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Screening and atomic-scale engineering of the potential at a topological insulator surface
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The electrostatic behavior of a prototypical three-dimensional topological insulator, Bi2Se3(111), is investigated
by a scanning tunneling microscopy (STM) study of the distribution of Rb atoms adsorbed on the surface. The
positively charged ions are screened by both free electrons residing in the topological surface state as well as
band bending induced quantum well states of the conduction band, leading to a surprisingly short screening
length. Combining a theoretical description of the potential energy with STM-based atomic manipulation, we
demonstrate the ability to create tailored electronic potential landscapes on topological surfaces with atomic-scale
control.
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I. INTRODUCTION

Topological insulators (TIs) belong to a unique class of
exotic quantum materials hosting Dirac-dispersing charge
carriers with helical spin textures at surfaces, which are
topologically protected by time-reversal symmetry [1,2].
These so-called topological surface states (TSS) have been
predicted to host a variety of novel phenomena, thus making
them promising for future generation spintronics and quantum
computing applications.

However, harnessing the topological character of these
materials requires the ability to gate the TSS to control surface
transport, analogous to other two-dimensional (2D) systems
[3], and for some of the applications to create a gap at the Dirac
point. While extensive effort has been spent on understanding
whether magnetism induces a gap at the Dirac point [4–7],
surface transport through the TSS is still an experimental
challenge. This is due in large part to material quality,
poor electron mobility, and proper dielectrics. Impurities near
the surface can locally gate the TSS leading to unwanted
charge disorder [8–10], which limits charge mobility [11].
More strikingly, previous studies have thoroughly shown that
a dilute amount of impurities on the surface can heavily modify
the TSS via band bending, which induces additional quantum
well states (QWS) [12] at the surface with a Rashba character
[13]. These results clearly question if 3D TIs with sufficient
mobility can be fabricated and how the application of metallic
electrodes will modify charge transport through the TSS.

We use scanning tunneling microscopy (STM) to study the
screening behavior produced by positively charged Rb atoms
on the surface of the prototypical TI Bi2Se3. By analyzing
the pair correlation functions [14–16], the screened Coulomb
potential between surface Rb atoms is extracted, from which
the electrostatic properties of the TI are determined. By varying
the surface and bulk doping, we show that the charge screening
is mainly provided by 2D electrons, residing in both the TSS
and the QWS, resulting in a surprisingly small screening
length. With that knowledge, we demonstrate the ability to
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engineer the potential landscape, in which the TSS resides, by
atomic manipulation of single Rb atoms on the surface.

II. EXPERIMENTAL METHODS

Both stoichiometric and Ca-doped Bi2Se3 single crystals
were grown and characterized as described in Refs. [12,17].
Stoichiometric samples are highly n-doped resulting from bulk
defects, while Ca doping shifts the Dirac point to lie within
50 meV of the Fermi energy [17]. All experiments were
conducted under ultrahigh vacuum conditions with a base
pressure below 2 × 10−10 mbar. The crystals were cleaved
in situ at room temperature exposing the (111) surface.
Rubidium was subsequently deposited at room temperature
from a commercial dispenser. After deposition, the samples
were immediately quenched to low temperatures within the
microscope, where STM experiments were performed at T =
4.3 K [17]. STM topographs were recorded in constant-current
mode, with a tunneling current IT = 10 pA and a sample bias
voltage VB = 1 V. The Rb coverage was varied between 0.6%
to 7.3% of a monolayer (ML), where a full ML corresponds
to a coverage with Rb atoms of equal number as surface Se
atoms. With these sample preparation conditions, Rb atoms
remain on the surface and do not intercalate as previously
demonstrated, where the electronic properties of Rb-covered
Bi2Se3 as a function of annealing were characterized on the
same Bi2Se3 crystals used here [17].

III. EXPERIMENTAL RESULTS

STM images of dilutely covered surfaces reveal a distribu-
tion of single Rb atoms. These appear as circular protrusions
with an apparent height of �z ≈ 150 pm [Fig. 1(a)]. In
Fig. 2(a), an STM topograph of Rb atoms adsorbed on Bi2Se3

with atomic resolution of the underlying Bi2Se3 substrate
is shown. The individual maxima visible on the substrate
occur at the positions of the Se atoms in the surface layer
[18]. The hexagonal symmetry can be compared to a top
view on three unit cells of Bi2Se3, depicted in Fig. 2(b).
Due to the positions of the Bi and Se subsurface atoms, two
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FIG. 1. (Color online) STM topographs of Rb single atoms on
stoichiometric and Ca-doped Bi2Se3 (30 nm × 30 nm). (a) Sto-
ichiometric Bi2Se3 with a 1.2% ML coverage of Rb. The inset
indicates a cross section along the line in (a) that depicts the apparent
heights of a Se vacancy and two Rb atoms. (b) Ca-doped Bi2Se3

with 2.0% ML Rb. (c) Stoichiometric Bi2Se3 with 5.8% ML Rb.
(d) Stoichiometric Bi2Se3 with 6.9% ML Rb. The small hexagon
depicts the (

√
12 × √

12) R30◦ superstructure. Insets in (b)–(d):
autocorrelation plots of the atoms’ positions (5 nm × 5 nm, each
vector starts at the center. The number of the individual counts is
plotted logarithmically using the depicted color scale).

nonequivalent, threefold coordinated, hollow binding sites for
the Rb adatoms exist. In Fig. 2(a), straight lines have been
drawn along the positions of the Se surface atoms. As depicted
by these lines, the Rb atoms bind at only one of the two
possible binding sites. However, from the STM measurements
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FIG. 2. (Color online) (a) STM topograph of Rb adatoms on an
intrinsic Bi2Se3 sample, with atomic resolution of the substrate lattice.
(b) Top view on three unit cells of the Bi2Se3(111) surface, cleaved
along the van der Waals gap. The surface Se atoms are colored red,
the subsurface Bi atoms are blue, and the second subsurface Se atoms
are yellow.

alone, without any input by, e.g., ab initio calculations, it
remains unclear which particular site is preferred, but this
is unimportant for the further data analysis. In addition to
the Rb atoms, Se subsurface vacancies appear in Fig. 1(a)
as extended triangular shapes with �z ≈ 30 pm, depending
on the depth of the vacancy [18]. A strongly reduced density
of Rb atoms in the vicinity of these positively charged Se
vacancies, together with the observation that Rb atoms do not
cluster, indicates the positive charge of single Rb atoms on the
surface [17,19]. From topographs of the pristine surface with
a total area of ≈50 000 nm2, we estimate the surface density
of Se vacancies and Ca acceptors to be one to two orders of
magnitude smaller than the surface density of Rb atoms. We
therefore neglect their effect on the distribution of Rb atoms on
the surface.

Images with a higher coverage of Rb atoms [Figs. 1(b)–
1(d)] reveal a very homogeneous, highly nonrandomized
distribution of Rb atoms across the surface. In certain regions,
ordered superlattice arrays of Rb with a (

√
12 × √

12) R30◦
structure can be clearly observed when the Rb coverage is
sufficiently high [small hexagon in Figs. 1(d) and 5(a)]. Such
ordering of impurities on surfaces has been attributed to
various substrate-mediated electronic interactions [15,16,20].
The positive charge of Rb on the surface suggests that
this ordering is driven by a repulsive Coulombic interaction
between Rb atoms. Moreover, the observation of such ordering
indicates that upon deposition, the thermal energy is sufficient
for the system to equilibrate.

The autocorrelations of the coverage-dependent distribu-
tions of Rb are determined as described in Appendix A1.
The autocorrelation images [Figs. 1(b)–1(d)] illustrate the
displacement of all surrounding atoms with respect to a
given atom, for all atoms in the image. These images reveal
a hexagonal distribution of Rb atoms, which again reflects
the underlying symmetry of the substrate surface lattice.
Moreover, these images reveal a radius of r ≈ 1 nm around
every Rb atom at which no other Rb atoms reside.

IV. STATISTICAL ANALYSIS

To quantify this effect and relate it to the underlying
potential landscape, we performed a statistical analysis of each
Rb atom and its neighbors. Since the autocorrelation images
reveal a noncircular symmetric distribution, we consider a
vector-resolved analysis of the displacement of each Rb
atom relative to its neighbors [21]. In total, the coordinates
of >20 000 atoms on an area of 280 nm × 280 nm were
determined from STM topographs. We define individual bins
represented by hexagonal unit cells that resemble the allowed
binding sites. All unit cells at a given distance are indexed by
the same parameter j , while the parameter k distinguishes the
different positions for a given j . For a given autocorrelation
image, we count the number of atoms in a given unit cell
[Fig. 3(a)].

There, the highest peaks are observed for cells where j = 6
(purple), which corresponds to the (

√
12 × √

12) R30◦ super-
structure and indicates that Rb atoms have the highest probable
interatomic distances of r = 1.43 nm. The subsequent local
maxima, namely for j = 15,19 (green, gray), have the same
displacement from cells where j = 6, as cells with j = 6
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FIG. 3. (Color online) (a) The counts, represented by height,
from the autocorrelation images are indexed into colored hexagonal
cells labeled by (j,k), shown here for the coverage in Fig. 1(d).
(b) Same procedure for a randomly generated distribution with the
same coverage. (c) Distribution functions f (r) and fran(r) extracted
from (a) and (b), respectively, after averaging over all k values for
a given j . Each hexagonal cell j is color-coded in (a) and (b) as
indicated above the graph.

have from the origin. This further indicates the long-range
nature of the Rb-Rb interaction. Upon closer inspection, the
experimental distribution is found to be symmetric, namely,
independent of the index k, thereby allowing all cells with a
given j to be averaged over all k. The resultant coverage- and
distance-dependent distribution function f (r), which counts
the number of Rb atoms at a given distance from any Rb
atom, is graphed in Fig. 3(c). While f (r) reveals information
about the potential landscape, it is coverage dependent and
needs to be normalized to a random distribution function,
fran(r), with the same coverage [Figs. 3(b) and 3(c)]. The
underlying details are described in Appendix A2. The ratio
between both distribution functions yields the pair correlation
function g(r) = f (r)/fran(r), which represents the potential
of mean force w(r), namely, the work required to pull two Rb
atoms from infinite distance to a distance r [14]:

− ln g(r) = w(r)/kBT = [v(r) + �w(r)]/kBT . (1)

Here, w(r) can be separated into two terms, namely, a pairwise
term called the pair potential v(r) and a higher-order term
�w(r). While v(r) equals w(r) in a dilute range, for higher
coverage higher-order neighbors affect the distribution of
atoms, and an indirect correlation term needs to be taken
into account. The separation of g(r) into a direct and indirect
correlation terms is known in the theory of fluids as the
Ornstein-Zernike relation [22] and can be solved using the
Percus-Yevick approximation [14,23]. As it is described in
more detail in Appendix A3, a self-consistent determination
returns v(r) between pairs of atoms as the quantity of interest.

In Fig. 4(a), the reduced pair potential v(r)/kBT is plotted
for different surface coverages and different bulk dopings.
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FIG. 4. (Color online) (a) Reduced pair potential, v(r)/kBT , for
various Rb coverages and for stoichiometric and Ca-doped Bi2Se3.
The lines connect points at a given coverage as a guide to the eye. The
dashed lines mark regions where v(r)/kBT is affected by a limitation
of the Percus-Yevick approximation. (b) The experimental data from
(a), taking only the data points into account, which are connected by
solid lines, are fitted with different unscreened and screened Coulomb
potentials, where the shaded regions indicate the error bars (see text).

As indicated in Fig. 1, short separations are forbidden
and v(r) curves start at r considerably larger than 0. For
small distances, v(r) decreases monotonically regardless of
coverage. However, for larger r , there is an increase in v(r) for
higher coverage due to the influence of higher-order neighbors
in w(r). This is an artifact in v(r) due to the breakdown of
the Percus-Yevick approximation of �w(r) at larger distances
(Appendix A3). Hence the tails of the v(r) curves for the higher
coverages that do not asymptotically approach zero [dashed
lines in Fig. 4(a)] are not considered for the further analysis.

V. CHARGE SCREENING

To extract the potential landscape responsible for the
repulsive interaction between neighboring charged atoms,
we fitted v(r)/kBT to various types of Coulomb potentials
[Fig. 4(b)]. Immediately, an unscreened Coulomb potential,
where the dielectric constant εr is the sole free parameter,
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can be excluded. The experimental data decay much faster
than the fitted function. Therefore we consider a screened
Coulomb potential where free electrons can screen the charged
atoms. The screening electrons can originate from three
sources: (i) bulk states, (ii) band-bending induced QWS in
the conduction band [17], and (iii) TSS. In the following, we
distinguish between the screening effects resulting from these
three different sources within the Thomas-Fermi theory of
screening.

The bulk-related screening can be readily ruled out.
Because the positively charged Rb atoms can be screened only
by negative charges, one would expect a significantly larger
screening length for Ca-doped (p-doped) Bi2Se3 than for
stoichiometric (degenerately n-doped) Bi2Se3 if there would
be a decisive bulk-related screening. This effect is not observed
experimentally, i.e., the data show no dependence on the bulk
doping [Fig. 4(a)]. Nevertheless, we try to fit the data to a
bulk-screening model

v3D(r) = e2

4πεo(εr + 1)/2

1

r
e−r/R3D , (2)

with the screening length [24,25]

R3D =
√

εoεr

e2 ∂n/∂μ
. (3)

We consider that each Rb atom has a charge of one full
electron [17,19]. ∂n/∂μ is related to the density of states at
EF, assuming a typical parabolic dispersion for a 3D system
[25]. The value of EF was taken from ARPES measurements
of stoichiometric samples [26], and the effective mass m∗
from Ref. [27] was used here. εr is used as the only fitting
parameter, yielding ε3D

r = (16.2 ± 1.3) and R3D = (3.70 ±
0.61) nm. This value of ε3D

r is unreasonably smaller than the
well-characterized and well-accepted bulk value of 113 [28].
Moreover, the fitted 3D potential in Fig. 4(b) (green curve)
decays slower than the experimental data and poorly fits the
data. Clearly, all these observations lead to the conclusion that
the bulk-related screening is not decisive in the screening of
Rb atoms at the surface, rendering the surface free electrons
responsible for the screening potential.

To quantify the 2D potential produced by surface-related
free electrons originating from those occupying the QWS and
the TSS, we utilize the following form of the potential [24,25],
which represents the situation of a 2D conductive sheet on a
bulk dielectric with a dielectric constant of εr ,

v2D(r) = e2

4πε0(εr + 1)/2

1

r

[
1 − π

2
ξ (H0(ξ ) − N0(ξ ))

]
(4)

with ξ = r/R2D, H0 and N0 the Struve and Neumann func-
tions, respectively, and the screening length

R2D = ε0(εr + 1)

e2 ∂n/∂μ
. (5)

To exemplify the role of both electron types on the screening,
we only consider the limiting cases where the screening is
done solely by either the QWS or the TSS electrons. ∂n/∂μ is
calculated assuming a parabolic 2D dispersion [25] in case of

the QWS,

∂n

∂μ
= m∗

π�2 [exp(−EF/kBT ) + 1]
, (6)

and a linear dispersion, E = �vFk = Ak [29], in the case of
the TSS,

∂n

∂μ
= kF

2π A
. (7)

For the whole range of Rb coverage, we assume that (i)
the charge transfer per Rb atom is always one electron and
(ii) the surface band bending that determines ∂n/∂μ is
constant. From the ARPES measurements of the Rb-induced
surface band bending of Ref. [19], we estimate that (i) is
strictly valid for coverages up to about 4%. At our highest
coverages, the charging probability of each Rb atom might go
slightly down due to Coulomb interaction with neighboring
atoms according to the surface doping model [30]. Therefore
the carrier densities in the TSS and QWS together only vary
between 5 × 1012 cm−2 (0.6% ML Rb) and 3 × 1013 cm−2

(7.3% ML Rb). Regarding (ii), at the coverages we used, the
surface band bending is close to saturation, and varies by at
most 50% within the low-coverage range [19]. Therefore the
parameters that enter the 2D models [Eqs. (4)–(7)] have the
following variations. In case of the QWS, the deviations from
a parabolic dispersion lead to m∗ = (0.15 ± 0.04) me. There is
no further effect of the amount of band bending, since the actual
EF that enters Eq. (6) is always well above kBT . For the TSS,
the variation of band bending leads to kF = (0.13 ± 0.03) Å−1

and A = (4.06 ± 0.05) eVÅ. All these values were derived
from ARPES measurements that were published in Ref. [17].

In Fig. 4(b), both 2D potentials have been fitted to the
experimental data considering the above variations in the
parameters through their error bars, and using εr as only
fitting parameter (red and black curve with shaded regions
indicating errors), yielding εQWS

r = (6.8 ± 2.4) and R
QWS
2D =

(0.66 ± 0.01) nm for the QWS, and εTSS
r = (5.2 ± 1.2) and

RTSS
2D = (0.66 ± 0.01) nm for the TSS, respectively. The two

curves are in better agreement with the experimental data than
the bulk screening model. In particular, the decay of each
fit better recounts the experimental behavior. However, the
experimental data indicate less effective screening than both
2D models for the short-distance range, which corresponds to
rather high Rb coverages. In order to rule out that a deviation
from the above assumptions (i) and (ii) for the used parameters
leads to an error in the determined screening length, we fitted
the 2D screening models to the different subsets of the data
in Fig. 4(a) with almost constant Rb coverage, resulting in
a variation of εr and R2D by less than 50%. Therefore the
unexpectedly short fitted value of R2D is reliable, and results
from the very small εr as compared to literature values ranging
from 30 to 113 [8,28]. The small value of εr obtained in the
fit implies that the QWS and TSS electrons that dominate the
screening behave almost like electrons of a freestanding 2D
conducting surface in vacuum [24].

In the following, we discuss the remaining possible reasons
for the short-distance deviations of the 2D screening models
from the experimental data. We considered the effect of
each screening process individually, in each fit. In reality, all
screening potentials contribute to the observed Rb distribution,
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which may account for deviations in the fits when compared to
the experimental data. However, in the short-distance range,
the data indicate a less efficient screening than each of the
individual screening models, which rules out that this effect
can explain the short-range deviations. Finally, deficiencies
of the used Thomas-Fermi screening theory, which might fail
in the short-distance range, could be responsible for these
deviations. Alternative descriptions of the screening, e.g., via
random phase approximation [9], would be further compli-
cated by the Rashba splitting of the QWS [13], which would
have a marked effect, because it prevents direct backscattering
similar to the TSS. This more complex description is beyond
the scope of the current work.

VI. ENGINEERING OF POTENTIAL LANDSCAPES

In the remaining part of this publication, we examine
methods to controllably engineer the potential landscape, in
which the TSS electrons reside, via the manipulation of the Rb
distribution. In addition to self-assembly of Rb atoms driven
by the underlying screening potential, we demonstrate it is
possible to atomically manipulate individual Rb atoms on
the surface of the topological insulator. Figures 5(a) and 5(b)
illustrate first the self-assembly of Rb atoms into an ordered
array and subsequent manipulation of Rb atoms into the shape
of a corral with the STM tip [31]. By combining the ability
to do atomic engineering with charged impurities, with the
knowledge of the 2D potential landscape, it is possible to
tailor a particular energy landscape at the topological surface
while simultaneously predicting the resultant 2D electrostatic
potential [Fig. 5(c)]. Using this technique, patches of a locally
high homogeneous Rb coverage on a Rb-free area of the
surface can be assembled. For a Ca-doped substrate, where the
TSS is unoccupied without Rb coverage but occupied below
the Rb-patch, this results in a quantum confinement of the
Dirac electrons [32] of the TSS, which can be tailored by the
size and shape of the patch in a very controlled fashion.

VII. SUMMARY

In summary, we have mapped the screened Coulomb
potential on a topological surface driven by charged Rb atoms.
Our observations reveal that screening of surface electrons

(a) (b)

5 nm5 nm

(c)
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FIG. 5. (Color online) Tailoring the local potential by surface
doping with Rb atoms. (a) Self-assembly of Rb atoms into a
superlattice array driven by Coulomb repulsion. (b) Eleven Rb atoms
manipulated with the STM tip. The triangles in the center of the
“corral” are native subsurface Se vacancies. Manipulation parameters
are IT = 4.6 nA and VB = 600 mV. (c) Potential landscapes of (b)
generated by using v2D(r).

at Bi2Se3(111) is surprisingly efficient as manifested by a
short screening length. While the charge screening here is
an interplay between different screening potentials, the role
of the TSS on charge screening could be further understood
by comparing these results with complementary studies of
alkali atom distributions on other prototypical TI systems like
Bi2Se2Te or Bi2Te3 where the Fermi surface is different com-
pared to Bi2Se3. Combining the electrostatic screening around
the charged impurities and the ability to perform atomic-scale
manipulation, we have demonstrated the ability to engineer the
potential landscape at the surface of a topological insulator.
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APPENDIX: STATISTICAL DATA ANALYSIS

1. Autocorrelation functions

Autocorrelation functions a(r) of the positions r i of atoms
are calculated by taking the combinations between all N atoms
inside a particular area into account:

a(r) =
N∑

i=1

N∑
j = 1
j �= i

δr r ′ with r ′ = r i − rj . (A1)

This formula takes all combinations of atoms into account
twice and returns N (N − 1) combinations in total. Typically,
this evaluation is performed on areas of (60 × 60) nm2,
leading to

√
2 × 60 nm as a maximum distance in a(r).

The insets of Fig. 1 depict the central (5 × 5) nm2 areas of
the autocorrelation functions a(r), with r = 0 located in the
center.

2. Random distribution functions

The random distribution function fran(j,k) is obtained
from random distributions of Rb atoms. These are generated
by using an algorithm that returns uniformly distributed
pseudorandom numbers, where the number N and the area is
the same as in the experimental f (j,k). Accordingly, fran(j,k)
is extracted by the same data evaluation technique. An average
of 40 generated random distribution functions is used. As it is
indicated in Fig. 3(b), the statistical base of typically 90 × 106

pairs (for the case of an ensemble with 1500 atoms) results in
a very flat distribution that is rather independent of j and k.

3. Indirect correlation effects

The theory about the pair correlation function g(r) and its
connection to the potential of mean force w(r) is explained
in several textbooks about statistical mechanics of liquids and
fluids [14]. As expressed by Eq. (1), the work required to pull
two particles close together, w(r), depends not only on the pair
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potential v(r) between pairs of particles, but also on a term due
to the surrounding particles in the system, denoted by �w(r).

Likewise, the correlation between two atoms can be split
in a direct correlation and an indirect one, that is mediated by
a third atom or even higher orders. This indirect correlation
effect is expressed by the Ornstein-Zernike relation [14,22]:

g(r) − 1 = c(r) + ρ

∫
c(r ′) [g(|r − r ′|) − 1] dr ′. (A2)

It needs to be solved by an approximate closure equation. Here,
we use the Percus-Yevick approximation [23], leading to the
following expression [14], where ρ and β denote the average
number density and the inverse temperature β = 1/kBT ,
respectively:

eβv(r) g(r) = 1 + ρ

∫
[g(r − r ′) − 1][1 − eβv(r ′)]g(r ′) dr ′.

(A3)
According to Eq. (1), the logarithm of the Percus-Yevick
equation equals −β�w(r). It is calculated by a summation
over the hexagonal cells that are used as the basis for g(r) (see
Fig. 3 for comparison). Experimental data for cell numbers
up to 20 are taken into account. For higher distances, the
uncorrelated limit g → 1 is used. The cells have degeneracies
of either 1, 6, 12, or 18:

− β�w(r) = ln

[
1 + ρ

20∑
i=0

degeneracy∑
k=1

[g(r(j ) − r(i,k)) − 1]

×{1 − exp[βv(r(i,k))]}g(r(i,k))

]
. (A4)

This equation needs to be solved self-consistently using
the experimentally derived g(r) from various data sets and
assumed forms for the pair potential, named, vPY(r). Because
of the observed symmetry in g(r), namely, its independence
on the angular index k, the pair potential depends only on the
relative separation r . Without any loss of generality, a Yukawa
form for vPY(r) is used, because it fits well to any physically
possible pair potential:

vPY(r) = 1

4πεo(εr,PY + 1)/2

e2

r
e−r/λPY . (A5)

In the limit λPY → ∞, it reduces to an unscreened Coulomb
potential. A 3D screening potential v3D(r) has exactly the
Yukawa form, and even a 2D screening potential v2D(r) fits
well to a Yukawa form when using different parameters [25].
Depending on the two free parameters (εr,PY + 1)/2 and λPY,
which are varied within a certain range, Eq. (A4) is calculated.
The aim is to minimize the deviation between its left- and
right-hand sides. Squared deviations for the individual data
points are summed up and normalized. This average deviation
is plotted color-coded as a function of (εr,PY + 1)/2 and
λPY in Fig. 6(a). It is found that an unscreened Coulomb
potential vPY(r) is not in accordance with the Percus-Yevick
equation, because going towards the limit of an infinite λPY

the deviation always rises. The optimal parameters to solve
Eq. (A4) self-consistently are constricted to a narrow range
around (εr,PY + 1)/2 = 3.6+1.2

−1.0 and λPY = 1.0+0.4
−0.4 nm. Data

sets from both Ca-doped and intrinsic samples have been
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FIG. 6. (Color online) (a) The optimum vPY(r) is determined by
varying the parameters (εr,PY + 1)/2 and λPY. For all combinations,
squared deviations between the left- and right-hand sides of the
Percus-Yevick equation are plotted color-coded. (b) Plot of the
coverage-dependent right-hand side of the Percus-Yevick equation
that equals −�w(N )/kBT . The solid line is a fit to a function, which
is quadratic in N .

treated independent at first, but during the analysis, it was
found that they can be described by the very same form of
vPY(r). The used data points are all taken from the range of r up
to the global maximum of f (r) (compare to Fig. 3). For higher
distances, the Percus-Yevick approximation gives unphysical
imaginary numbers, but that region is not of interest. When
comparing values of −�w(r)/kBT from one data set, but for
different distances r within the range of interest, the relative
standard deviation of these values is only up to ≈7%. This
is not unexpected, because the Helmholtz free energy of the
system of surrounding particles should stay relatively constant
when no additional particles are added and just two particles
change their relative separation on that small scale. In contrast,
it should change severely when additional particles are added.
This is in accordance with the experimental results, where �w

differs in between the data sets with different Rb coverages.
In the following, the average of �w(r) over r is used and �w

becomes a function of only the Rb coverage. In Fig. 6(b), the
data points for −�w(N )/kBT reflect the individual data sets
with different coverages that are also used in Fig. 6(a). The
solid line is a fit to a function that is quadratic in N . With
�w(N ) being determined, it is now possible to extract v(r)
from w(r).
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