the tunnel barrier of the DQD electrically [1].
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