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Spin blockade in a double quantum dot containing three electrons
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The realization of a high spin state, which is related to ferromagnetism and molecular magnetism, has been an
attractive research topic. Here, using the nonequilibrium condition, we realize a high population of the quadruplet
states (total spin S = 3/2) in a double quantum dot containing three electrons. Owing to Pauli exclusion, the
quadruplet states are forbidden to transit to states with electron double occupancy. Thus, it is located at the end
of the dead-end path in a charge transfer cycle, and the three-electron state is stacked at the quadruplet state once
it is accessed. As a result of the high population in the three-electron quadruplet spin states, current suppression
is observed even under a high bias, which was also reproduced by a simple theoretical model.
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I. INTRODUCTION

Spin effects in molecules and materials are one of the most
intriguing topics not only from a scientific viewpoint but also
in terms of applications to spintronics and spin-functional
devices. In particular, methods of introducing high spin ferro-
magnetic states in materials associated with magnetization and
molecular magnetism have been enthusiastically studied. For
example, there are many theoretical approaches to introduce
high spin states based on Hubbard models involving the
tuning of crystal structures, electron numbers, and band struc-
tures [1]. In experiments, molecules with unpaired electrons
confined in degenerated levels have been compounded to
impart ferromagnetic properties [2]. Most of such theoretical
and experimental approaches are based on a spin-dependent
exchange interaction (i.e., Hund’s coupling), which gives
energetic stabilization in spin-paired electrons [3,4].

Here, by carrying out an experimental study on the transport
through double quantum dots (DQDs) through a dead-end path
in a charge transfer cycle, we investigate a novel method of
realizing the highest total spin state [5], which can exhibit
ferromagnetic properties. Our weakly coupled DQD contains
two QDs (dot L and dot R) with a charge configuration of (NL,
NR) = (1, 2), where NL (NR) is the electron number of dot
L (dot R). We observed the characteristic suppression in the
charge transfer cycle of (NL, NR) = (0,3) → (0,2) → (1,2).
The observed current suppression is attributed to the high
population of the highest total spin state in our three-electron
DQD (quadruplet state). This is caused by the existence of
the dead-end path, as schematically shown in Fig. 1, and
the stacking mechanism under a nonequilibrium condition.
The fact that current suppression is observed only under a
high bias nonequilibrium condition where the dead-end path
is accessible in the charge transfer cycle is consistent with our
model. Our result demonstrates the feasibility of this method
for introducing a ferromagnetic high spin state using Pauli
exclusion by a stacking mechanism under a nonequilibrium
condition.

*Corresponding author: s-amaha@riken.jp

II. EXPERIMENTAL SET UP, MEASUREMENT RESULTS,
AND THEORETICAL MODEL

We adopt a vertically coupled DQD formed in a submicron
pillar containing a GaAs-Al0.22Ga0.78As-GaAs triple-barrier
structure surrounded by two gate electrodes [6]. Two QDs,
dot L and dot R, are formed on the upper and lower wells
in the triple-barrier structure, respectively, and the tunnel
coupling is sufficiently small [�0.05 meV (Ref. [7])] for the
current to be well described by sequential hopping through
the DQD. The difference in the capacitive couplings of the
two gate electrodes for two QDs allows us to tune the offset
between the two QDs and hence independently manipulate NL

and NR by applying two different gate voltages Vg1 and Vg2

(Ref. [6]). The tunneling current Id is measured as a function
of the source drain voltage Vsd and Vg1 and Vg2 in a magnetic
(B) field applied parallel to Id at a temperature of �0.27 K.

Figure 2(a) shows an intensity plot of Id in (Vsd, Vg1) with
a constant Vg2 at zero B field. The charge configurations (NL,
NR) in Coulomb blockade (CB) regions are assigned by a
constant interaction model [8,9]. In Fig. 2(a), the CB regions
for (NL, NR) = (0, 1) and (0, 2) are open, but the CB region
for total electron number N = 3 is closed at Vg1 = −1.78 V
(lower) and −1.64 V (upper). The energies for the ground
states in the three charge configurations, i.e., (NL, NR) = (1,
2), (0, 3) and (0, 2) ((NL, NR) = (1, 2), (0, 3) and (1, 3)),
are almost degenerate at the lower (upper) closed point of the
N = 3 Coulomb diamond [10].

The Vsd-Id characteristic is also shown in Fig. 2(b) for
Vg1 = −1.78 V and −2 meV � Vsd � 5 meV [from P to Q in
Fig. 2(a)]. Here, the suppression Id clearly occurs for Vsd �
1.5 − 3.1 mV. To clarify the feature around the N = 3 CB
region in Fig. 2(a), we figure the characteristics in Fig. 2(i). The
CB and conducting regions are respectively colored white and
pink in Fig. 2(i); the observed Id-suppressed region, indicated
as X, is light blue. A rectangular-conducting island, indicated
by the solid red region in Fig. 2(i), is found between region
X and the lower right edge of the N = 3 CB region. The
boundary between region X and the solid red region, denoted
as �, is observed to be parallel to the lower right edge of
the N = 3 CB region. Another similar rectangular-conducting
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FIG. 1. (Color online) Schematic diagram of stacking process of
charge transfer cycle (0,3) → (0,2) → (1,2) through our DQD. Here,
we focus on the condition under which the two levels (ground and
excited states) in dot R are accessible. (Left) Schematic of (0, 3) state.
Under the high bias condition, transition (i) from the (0, 3) doublet
state (total spin S = 1/2) to the (0, 2) triplet state (S = 1), which
is the first excited state in (0, 2), can be realized. The (0, 2) triplet
state can be easily accessed because of the exchange energy in dot R.
(Middle) Schematic of (0, 2) triplet state. Note that three spin states
with S = 1 are degenerated at zero magnetic field, but only two up
spins are illustrated. By adding one electron, transition (ii) from the
(0, 2) triplet state (S = 1) to the quadruplet state (S = 3/2) can be
achieved. (Right) Schematic of (1, 2) quadruplet state. Note that four
spin states with S = 3/2 are degenerated at zero magnetic field, but
three up spins are illustrated. Electron transfer of (1,2) → (0,3) is
forbidden when the quadruplet state is accessed, resulting in current
suppression by the quadruplet spin blockade (Q-SB).

island, indicated by the dashed red hatched region in Fig. 2(i),
is also found between region X and the lower right edge of
the N = 4 CB region. In region X, a faint, almost vertical
line associated with the lifting of the current suppression is
observed, as shown by � in Fig. 2(i). The measured intensity
plots of Id under constant B = 0.5 T, 1.0 T, and 2.0 T are shown
in Figs. 2(e)–2(g), respectively. The width of the rectangular
island monotonically decreases with increasing B, as plotted
in Fig. 2(h).

The observed region X is induced by a spin blockade
mechanism, but it has three characteristic differences from
the previous observations in the two-electron spin blockade by
Pauli exclusion (P-SB) [11]. The first is that the offset energy
between the two QDs is different from that in the previous
P-SB, so that neither the (1, 1) state nor the (2nL +1, 2nR

+ 1) states (nL and nR denote the numbers of single-particle
levels in dot L and dot R, respectively) contribute here. Our
discussion is limited to the charge state transitions between
(1, 2) and (0, 3), and the charge state contributing to the spin
blockade is (1, 2). Note that the previously discussed spin
blockade mechanisms in a multielectron regime for the (2nL

+ 1, 2nR + 1) states are basically the same as that in (1, 1)
P-SB [9,12]. The second difference is in the characteristics
of the current-suppressed region. Region X is observed to
be away from the edge of the N = 3 Coulomb diamond,
and two conductive rectangular islands are clearly observed
between the edge of the N = 3 (or N = 4) Coulomb diamond
and region X. For the (1, 1) P-SB, the weak current at the
boundary between the (1, 1) P-SB and the CB regions was
investigated [11], and the characteristic energy scale of the
width was almost equal to that of the thermal fluctuation energy
(�100 μeV). By contrast, the observed energy scale of the
width of the islands in Fig. 2(a) is significantly wider than that

in the (1, 1) P-SB. This suggests that a state with significantly
large excitation energy contributes to this spin blockade. The
third difference is in the arrangement of the two conductive
island regions. The electron-hole symmetry was maintained in
the (1, 1) P-SB, and the P-SB region was basically symmetric
at the center of the N = 2 Coulomb diamond [11]. However,
the two observed rectangular islands are asymmetric at the
center of the N = 3 Coulomb diamond, and the electron-hole
symmetry should collapse in this spin blockade. The charge
transfer cycles relevant to the observed spin blockade are
(1,2) → (0,3) → (0,2) → (1,2) for the electron cycle (at the
lower closed point of the N = 3 Coulomb diamond) and
(1,2) → (0,3) → (1,3) → (1,2) (at the upper closed point)
for the hole cycle.

The characteristics of region X are also reproduced using
the master equation formalism [13]. We solve the rate
equations using the transition rate between three quantized
levels in the DQD and a constant relaxation rate between
only the same spin states. Figure 2(c) shows the calculated Id

obtained by sweeping the energy in dot R (ε2). The complete
reproducibility of region X is confirmed by Figs. 2(a) and (c).
The Vsd-Id characteristic at ε2 = −6.6 meV is also shown in
Fig. 2(d).

III. THREE-ELECTRON SPIN BLOCKADE MECHANISM

The charge transfer processes in (1,2) → (0,3) → (0,2) →
(1,2) are schematically shown in Fig. 3. At a low Vsd, only the
ground levels are accessible in the charge transfer cycle, and
we cannot expect any spin blockade, as shown in Fig. 3[I].
On the other hand, at a high Vsd, the first excited level in dot
R becomes accessible, and the electronic spin states in (1, 2)
can be classified into two sets of doublet states, D1(1, 2) (total
spin S = 1/2 state with triplet state in dot R) and Dg(1, 2)
(total spin S = 1/2 state with singlet state in dot R), and the
quadruplet state Q(1, 2) (total spin S = 3/2, see Fig. 3) [14].
If the three-electron highest spin state Q(1, 2) is achieved via
the path in Fig. 1 (corresponding to the dead-end path 4→6
in Fig. 3[II]), the charge transfer cycle is stacked at Q(1, 2)
with the transition forbidden by Pauli exclusion, resulting in
current suppression by the quadruplet state (Q-SB) [15,16].
Note that access to T (0, 2) is necessary to form Q(1, 2).
The spin relaxation time from T (0, 2) to S(0, 2) has been
measured to be �200 μs [17], which is sufficiently longer than
the tunneling time from the source to the DQD (�10–100 ns).
Then, the T (0, 2) state can be maintained until the next process
for Q(1, 2) is achieved. However, the T (0, 2) state is the first
excited state containing one electron in the e state; therefore,
Vsd must be increased to access the T (0, 2) state with the
excitation energy from the ground state [S(0, 2), see Fig. 3].
Thus, region X is observed not close to but away from the
N = 3 CB region. The width of the rectangular conductive
islands in the electron (hole) cycle corresponds to the excitation
energy from the ground state of the N = 2 (N = 4) singlet to the
N = 2 (N = 4) triplet excited state. Basically, their excitation
energies are simply expected to equal the energy difference
between the g and e levels in dot R. Moreover, as B increases,
the two boundaries of regions X, �, and � are expected to
approach the boundary of the CB region due to the stabilization
of the e level from the diamagnetic shift in the single-particle
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FIG. 2. (Color online) (a) Measured Id at Vg2 = −1.0 V plotted in (Vsd, Vg1) at B = 0 T. (b) Cross section of the observed Id plot along the
green line in (a). (c) Id calculated by the master equation approach. (d) Cross section of calculated Id along the green line in (c). Measured Id

at Vg2 = −1.05 to −1.12 V in (Vsd, Vg1) at B = (e) 0.5 T, (f) 1.0 T, and (g) 2.0 T. (h) B-field evolution of the width of islands located between
� (�) and the boundary of the N = 3 (N = 4) CB region, corresponding to the excitation energy from the ground state to the first excited
T (0, 2) state. (i) Magnified diagram around N = 3 Coulomb diamond in (a).

level [4]. The observed B-field evolutions of the separation
between � (�) and the edge of the N = 3 CB region are also
shown in Fig. 2(h). They decrease toward zero with increasing
B, in accordance with our expectation [4]. The vertical dark

region of higher Vsd in Figs. 2(e)–2(g), with a current threshold
running parallel to the vertical axis (Vg1), is caused by access
to the Q(0, 3) state, for which one electron in the third excited
level of dot R is allowed to be occupied.
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IV. GENERALIZED SPIN BLOCKADE MECHANISM

So far, we have described the experimental observation
of a three-electron spin blockade in a DQD. However, this
spin blockade mechanism itself is not specific to our three-
electron and three-site system; it can also be generalized to
multielectron and multisite systems. To identify the essence
of the current suppression mechanism, we discuss in detail
the simplified charge/spin state transition diagram shown in
Fig. 3. In Fig. 3[II], we present all the dominant electronic
states contributing to the spin blockade with indices i = 1–6.
The arrows in Fig. 3[II] indicate the transitions between two
contributing states, and the rates from the j state to the i

state are denoted by γij (i, j = 1–6). Owing to the finite-bias

condition, we neglect the electron transfer processes with
energy absorption; therefore, the transitions in Fig. 3 are
presented by unidirectional rather than bidirectional arrows.

In Q(1, 2), electrons are forbidden to transit to other states
owing to Pauli exclusion. Therefore, the transition rates from
Q(1, 2) satisfy the following relation [18]:

∀i ∈ {1,2,3,4,5}; γi6 = 0 and ∃i ∈ {1,2,3,4,5}; γ6i �= 0,

where we assume that it is forbidden to transit from Q(1, 2)
to elsewhere via co-tunneling processes. Here, to estimate the
population of each state, the rate equation for the probabilities
of the contributing states [pi , i = 1–6 in Fig. 3[II]] in the
steady state is expressed as

d

dt

⎛
⎜⎜⎜⎜⎜⎝

p1

p2

p3

p4

p5

p6

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−γ21 − γ41 0 γ13 0 γ15 0
γ21 −γ32 0 0 0 0
0 γ32 −γ13 0 0 0

γ41 0 0 −(γ54 + γ64) 0 0
0 0 0 γ54 −γ15 0
0 0 0 γ64 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

p1

p2

p3

p4

p5

p6

⎞
⎟⎟⎟⎟⎟⎠ = 0.

Note that
∑6

i pi = 1 and that we consider the sequential
tunneling processes. From this, we obtain the following
solution:

(p1,p2,p3,p4,p5,p6) = (0,0,0,0,0,1).

This means that the state is stacked at Q(1, 2). Note that
p1, p2, and p3 become finite according to the rate equation
under the low-bias condition [Fig. 3[I]]. The key to producing
the stacking at Q(1, 2) is the existence of the dead-end path.
The stacking state Q(1, 2) is located at the end of the dead-end
path, and there is no outgoing rate from this stacking state
[18]. Coincidentally, it is possible to reach 6 (Q(1,2)) from
all other states in a finite number of steps by following the
arrows in Fig. 3[II]. Therefore, the state eventually becomes
stacked at 6 sooner or later [18]. Even in multiply coupled QDs,
this mechanism becomes effective if the transition diagram
can be designed to have a dead-end path. In particular, the
electrons in the highest spin state cannot transit to other states
with double occupancy owing to Pauli exclusion; therefore,
it is easy to design the highest spin state to be at the end
of dead-end path when the co-tunneling processes to escape
from the highest spin state are neglected [15]. As many types of
CB-dominated blocking mechanism [19,20] have been demon-
strated, our Pauli exclusion-dominated blocking mechanism
can generally be found in more complex systems with spin
effects.

Note that not only the design of the dead-end path but
also nonequilibrium is important in this mechanism. How the
dead-end path works has already been discussed in detail, so
here we make two comments on the effect of the nonequi-
librium condition. The first is that the state transitions in
Fig. 3 are indicated by unidirectional rather than bidirectional
arrows owing to the nonequilibrium condition. The second
is that a power supply is required to stack the system in
the highest spin state. This is because an energy supply is
required to transfer electrons from the source electrode to

the drain electrode until the dead-end path is accessed and
the charge transfer cycle is stacked. A simple evaluation of
this required energy suggests that higher energies are required
as the number of electrons increases. Therefore, we can
expect that the observation of a spin blockade in coupled
QDs may become more difficult as the number of electrons
increases.

Finally, we discuss how our spin blockade mechanism
contributes to the realization of ferromagnetic states in coupled
QDs. The three-electron spin state, which is realized in this
experiment, is a mixed state consisting of four different Sz

states (Sz = +3/2, +1/2, −1/2, and −3/2) with maximum
total spin S = 3/2. To obtain ferromagnetic properties, a
purification process to select the state with the component
having highest spin for one direction, i.e., Sz = +3/2 is
required. A possible process is simply to apply an external
B field so that the lowest energy state in the quadruplet
(Sz = +3/2) is favored by Zeeman energy splitting. However,
adjustments of the external B field and source drain voltage
are required to realize high population of the lowest energy
state in quadruplet: (1) Zeeman splitting is sufficiently larger
than the thermal energy and (2) the source drain voltage
is adjusted so that the lowest energy state in quadruplet is
accessible.

V. CONCLUSION

We investigate the spin blockade of three-electron spin
in a DQD. Here, the three-electron state is stacked at the
highest total spin state (quadruplet) via the dead-end path in
the charge transfer cycle. Under this stacking condition, the
highest total spin state of the three electrons is highly populated
in a three-electron DQD as a result of Pauli exclusion.
This method can be mathematically generalized [14] and is
applicable not only to three-electron DQD but also to multiply
coupled QD systems, molecules, and materials. Our results
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FIG. 3. (Color online) Schematics of charge and spin states and their transitions in (0,3)→(0,2)→(1,2)→(0,3) in [I] low, [II] medium
(Q-SB), and [III] high Vsd regions in Figs. 2(a) and (c). The total spin of each state is shown by the indices S (total spin S = 0), D(S = 1/2),
T (S = 1), and Q(S = 3/2). Dg(1, 2) is the ground state of the (1, 2) charge state, and D1(1, 2) is explained in the text. Here, we present the
first-order tunneling processes through outer and inner tunneling barriers by arrows. Transitions from D(0, 3) to T (0, 2) and from T (0, 2) to
Q(1, 2) in [II] correspond to the region where the dead-end path in Fig. 1 is accessible and the Q-SB is observed in Figs. 2(a) and 2(c). In the
high Vsd region, the spin blockade is lifted because the dead-end path is released through 6→7→4, as shown in [III] (highlighted in red).

highlight the intriguing physics that occur under nonequi-
librium conditions and provide a novel tool for introducing
the highest total spin state, which may exhibit ferromagnetic
properties in various materials. This will be verified in future
experiments.
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APPENDIX A: ASSIGNMENT OF CHARGE STATES IN
HONEYCOMB DIAGRAM AND COULOMB DIAMONDS

USING A CONSTANT INTERACTION (CI) MODEL

In the main text, we omitted the details of the device
structure and the technique used to assign the charge states.
The DQD we studied is formed in a submicron circular
mesa structure containing a GaAs-Al0.22Ga0.78As-GaAs triple-
barrier structure surrounded by two Schottky gate electrodes.
Figure 4(a) shows a schematic diagram of our device structure,
which is basically similar to our previously studied vertical
DQD device with a 60 Å center barrier. The fabrication process
is discussed in Ref. [21]. The two gate voltages allow us to
modify the offset between the two QDs as a function of (Vg1,
Vg2) [6]. The charge state (NL, NR) can be assigned using
the well-studied CI model [8,9]. From the two observed kinks
denoted by • in Fig. 4(d), we find that zero (two) electrons
are trapped in dot L (dot R), i.e., (NL, NR) = (0, 2) slightly
on the negative side of the yellow square. The characteristic
positions (� and •) in the Coulomb diamonds in Fig. 4(d)
can also be reproduced by the CI model [6,8,9]. Thus, the
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Two kinks (green circles) and vertical lines (green triangles) are observed, and the charge states of Coulomb blockade regions are also shown.
(d) Coulomb diamonds for conditions of Fig. 2(a) [Vg2 = −1.0 V, green dotted line in (e)] plotted with a relatively large scale. (e) Coulomb
oscillation lines as a function of (Vg1, Vg2). The characteristic points are also shown as a yellow diamond, square, and circle in (d) to (f).
(f) Coulomb diamonds obtained by sweeping Vg1 at Vg2 = −1.75 V [yellow dotted line in (e)]. Three pairs of kinks (green circles) and vertical
lines (green triangles) are identified; therefore, the charge state slightly below the closed Coulomb diamond (yellow diamond) is assigned to
(0, 3), implying that the offset energy between the two QDs can be modulated by adjusting Vg2.

charge transfer cycles at positive Vsd near the closed Coulomb
diamond, as shown by � and ◦, are assigned to (NL, NR)
= (0,2) → (1,2) → (0,3) → (0,2) [process α] and (1,3) →
(1,2) → (0,3) → (1,3) [process β], respectively. Figure 4(e)
shows the observed Coulomb oscillation lines as a function of
(Vg1, Vg2). Because the cross-capacitance is relatively small
and the two gates are nominally equally coupled [6], the
Coulomb oscillation lines are observed to be almost parallel,
and the offset between the two QDs can be roughly modified
by changing the scanning position (Vg1, Vg2) by changing
the value of Vg2. Figure 4(f) shows Coulomb diamonds
obtained by sweeping Vg1 at Vg2 = −1.75 V. Three pairs of
kinks and vertical lines are observed in Fig. 4(f), suggesting
that the offset between the two QDs can be modulated by
adjusting Vg2.

APPENDIX B: ELECTRONIC STATE TRANSITIONS IN
HOLE CYCLE OF (1, 2) QUADRUPLET SPIN BLOCKADE

In the main text, we described the charge state transitions in
the electron states for the (1, 2) Q-SB. However, we also found
clear current suppression in the so-called hole cycle (0,3) →
(1,3) → (1,2) → (0,3). Here, we focus on this cycle to explain
how the boundary of region X is defined, as shown in Fig. 5.
By injecting one electron, the initial doublet state D(0, 3) can
transit to the singlet state S(1, 3) or the triplet state T (1, 3).

The energy difference between S(1, 3) and T (1, 3) has been
estimated to be �10 μeV (Ref. [22]). At a low bias, both S(1,
3) and T (1, 3) are only allowed to transit to Dg(1, 2). However,
at a high bias (Vsd > �EQ-Dg, �EQ-Dg is the energy difference
between Dg(1, 2) and Q(1, 2)), T (1, 3) can undergo a transition
to Q(1, 2), resulting in the current being blockaded, indicated
as [hl] in Fig. 5(b). Note that �EQ-Dg also roughly equals
2 meV, that is, �ES-T minus the exchange energy between
T (1, 3) and S(1, 3). Note that the energy separation between
T (1, 3) and S(1, 3) is about �0.1 mV (Ref. [22]) and that the
spin relaxation from T (1, 3) to S(1, 3) is typically measured
to be �104–105 μs [12], which is considerably longer than
the tunneling time for the drain �R (�10–100 ns) [23].
Moreover, T (1, 3) remains in a relaxed state until the loading
process of Q(1, 3). Note that the asymmetry in the electron
and hole cycles in the Q-SB is introduced by the difference
between the preparation processes of the triplet state in
Figs. 5(a) and 5(b).

APPENDIX C: DETAILS AND PARAMETERS OF
THE THEORETICAL APPROACH TO QUADRUPLET

SPIN BLOCAKDE

To examine the Q-SB region X theoretically, we per-
formed a calculation using the master equation [13,15]. The
Hamiltonian used to describe the electronic states in the DQD

085302-6



SPIN BLOCKADE IN A DOUBLE QUANTUM DOT . . . PHYSICAL REVIEW B 89, 085302 (2014)

Dg(1, 2)S(0, 2)

T(0, 2) Q(1, 2)

β

dot L
dot R

g

e

D(0, 3)

α

[el]

S(1, 3)

T(1, 3)

Dg(1, 2)

Q(1, 2)

β

α

[hl]

D(0, 3)

(a) (b)

FIG. 5. (Color online) Charge transfer cycles for (a) electron and (b) hole with consideration of the spin effect.

can be presented as

Hd =
3∑

i=1,σ=↑,↓
εi,σ ni,σ +

3∑
i=1

Uini,↑ni,↓ + V12n1n2+V23n2n3

+V31n3n1 +
∑
i,j

Jij
�Si · �Sj

+
∑

(t12a
†
1,σ a2,σ +t∗31a

†
1,σ a3,σ + H.c.).

Here, we consider a single level (i = 1) in dot L and two levels
(a lower level of i = 2 and a higher level of i = 3) in dot R.
Also, εi,σ (i = 1, 2, 3) are the single-particle energies of each
level, Ui (i = 1, 2, 3) are the intralevel Coulomb energies, Vij (i
= 1, 2, 3, i � j ) are the interlevel Coulomb energies, Jij are the

exchange energies between two levels, and tij (i, j = 1, 2, 3, i
� j ) are the tunnel coupling energies between levels. Here, we
diagonalize the Hamiltonian Hd, solve the rate equations using
the estimated transition probability of each level for the source
and drain electrodes, and statistically evaluate the tunneling
current through the DQD. Note that we have not considered any
spin-mixing effects (such as spin orbit and hyperfine coupling)
in the calculations presented here. The parameters we adopted
for our calculation are ε1 = � +2 (V23 − V12), ε3 = ε2 + �

[� = 0.22U : the energy difference between the 1s (ground)
and 2p (first excited) levels in dot R], U1 = U2 = U =
3.0 meV, U3 = 1.3U = 3.9 meV, V12 = 0.55U , V23 = U ,
V31 = 0.45U , J12 = 0, J23 = −0.05U , J31 = 0, t12 = 0.05U ,
and t31 = 0.01U . Note that the difference between t12 and t31 is
associated with the difference between the angular momentum
of the contributing states [22] and that J23 corresponds to the
exchange energy in dot R, which stabilizes the triplet state
(Hund’s coupling energy [4]). The coupling strengths between

Source drain voltage (mV)

30

-30

 Id 
(pA)

(c)

-4.0 6.0
5.5

9.2

0.0

Δ 0.14U

N=4

N=3

N=2

(b)

-4.0 6.0
5.5

9.2

0.0

Δ 0.18U

N=4

N=3

N=2

(a)

-ε
 (

m
eV

) 

Δ 0.22U

-4.0 6.0
5.5

9.2

0.0

N=4

N=3

N=2

FIG. 6. (Color online) Calculated Coulomb diamonds as a function of the single-particle energy separation � between the ground (1s) and
excited (2p) states. The separation � is set to (a) 0.22U , (b) 0.18U , and (c) 0.14U .
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the source and drain electrodes are �s = �d = 0.15 × 10−4U .
The strength of both the intradot and interdot energy relaxation
γ is assumed to be γ = 10−3U , and the temperature T in the
calculation is 300 mK. The single-particle levels in dot L and
dot R are assumed to be linearly modulated for the source drain
voltage Vsd [6,8,15].

APPENDIX D: DEPENDENCE OF THE SPIN BLOCKADE
REGION ON SINGLET TRIPLET ENERGY OBTAINED BY

THEORETICAL APPROACH

In Figs. 2(e)–2(h) of the main text, we showed the B-field
dependence of the boundary of region X (the Q-SB region).
The same dependence is also reproduced by the theoreti-
cal calculation discussed in Appendix C. The confinement
potential for electrons in a QD can be roughly described
as a two-dimensional harmonic potential with anisotropy
[24], and the second level (2p state in atomlike notation)

is expected to be stabilized by the B field originating from
the diamagnetic shift in the Fock-Darwin spectrum. Figure 6
shows the theoretically obtained Coulomb diamonds as a
function of the energy separation � between the first (1s)
and second (2p) energy levels. The boundaries indicated by �
and � are the shifted boundaries of the N = 4 and N = 3 CB
regions, respectively, and the results are in good agreement
with the behavior shown in Figs. 2(e)–2(g).

APPENDIX E: MARKOV CHAINS OF CHARGE
TRANSFER CYCLE IN SPIN BLOCKADE REGIME

In the main text, by considering the rate equations we dis-
cussed the transfer cycle, statistically estimated the population
of each state, and referred to the path toward the stacking state
as the dead-end path. Here, we discretize the time as t = n�T

(n is the integer and �T is the unit of time) and express the
rate equations as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pn+1
1

pn+1
2

pn+1
3

pn+1
4

pn+1
5

pn+1
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + (−γ21 − γ41)�t 0 γ13�t 0 γ15�t 0

γ21�t 1 − γ32�t 0 0 0 0

0 γ32�t 1 − γ13�t 0 0 0

γ41�t 0 0 1 − (γ54 + γ64)�t 0 0

0 0 0 γ54�t 1 − γ15�t 0

0 0 0 γ64�t 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pn
1

pn
2

pn
3

pn
4

pn
5

pn
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + (−�21 − �41) 0 �13 0 �15 0

�21 1 − �32 0 0 0 0

0 �32 1 − �13 0 0 0

�41 0 0 1 − (�54 + �64) 0 0

0 0 0 �54 1 − �15 0

0 0 0 �64 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

pn
1

pn
2

pn
3

pn
4

pn
5

pn
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡
(

Q 0
tR 1

)
�pn = P �pn.

Here, we define �ij = γij�t (i, j = 1–6). This means that the
charge transfer cycle in Fig. 3[II] can be regarded as a Markov

FIG. 7. Transition diagram of Markov chain in Fig. 3[II].

chain with the transition matrix P. The transition diagram of
this Markov chain is presented in Fig. 7.

Using Fig. 7, we can easily identify the Markov chain in
Fig. 3[II] as one of the absorbing Markov chains: the six state
in Fig. 3[II] is the absorbing state, and it is possible to reach
the six state (absorbing state) from the other five states in a
finite number of steps [25].

APPENDIX F: EVALUATION OF ENERGY IN ACCESS
PROCESS TO HIGH SPIN STATE

Under the thermal equilibrium condition, we expect that
there will be no flows of energy. In electron transport, electrons
usually carry the energy. In a spin-blockaded DQD, there are
no currents through the DQD; therefore, no flows of energy
are expected. Thus, it appears that the spin blockade can
be realized under the equilibrium condition. However, we
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emphasized that the nonequilibrium condition is important
for our spin blockade mechanism. Here, we explain how the
energy flow, which requires a nonequilibrium condition, can
be found in our spin blockade mechanism.

The main energy supplied in the nonequilibrium condition
is the work carried out to transfer electrons from the source
electrode to the drain electrode until the dead-end path is
accessed. By considering the Markov process, we can simply
and roughly obtain the work carried out to access the spin-
blockaded states in (i) a two-electron DQD (P-SB), (ii) a
three-electron DQD (Q-SB), and (iii) a multiple N -electron
coupled QD.

(i) Two-electron DQD: In the electron-injection process,
one state is selected from three triplet states and one single
state. The probability that the triplet is accessed is �3/4. The
work carried out to realize the P-SB in the first injection process
and its probability are 0 and �3/4, respectively. Those in the
second injection process are w and �1/4 × 3/4, respectively.
Here, we assume that the work carried out to transfer a single
electron from the source electrode to the drain electrode is
roughly constant as �w. Those in the third injection process
are w + w and �1/4 × 1/4 × 3/4, respectively. Thus, we can
estimate the amount of work as

W ∼ 3

4

∞∑
i=1

(
1

4

)i

× i × w = 3w

4

∞∑
i=1

i

4i

= 3w

4

1/4

(1 − 1/4)2
= w

3
.

(ii) Three-electron DQD: In the electron-injection process,
one state is selected from four quadruplet and four doublet
states. The probability that the quadruplet is accessed is �1/2.
Thus, we can estimate the amount of work as

W ∼ 1

2

∞∑
i=1

(
1

2

)i

× i × w=w

2

∞∑
i=1

i

2i
= w

2

1/2

(1 − 1/2)2
= w.

(iii) N -electron coupled QD: In the electron-injection process,
the total number of states and the number of highest spin states
are 2N and N + 1, respectively. Thus, the probability p that
the highest spin state is accessed is p � (N + 1)/2N (we use
q = 1 − p in the following notation). Thus, we can estimate
the amount of work as

W = p

∞∑
i=1

qi × i × w = pw

∞∑
i=1

iqi = pw
q

(1 − q)2

= qw

1 − q
= (1 − p)w

p
.

For a sufficiently large N , p � 1. Therefore, the expected
amount of work is

W = (1 − p)w

p
∼ w

p
=

(
2N

N

)
w.

If the number of electrons increases, the amount of work
carried out until the spin-blockaded highest spin state is
accessed is expected to exponentially increase.
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