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Robust two-qubit gates for exchange-coupled qubits
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We present composite pulse sequences that perform fault-tolerant two-qubit gate operations on exchange-only
quantum-dot spin qubits in various experimentally relevant geometries. We show how to perform dynamically
corrected two-qubit gates in exchange-only systems with the leading hyperfine error term canceled. These pulse
sequences are constructed to conform to the realistic experimental constraint of strictly non-negative couplings.
We establish that our proposed pulse sequences lead to several orders of magnitude improvement in the gate
fidelity compared with their uncorrected counterparts. Together with single-qubit dynamically corrected gates,
our results enable noise-resistant universal quantum operations with exchange-only qubits.
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I. INTRODUCTION

The Heisenberg exchange interaction [1] has been at the
heart of spin qubit control since the introduction of spin-based
quantum computation in semiconductor quantum dots. The
interdot exchange interaction provides the two-qubit gate when
each spin is regarded as a qubit or, alternatively, if a qubit
is encoded in the singlet and triplet two-spin states [2–6], it
constitutes a subset of single-qubit operations. If one qubit
is encoded in three physical spins, the exchange interaction
alone suffices for universal quantum computation [7]. This
exchange-only qubit has the advantage of fast and all-
electrical control and has therefore received extensive attention
both theoretically [8–11] and experimentally [12–19]. Very
recently, a variation, the resonant-exchange qubit, has been
experimentally demonstrated [20–22].

The universality of the exchange interaction comes with
a cost in that entangling operations on such qubits involve
the interqubit exchange coupling, which inherently causes
leakage out of the logical subspace, necessitating additional
gate operations. The leakage may be reduced by using a single
adiabatic pulse [22] or completely eliminated by performing an
appropriate sequence of gates operations [7–9]. For adiabatic
coupling, the geometry of the exchange-only qubit network
plays an important role [22], while for the pulse-sequence
approach, only a few geometries have been considered and
most attention has been restricted to the linear spin chain.
Other geometries of current experimental interest, such as
the butterfly form [22], have no known leakage-correcting se-
quences. Furthermore, in both single-pulse and pulse-sequence
approaches, decoherence through the hyperfine interaction
with the nuclear spin bath (i.e., Overhauser fluctuations)
remains an outstanding challenge for the exchange-only qubit.
While at the single-qubit level that problem has recently been
addressed using a form of dynamically corrected gates [23],
construction of a noise-resistant two-qubit exchange-only
gate is a completely unexplored territory. Thus, despite the
great promise of the exchange-only spin qubit system, the
basic problems of multiqubit gating must be addressed for
rapid experimental progress to continue toward the construc-
tion of a fault-tolerant spin-based semiconductor quantum
computer.

In this paper, we address these problems in two steps.
First, we develop two-qubit pulse sequences for several
different relevant geometries to eliminate the leakage intrinsic
to interqubit coupling in exchange-only qubits even in the
absence of noise. Second, based on these results, we develop
a theoretical framework for implementing the two-qubit
gate robust to leading-order quasistatic hyperfine noise. As
Overhauser fluctuations associated with hyperfine noise are
the dominant sources of error in GaAs [10,18], our pulse
sequences are relevant to ongoing experiments.

II. BASIS STATES AND OPERATIONS

An exchange-only qubit is encoded in the S = 1/2,
Sz = 1/2 subspace of three-spin states as |0〉 = (|↑↓↑〉 −
|↓↑↑〉)/√2 and |1〉 = (|↑↓↑〉 + |↓↑↑〉)/√6 − √

6|↑↑↓〉/3
(see Ref. [7]). The four two-qubit logical states, together with
the leakage states, live inside the nine-dimensional Stot =
1, Sz

tot = 1 subspace of six-spin states. Neighboring spins
Si and Sj interact via the Hamiltonian H ex

ij (t) = Jij (t)Eij ,
where Eij ≡ Si · Sj and Jij (t) is the Heisenberg exchange
interaction. Jij can be controlled electrostatically by changing
gate voltages to adjust the interdot detunings. The exchange
Hamiltonian generates a rotation Rij (φ) ≡ exp(−ıEijφ) =
exp[−ı

∫
dtH ex

ij (t)] about axis ij in the nine-dimensional
subspace (we set � = 1 in this paper). A full SWAP operation
between spins i and j therefore corresponds to Rij (π ), up to
a global phase. We emphasize that, physically, the exchange
coupling and pulse duration must always be non-negative, so
Jij ,φ � 0 [e.g., Rij (−π/2) must be carried out as Rij (3π/2)].

Our purpose is to build a two-qubit gate using exchange
pulses Rij (φ) as the building blocks. Before we proceed,
however, we must distinguish between two kinds of leakages.
As mentioned above, in the absence of noise, a pulse using the
interqubit exchange coupling inevitably introduces leakage.
To understand this, consider the state |↑↑↓〉 ⊗ |↑↑↓〉. A SWAP

operation, between the rightmost electron of the first qubit and
the leftmost electron of the second qubit, would leave the first
qubit in Sz = 3/2 and the second in Sz = −1/2 subspace, none
of which is in the computational subspace. Since a two-qubit
gate necessarily utilizes the interqubit exchange pulse, we call
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this intrinsic leakage. We emphasize here that, because the
intrinsic leakage is completely unrelated to noise, it can be fully
compensated by combining various intraqubit and interqubit
exchange pulses, as has been explicitly shown for the linear
geometry [7,8]. On the other hand, even if intrinsic leakage is
compensated, the hyperfine coupling to the nuclear spin bath
causes additional leakage as well as dephasing, which we refer
to collectively as hyperfine error. In what follows, we shall
first present pulse sequences to compensate for the intrinsic
leakage. Then we discuss how one may combat the hyperfine
error by extending these sequences. For successful quantum
computing operations, both errors must be suppressed below
the error correction threshold.

III. CNOT SEQUENCES FREE FROM
INTRINSIC LEAKAGE

In this work, we consider various geometries of exchange-
coupled quantum-dot networks. For each geometry we obtain
the corresponding sequence of unitary exchange interactions,
the product of which, W = ∏

k R
(k)
ij (φ(k)

ij ), yields a CNOT gate
(up to local unitaries) with the intrinsic leakage completely
compensated. A genetic algorithm method has previously been
used for this sort of task [8], but here we use a faster constrained
exhaustive search method (see Appendix B for details). The use
of this method is motivated by the observation that the CNOT

pulse sequences (excluding the local unitaries) presented in
Refs. [8,24] consist of only pulses that are products of

√
SWAP.

Restricting ourselves to this kind of pulse, we carry out the
search by calculating the two invariants G1,2(W ) identified by
Makhlin [25]. Additional remarks about the optimization of
the procedure can be found in Appendix B.

The shortest CNOT sequence that we find by this method
consists of twelve

√
SWAP pulses in nine time steps, which is

for a fully connected network. In this network, every pair of
dots is linked, resulting in the sequence shown in Fig. 1(a),
where the time ordering is shown from left to right. Each
pulse is labeled by its time duration t , given in units such that
for t = 1, exp(−ıtJij Si · Sj ) corresponds to a SWAP operation
between spins i and j . The sequence shown is unique up to a
relabeling of the dots. Related leakage-free sequences for other
geometries can be obtained from the fully connected sequence
by relabeling the dots as necessary and inserting additional
full SWAP operations to shuttle spins from unconnected dots to
connected ones [26].

For the linear geometry, we reproduce the result of Fong
and Wandzura [8] (see Appendix C) and confirm that it
is the optimal one under the current search constraints.
Moreover, our method gives rise to shorter pulse sequences
(see Appendix C) for the geometries considered in Ref. [24]
and new pulse sequences for geometries whose two-qubit
gate sequences have not been considered previously (see
Appendix C). As an example, we show our result for the
butterfly geometry in Fig. 1(c). Our CNOT sequence (up to local
unitaries) consists of 16 exchange pulses in 13 time steps. This
sequence is equivalent to the sequence for a fully connected
geometry shown in Fig. 1(a). The mapping is shown by the
color coding in Figs. 1(a) and 1(c) in which equivalent

√
SWAP

pulses are drawn by the same colors. For instance, the first√
SWAP pulse is shown in red, the second is colored in green,
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FIG. 1. (Color online) (a) A CNOT sequence, consisting of 12√
SWAP pulses in 9 time steps, for a fully connected network. Note

that at the fifth time step, the exchange pulses for links 15 and 46
are to be carried out simultaneously. The first qubit is encoded in
spins 1, 2, and 3 while the second is encoded in spins 4, 5, and 6.
(b) Schematic diagram of the butterfly geometry. (c) Schematic
diagram of 16 exchange pulses in 13 time steps that realize a CNOT

gate up to local unitaries for the butterfly geometry.

and so on. The
√

SWAP between electrons in dots 2 and 4 in the
second time step for the fully connected geometry sequence is
implemented in the butterfly geometry by swapping electrons
in dots 2 and 5 and then performing a

√
SWAP between electrons

in dots 4 and 5. (We note that for the butterfly geometry,
there exists an alternative single-pulse method of suppressing
intrinsic leakage [22]. See Appendix A for a comparison.)

IV. HYPERFINE NOISE-CORRECTION SCHEME

Having compensated completely the intrinsic leakage, we
now consider the case where the exchange-only qubits are
subject to Overhauser noise, which is the dominant noise in
the experiment [10,18]. The hyperfine Hamiltonian is given by
H hf

tot = ∑6
i=1 H hf

i , where H hf
i = EZ

i Sz
i and EZ

i = gμBBi . Here
g is the electron g factor, μB is the Bohr magneton, Bi is the
random quasistatic Overhauser field at dot i, and Sz

i denotes
the z component of the spin operator at that dot. An exchange
pulse about the ij axis evolves the state of a pair of spins i and
j according to

Uij (J,φ) = exp

[
−ı

(
JEij + H hf

i + H hf
j

)φ

J

]
. (1)

For the convenience of later discussion, we also define a free
evolution of a spin pair ij for time τ when Jij = 0 as

U free
ij (τ ) = exp

[−ı
(
H hf

i + H hf
j

)
τ
]
. (2)

085314-2



ROBUST TWO-QUBIT GATES FOR EXCHANGE-COUPLED . . . PHYSICAL REVIEW B 89, 085314 (2014)

(a)

(b)

FIG. 2. (Color online) (a) Schematic depiction of the complete
permutation cycle used for hyperfine noise correction. Red ovals de-
note SWAP operations. (b) Example of a pulse sequence implementing
a corrected simultaneous rotation about axes 12 and 45 [Eq. (5)] for
the butterfly geometry. Here we take φ12 = π/2 and φ45 = −π/2. The
dashed lines separate the pulse sequence into blocks corresponding
to the left diagram in (a), but with the last pulse modified according
to Eq. (5).

We now describe the basic exchange pulse sequence to
suppress the Overhauser noise. The basic idea is to apply
SWAP operations (π rotations) between pairs of neighboring
dots such that each electron spends an equal amount of time
on each dot [9]. By doing so, an effective global system-bath
interaction is generated so that the hyperfine error is turned into
a global phase. To be concrete, in the following we present the
results for the butterfly geometry shown in Fig. 1. For this
geometry, the exchange-coupling terms can be grouped into
three sets and within each set the elements commute. One
such grouping is given by EA = {E12,E45}, EB = {E23,E56},
and EC = {E25} [see Fig. 2(a)]. Simultaneously turning
on the exchange interactions in each individual set results
in exchange pulses UA(J,φ) ≡ U12(J,φ)U45(J,φ)U free

36 (φ/J ),
UB(J,φ) ≡ U23(J,φ)U56(J,φ)U free

14 (φ/J ), and UC(J,φ) ≡
U25(J,φ)U free

14 (φ/J )U free
36 (φ/J ), where again U free

ij (φ/J ) de-
notes the free evolution of spins on unconnected dots i

and j while other couplings are turned on for a time
φ/J . A complete cycle of permutations can be performed
by using the composite pulse [UA(J,π )UB(J,π )UC(J,π )]6

as depicted in the left diagram of Fig. 2(a) or its cyclic
permutation counterparts [UB(J,π )UC(J,π )UA(J,π )]6 and
[UC(J,π )UA(J,π )UB(J,π )]6. Note that the square brackets in
Fig. 2(a) should be understood as a product of several terms,
each of which is represented by one graph, where an oval
encircling spins i and j indicates a rotation Uij (Jij ,π ), while
the remaining pairs, if any, should be understood as performing
free evolution subject to hyperfine noise according to Eq. (2).
The exponent on top of the square bracket indicates that these
three steps are repeated six times to form the entire sequence.

An alternative way of performing the permutation is shown in
the right diagram of Fig. 2(a).

Now, if the pulses Uij (J,π ) are replaced by the composite
pulses U ′

ij (J,π ) [23], where

U ′
ij (J,φ) = Uij (J,φ)Uij

(
J

2
,2π − φ

)
Uij (J,φ), (3)

and, since the time duration of the composite pulse is 4π/J

instead of π/J , U free
ij (π/J ) is replaced by U free

ij (4π/J ), then
the complete cycle of permutations generates an identity with
the first-order hyperfine error turned into a harmless global
phase

[U ′
A(J,π )U ′

B(J,π )U ′
C(J,π )]6

= exp

[
−ı

(
π

2
+ 12π

6∑
i=1

EZ
i

J

)]
I + O

((
EZ

i

/
J
)2)

,

(4)

where the primes indicate the substitution mentioned. Note that
for simplicity we have assumed boxcar pulses for U ′

ij (J,φ),
but finite rise and fall times can easily be incorporated by
replacing the three-piece pulse U ′

ij (J,φ) by the trapezoidal
pulses given in Ref. [23]. Furthermore, we have also assumed
the same value of J for U ′

A(J,φ), U ′
B(J,φ), and U ′

C(J,φ).
However, in general, different J values can be used for these
three composite pulses.

A corrected nontrivial rotation, e.g., rotation about axis 12
[such as the second time step of the sequence in Fig. 1(b)],
can now be constructed by replacing the final segment of the
identity sequence of Eq. (4), U ′

12(J,π ), by U ′
12(J,π + φ12)

(for −π � φ12 � π ). Similarly, a corrected rotation about any
other axis ij can be obtained by cyclically permuting the
identity sequence such that its last segment is U ′

ij (J,π ) and
replacing that with U ′

ij (J,π + φij ). Crucially, the error still
cancels because U ′

ij (J,φ) in Eq. (3) was chosen such that the
error is independent of φ.

Note that although most of the steps in Fig. 1(b) are
single-qubit rotations, we cannot simply replace them by the
shorter sequences developed in Ref. [23]. The sequence in
Fig. 1(b) is designed to compensate the intrinsic leakage,
guiding the evolution through the leakage subspace and back
into the logical subspace. At each step we must correct the error
not only for states in logical subspace (Sz = 1/2), but also for
states in the leakage subspace (Sz = −1/2 or 3/2). The shorter
sequences in Ref. [23] work only if the state always stays in
the subspace with a particular value of Sz, so we must use
the longer permutation sequence presented in this paper. We
remark, however, that outside the two-qubit sequences [such
as Fig. 1(b)], the shorter sequences of Ref. [23] can be used
for single-qubit gates since the leakage states play no role
there.

At certain time steps in Fig. 1(b), for example, the
seventh step, two rotations that commute can be performed
simultaneously. There the corrected simultaneous rotation
about axes 12 and 45 can be performed by simply replacing
the last composite pulse in the complete permutation sequence
with U ′

12(J,π + φ12)U ′
45(J,π + φ45)U free

36 (4π/J ), giving the
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FIG. 3. (Color online) Gate infidelity of naive (dashed curves)
and corrected (solid curves) CNOT pulse sequences vs magnetic field
gradient �EZ/J for the butterfly (blue), linear (red), and loop (green)
geometries.

total sequence

U ′
12(π + φ12)U ′

45(π + φ45)U free
36 (4π/J )U ′

B (J,π )U ′
C(J,π )

×[U ′
A(J,π )U ′

B(J,π )U ′
C(J,π )]5

= R12(φ12)R45(φ45) + O
((

EZ
i

/
J
)2)

(5)

up to a global phase. The time profile of the exchange couplings
is then as shown in Fig. 2(b).

With these results it is then straightforward to replace
every pulse shown in Fig. 1(b) and make it robust against
hyperfine errors. The infidelity of the CNOT sequence vs the
strength of the random Overhauser field gradient is given in
Fig. 3. (The formula used to calculate the fidelity is given in
Appendix D.) There, for plotting purposes, we have assumed
that the Overhauser field difference between each dot and its
neighbor(s) to the right is �EZ, but that assumption is certainly
not necessary for our pulse sequences to work. For comparison,
we also show results for linear and loop geometries. The linear
geometry is the most common in the literature [7,8,11] and the
loop geometry is simply given for comparison as a natural
way to add one link to the linear geometry. The sequences
compensating intrinsic leakage for those two geometries are
given in Ref. [8] and can also be obtained from Fig. 1(a)
by adding SWAP operations to account for the missing links.
Furthermore, the noise-correction scheme developed above for
the hyperfine noise suppression in the butterfly geometry also
applies for linear and loop geometries but with different sets
of commuting exchange couplings, shown in Fig. 4. (Explicit
formulas for these sequences are given in Appendix C.) Note
that the CNOT sequences and noise-correction schemes given
in this paper also work in the Stot = 0, Sz

tot = 0 subspace of
six-spin states [8].

As shown in Fig. 3, for �EZ/J 	 1, the infidelities of
the naive and corrected gates scale as O((�EZ/J )2) and
O((�EZ/J )4), respectively. This reduced error rate is not
without cost. For every time step in Fig. 1(b), the hyperfine-
corrected pulse is a 54π rotation. The length of the entire
corrected sequence is then ∼700π , which is more than an
order of magnitude longer than the uncorrected sequence.

1 2 3 4 5 6
6 5

3

4

1 2

3

(a) (b)

6

FIG. 4. (Color online) Permutation schemes to correct for the
leading term of the hyperfine error for (a) linear and (b) loop
geometries. Red ovals denote SWAP operations.

It is possible that further optimization of our sequences
might be obtained by switching on the noncommuting ex-
change couplings simultaneously, as in the resonant exchange
qubit [18]. However, the cost of using the corrected sequence
can be justified by the tremendous improvement in the gate
fidelity (as detailed below). Experiments in GaAs report slowly
fluctuating hyperfine gradients with a standard deviation of
�B ∼ 3 mT [18], corresponding to �EZ ∼ 100 neV. In that
case, our sequence is useful for exchange couplings on the
order of 1 μeV or more. Reference [18] reports exchange
values up to 30 μeV (�EZ/J ∼ 3 × 10−3), at which point
our corrected CNOT pulse sequence for the butterfly and loop
geometries provides a remarkable five orders of magnitude
improvement in fidelity. In the specific case shown, the linear
geometry performs even better with infidelity reduced by seven
orders of magnitude.

V. CONCLUSION

In summary, we have presented two-qubit dynamically
decoupled gate pulse sequences in several different geometries
of exchange-only qubit networks and most importantly have
shown how to make them resilient to quasistatic hyperfine
nuclear spin noise. These sequences satisfy the physical
constraints of the exchange-only system, representing dy-
namically corrected multiqubit gate operations applicable for
exchange qubits. Our results, together with the corrected
single-qubit gate pulse sequence in Ref. [23], allow universal
and robust multiqubit operations, which is an important step
towards scalable fault-tolerant quantum computation on the
exchange-only qubit platform in semiconductor quantum dots.

ACKNOWLEDGMENTS

We thank Lev S. Bishop for stimulating discussions and
Thaddeus D. Ladd for helpful correspondence. This work was
supported by IARPA, LPS-CMTC, and JQI-NSF-PFC.

APPENDIX A: COMPARISON TO SINGLE-PULSE
SCHEMES FOR SUPPRESSION OF INTRINSIC LEAKAGE

In Ref. [22], it is shown that when intrinsic leakage is
neglected, the two-qubit gate for a resonant-exchange qubit
can be done in a relatively simple way, which, for the butterfly
geometry, requires only one pulse. In order for the intrinsic
leakage to be negligible, one must have the exchange-coupling
interaction Jc very small compared to the typical exchange
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interaction Jz for individual qubits A (dots 1, 2, and 3) and
B (dots 4, 5, and 6), Jc 	 Jz, resulting in a slow gate. On
the other hand, the sequences presented in our paper are
completely immune to intrinsic leakage, but require a pulse
sequence rather than a single pulse. In this section, we discuss
which method results in a faster gate for a given maximum
tolerable infidelity. We consider the butterfly geometry only
since all other geometries require either local unitaries or echo
sequences to compensate for the non-(σz ⊗ σz) rotations [22].

For the butterfly geometry considered in Ref. [22], the
effective coupling Hamiltonian with all leakage states ignored
reads

Hc = − Jz

18
(σz ⊗ I + I ⊗ σz) + Jc

9
σz ⊗ σz. (A1)

(Here it has been assumed that the intraqubit exchange
interactions for both qubits A and B are equal, JzA = JzB =
Jz.) We consider two types of pulses, a square pulse and a
smooth pulse. The smooth pulse is chosen to be proportional to
1 − cos 2πt and we enforce that its maximal Jc value coincides
with the one used in the square pulse. As a result, the gate
corresponding to our smooth pulse is twice as long as the
square pulse. See Fig. 5(a) for profiles of these pulses.

The time required to have a CPHASE would be 9π/4Jc

for a square pulse and 2 × 9π/4Jc for our choice of smooth
pulse. We show for both cases, the infidelity as a function of
[(Jc/Jz)max]−1 in Fig. 5(b). (See Appendix D for the formula
used to calculate the fidelity.) The maximum ratio (Jc/Jz)max

for any infidelity tolerance can be read off the figure and the
minimum time for the gate is given by

Tmin, 1 piece = 9π

4Jmax(Jc/Jz)max
, (A2)

where Jmax is the largest experimentally accessible value of
the exchange coupling.

We now turn to the sequence in our work. Note that our
pulse sequences are perfectly protected from intrinsic leakage,
so the corresponding infidelity is always zero. For the sequence
presented in Fig. 1 appropriate for the butterfly geometry,
one rotates by a total of 23π/2. The minimum time for our
realization of the gate is then

Tmin, sequence = 23π

2Jmax
. (A3)

Thus, our pulse sequence is faster if (Jc/Jz)max < 9/46
[marked as an arrow in Fig. 5(b)], which corresponds to a
critical infidelity on the order of 10−3 for the square pulse
and for the smooth pulse with twice the duration. Although it
should be possible to further optimize the shape of the smooth
pulse to reduce the infidelity, we note here that the pulse
sequences discussed in this work go further than correcting
intrinsic leakage: They also provide a systematic method to
correct the hyperfine noise. It is unclear how one could achieve
the same goal with a smooth pulse and in cases where noise is
significant one should use the corrected sequences we present
despite their complexity compared to single-piece pulses such
as discussed in this section.

(a)

J
c
/
J

z

t
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10-3

10-2
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100

0 5 10 15 20 25 30

(b)

square
smooth

1
−

F

[(Jc/Jz)max]−1

FIG. 5. (Color online) (a) Profile of the square pulse (red solid
line) and the smooth pulse (blue dashed line) chosen to be proportional
to 1 − cos 2πt . (b) Infidelity vs [(Jc/Jz)max]−1. The x axis is directly
proportional to the gate duration for a square pulse according to
Eq. (A2), while the time duration for our smooth pulse is twice as
long as that for the square pulse. The arrow marks the value of Jc/Jz

for the square pulse to have equal time duration of our pulse sequence.

APPENDIX B: REMARKS ON THE EXHAUSTIVE
SEARCH ALGORITHM

In this section, we make a few remarks on the optimization
of the exhaustive search algorithm discussed in Sec. III. To
reduce the computational cost, we limit our search to time-
order symmetric pulse sequences, in the sense that the same
sequence is obtained when the order of the execution of the
pulses is reversed. By restricting ourselves to this kind of
sequence, we need to search only for the first half of the CNOT

sequence as the second half can be constructed by simply
reversing the order of the pulses in the first half. Since our
goal is a CNOT gate up to local unitaries, we begin constructing
the sequence by utilizing an interqubit pulse, for otherwise
the first pulse could be absorbed into the local unitary gate.
Subsequently, the construction of the sequence proceeds by
restricting the search at each time step to those pulses having
the property that there exists at least one pulse in the previous
time step that does not commute with it. This is to ensure that
we do not end up with multiple sequences that are equivalent
to each other by virtue of commuting pulses being able to be
executed in any order.
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Starting from the second time step, the sequence at each
time step derived by using the above method is checked as to
whether it is locally equivalent to a CNOT gate. The verification
is done by first combining the sequence derived up to current
time step with its reverse sequence, i.e., the sequence obtained
by reversing the execution order of the pulses leading to the
current time step. Subsequently, the two invariants G1,2 [25]
are calculated for this combined sequence. The sequence will
be accepted if it has the same invariants as CNOT; otherwise it
is rejected and another pulse combination satisfying the above
constraints are tried and checked. This process continues until
all possible pulse combinations from the first until the current
time step, used to construct the first half of the sequence, have
been exhausted. If no solution is found, the construction of the
sequence proceeds by adding another time step and checking
the sequence derived from all possible pulse combinations.
This process is carried on until a CNOT sequence is found.

APPENDIX C: IMPLEMENTATION FOR LINEAR, LOOP,
AND OTHER GEOMETRIES

In this section, we give CNOT sequences and permutation
schemes that correct the leading hyperfine error term in
different geometries (see Figs. 6–11). In each of these
figures, panel (a) shows the geometry with dots labeled, panel
(b) shows the (locally equivalent) CNOT sequences, and panel
(c) shows the cyclic permutation that one can implement by
using U ′

ij (J,φ) as the SWAP operation to obtain a hyperfine-
corrected sequence. For all the CNOT sequences given in panel
(b), the exchange times are expressed in units such that for
t = 1, the rotation exp(−ıtJSi · Sj ) corresponds to a full SWAP

operation between spins i and j .
Let us first consider the noise-correction sequence for

linear and loop geometries. Understanding the permutation
schemes for these two geometries aids in constructing the
noise-correction procedure for the other geometries considered
in this section. That is why it is worth going through the
details of the schemes for these two geometries even though
the general idea needed to construct the sequences has already
been presented in Sec. IV.

The simplest and most popular geometry is a linear
network of six quantum dots as shown in the top diagram
of Fig. 6(a). The sequence compensating intrinsic leakage
was first presented in Ref. [7] and subsequently optimized
by Fong and Wandzura [8], shown here in Fig. 6(b).
In this geometry, the exchange coupling terms inside the
set EA = {E12,E34,E56} commute with each other and so

do the coupling terms in EB = {E23,E45} [see Fig. 6(c)].
To swap the electrons in neighboring dots, we use the
three-piece pulses U ′

A(J,π ) ≡ U ′
12(J,π )U ′

34(J,π )U ′
56(J,π )

and U ′
B(J,π ) ≡ U free

16 (4π/J )U ′
23(J,π )U ′

45(J,π ). Using these
swapping pulses, we can construct a hyperfine-corrected
identity by swapping the electrons in a way given in the top
diagram of Fig. 6(c), which gives

[U ′
A(J,π )U ′

B(J,π )]6 = exp

[
−ı

(
π

2
+ 8π

6∑
i=1

EZ
i

J

)]
I

+O
((

EZ
i

/
J
)2)

. (C1)

To implement a corrected simultaneous rotation about the
three commuting axes (12, 34, and 56), we replace the last
pulse U ′

A(J,π ) of the corrected identity [U ′
A(J,π )U ′

B(J,π )]6

by U ′
12(π + φ12)U ′

34(π + φ34)U ′
56(π + φ56). The total se-

quence that realizes a corrected rotation simultaneously about
axes 12, 34, and 56 can be written as

U ′
12(π + φ12)U ′

34(π + φ34)U ′
56(π + φ56)U ′

B(J,π )

×[U ′
A(J,π )U ′

B(J,π )]5

= exp

[
−ı

(
π

2
+ 8π

6∑
i=1

EZ
i

J

)]
R12(φ12)R34(φ34)R56(φ56)

+O(
(
EZ

i

/
J
)2

). (C2)

This corrected sequence can be used, for example, to correct
the hyperfine error in the third time step of the CNOT sequence
shown in Fig. 6(b) with the angles in Eq. (C2) being φ12 = 0,
φ34 = π/2, and φ56 = π/2.

Similarly, a corrected simultaneous rotation about axes 23
and 45 [e.g., the fourth time step in Fig. 6(b)] can be obtained
by replacing the last pulse U ′

B(J,π ) of the corrected iden-
tity sequence [U ′

B(J,π )U ′
A(J,π )]6 by U free

16 (4π/J )U ′
23(J,π +

φ23)U ′
45(J,π + φ45). The complete sequence is given by

U free
16 (4π/J )U ′

23(J,π + φ23)U ′
45(J,π + φ45)U ′

A(J,π )

×[U ′
B(J,π )U ′

A(J,π )]5

= exp

[
−ı

(
π

2
+ 8π

6∑
i=1

EZ
i

J

)]
R23(φ23)R45(φ45)

+O
((

EZ
i

/
J
)2)

. (C3)
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FIG. 6. (Color online) (a) Linear (top) and loop (bottom) geometries. (b) Schematic diagram of 18 exchange pulses in 11 time steps that
realize a CNOT gate (up to local unitaries) [8]. The color coding used in this and subsequent diagrams should be interpreted in the same way as
that in Sec. III. (c) Sequences of complete cycles of permutations for linear (top) and loop (bottom) geometries.
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FIG. 7. (Color online) (a) Comb geometry. (b) Schematic diagram of 16 exchange pulses in 13 time steps that realize a CNOT gate (up to
local unitaries). (c) Sequence of a complete cycle of permutations.
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FIG. 8. (Color online) (a) Rectangular geometry in Ref. [22]. (b) Schematic diagram of 14 exchange pulses in 9 time steps that realize a
CNOT gate (up to local unitaries). Note that at the first time step, rotations around axes 14 and 25 are to be carried out simultaneously. This
bending of the links should be understood in the same way in the entire paper. (c) Sequences of complete cycles of permutations.
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FIG. 9. (Color online) (a) Bowtie geometry. (b) Schematic diagram of 16 exchange pulses in 11 time steps that realize a CNOT gate (up to
local unitaries). (c) Sequences of complete cycles of permutations.
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FIG. 10. (Color online) (a) One of the geometries considered in Ref. [24]. (b) Schematic diagram of 14 exchange pulses in 9 time steps
that realize a CNOT gate (up to local unitaries). (c) Sequences of complete cycles of permutations.
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FIG. 11. (Color online) (a) One of the geometries considered in Ref. [24]. (b) Schematic diagram of 14 exchange pulses in 9 time steps
that realize a CNOT gate (up to local unitaries). (c) Sequences of complete cycles of permutations.
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A close variant of the linear geometry is a loop configuration
as depicted in the bottom diagram of Fig. 6(a). The only
difference between these two geometries is the extra degree
of freedom to exchange couple the electrons in dots 1 and 6
for the loop geometry. In fact, the CNOT sequence in Fig. 6(b)
developed for the linear geometry works seamlessly for the
loop geometry. Due to the additional link between dots 1 and
6, the hyperfine-corrected sequence for the loop geometry has
half the length of that for the linear geometry, as detailed below.

To correct for the hyperfine noise in this geometry, we
use the pulses U ′

A(J,φ) ≡ U ′
12(J,φ)U ′

34(J,φ)U ′
56(J,φ) and

U ′
B(J,φ) ≡ U ′

16(J,φ)U ′
23(J,φ)U ′

45(J,φ). In this network, a
complete cycle of permutations [U ′

A(J,π )U ′
B(J,π )]3 gives

exp[ı(π/2 − 4π
∑6

i=1 EZ
i /J )]I + O((EZ

i /J )2). Similar to the
case of the linear network, the corrected simultaneous ro-
tation about axes 12, 34, and 56 is performed by replac-
ing the last swapping pulse U ′

A(J,π ) in the permutation
sequence [U ′

A(J,π )U ′
B(J,π )]3 by U ′

12(J,π + φ12)U ′
34(J,π +

φ34)U ′
56(J,π + φ56). On the other hand, for the corrected

simultaneous rotation about axes 16, 23, and 45, the composite
pulse U ′

16(J,π + φ16)U ′
23(J,π + φ23)U ′

45(J,π + φ45) is used
to replace the last swapping pulse in [U ′

B(J,π )U ′
A(J,π )]3.

The permutation schemes derived for butterfly, loop, and
linear geometries can also be utilized for other geometries.
Consider the comb geometry shown in Fig. 7. This geometry
has the advantage, for example, to host either exchange-only
qubits or the singlet-triplet qubit when the electrons inside dots
1 and 4 are depleted. The permutation scheme for this geometry

[see Fig. 7(c)] follows from that for butterfly geometry. On
the other hand, the permutation schemes for the remaining
geometries considered in this section (see Figs. 8–11) follow
the schemes for linear or loop geometries. For instance, the
permutation sequence for the rectangular geometry shown in
the left (right) part of Fig. 8(c) is the same as that for a linear
(loop) geometry with the chain here being 1-4-5-2-3-6 (1-2-
3-6-5-4-1). The results for the geometries considered in this
section are presented in Figs. 6–11.

APPENDIX D: DEFINITION OF FIDELITY

The fidelity F in Figs. 3 and 5 is computed using the
formula [27–29]

F = 1

16

(
4

5
Tr[σ0 ⊗ σ0Uf σ0 ⊗ σ0U

†
f ]

+ 1

5

3∑
μ,ν=0

Tr[V σμ ⊗ σνV
†Uf σμ ⊗ σνU

†
f ]

)
, (D1)

where σ0 is the 2 × 2 identity matrix and σμ ⊗ σν are the Pauli
matrices acting on the first and second qubits within the logical
subspace (namely, the upper left 4 × 4 blocks, with the
remaining entries in the entire 9 × 9 matrix being zero), Uf is
the actual evolution of the composite pulse sequence, and V is
the desired operation with the identity in the leakage subspace.
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