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Lattice thermal conductivity of Bi, Sb, and Bi-Sb alloy from first principles
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Using first principles, we calculate the lattice thermal conductivity of Bi, Sb, and Bi-Sb alloys, which are
of great importance for thermoelectric and thermomagnetic cooling applications. Our calculation reveals that
the ninth-neighbor harmonic and anharmonic force constants are significant; accordingly, they largely affect
the lattice thermal conductivity. Several features of the thermal transport in these materials are studied: (1) the
relative contributions from phonons and electrons to the total thermal conductivity as a function of temperature are
estimated by comparing the calculated lattice thermal conductivity to the measured total thermal conductivity,
(2) the anisotropy of the lattice thermal conductivity is calculated and compared to that of the electronic
contribution in Bi, and (3) the phonon mean free path distributions, which are useful for developing nanostructures
to reduce the lattice thermal conductivity, are calculated. The phonon mean free paths are found to range from 10 to
100 nm for Bi at 100 K.
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I. INTRODUCTION

Bi and Bi-Sb alloys have long been studied for their
promising low-temperature thermoelectric applications. Bi
and Sb have a rhombohedral crystal structure, which is a Peierl
distortion of the simple cubic crystal. The small structural
distortion results in Brillouin zone folding and a small overlap
between conduction and valence bands, thereby causing
semimetallic behavior and conduction by both electrons and
holes. Since the semimetallic behavior causes cancellation of
the hole and electron contributions to the power factor, bulk
Bi is not a good thermoelectric material. However, Bi has a
large thermomagnetic effect and a large thermomagnetic figure
of merit (ZT) [1]. The thermomagnetic effect is particularly
pronounced below 10 K due to the extremely long mean free
path of the electrons in Bi [2]. In addition, Bi nanowires
become semiconducting as their diameters approach several
nanometers, thereby exhibiting a large thermoelectric power
factor [3,4]. As a conventional bulk thermoelectric material,
Bi1−xSbx has drawn more attention than Bi, since alloying with
a small amount of Sb causes Bi1−xSbx to become a narrow gap
semiconductor, which is advantageous for high thermoelectric
efficiency. Currently, Bi1−xSbx (x � 0.12) is the best n-type
thermoelectric material below 200 K [5].

Before discussing the lattice thermal transport, we empha-
size that electrons, in addition to phonons, carry a considerable
amount of heat in Bi, Sb, and Bi-Sb alloys. Therefore,
both phonons and electrons contribute to the total thermal
conductivity, which can be expressed as

κtot = κph + κe (1)

where κtot and κph are the total thermal conductivity and the
lattice thermal conductivity, respectively. The term κe includes
the thermal conductivity of electrons and holes, as well as
the bipolar contribution. The κe of Bi, Sb, and Bi-Sb alloys
is expected to contribute substantially to κtot, since these

materials are either semimetals or semiconductors with a very
narrow band gap.

Accurate methods to obtain separate κph and κe are crucial
to developing better thermoelectric materials, but separating
κph and κe is experimentally nontrivial. κph can be directly
measured under a high magnetic field, because such fields
largely suppress electron transport. Previous measurements
[6,7] in practical temperature ranges (100–300 K) utilized this
method, but the prior measurements are mainly limited to
transport along the binary crystallographic direction. We could
not find any reports on κph along the trigonal direction, which
is expected to have a greater ZT than for the binary direction
and thus is of more interest. Another way to separate κph and
κe is to estimate κe using either the Wiedemann-Franz law
or other electron transport properties, such as the electrical
conductivity and Seebeck coefficient [8]. Such an approach
provides a reasonable qualitative analysis, but validity of
the Wiedemann-Franz law and the simple electron transport
models used in the estimation of κe is sometimes questionable
for quantitative purposes [9].

In this paper, we study the lattice dynamics and quantify
κph for Bi, Sb, and Bi-Sb alloys from first principles and the
Boltzmann transport equation. As shown in recent papers
[10–16], this approach provides excellent agreement with
experimental data for many pair-bonded materials, such as Si,
GaAs, and Si-Ge alloys. We follow the same approach but pay
special attention to the range of interatomic interactions. This
is because Bi, unlike pair-bonded materials, has significant
interaction strength out to large number neighbors, such as the
ninth-nearest neighbor [17,18].

II. SECOND- AND THIRD-ORDER FORCE CONSTANTS

In this paper, we calculated the second- and third-order
force constants using density functional theory. The calcula-
tion of the second-order force constants of Bi and Sb is based
on the real space approach [19]. We calculated the force exerted
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FIG. 1. Crystal structure of Bi and Sb. The void and filled atoms
represent two basis atoms. R1, R2, and R3 are primitive lattice vectors,
and α is a rhombohedral angle. The values of α are 57°30′ for Bi and
57°84′ for Sb, which are close to 60° for the simple cubic structure.

on each atom when we displace one or multiple atoms in a
4 × 4 × 4 supercell (128 atoms). For the supercell calculation,
we used 30 Ry for the cutoff energy of the plane wave basis
and a 4 × 4 × 4 k-point mesh for Brillouin zone sampling,
both of which were carefully checked for convergence. The
calculation was performed with the ABINIT package [20]
and Hartwigsen-Goedecker-Hutter pseudopotentials [21]. The
valence electrons in the pseudopotential are 6s26p3 and 5s25p3

for Bi and Sb, respectively. The spin-orbit interaction is
included in all calculations because of the strong spin-orbit
interaction in Bi and Sb [22]. The second-order force constants
are then fitted to the calculated displacement-force data set
while enforcing translational and rotational invariance. In
the fitting process, we considered up to the 14th neighbors
to include the previously reported long-ranged interaction
occurring at the ninth neighbor [17,18]. The ninth neighbors
are shown by the atom labeled C in Fig. 1, where the
origin atom is described by atom A. Bi and Sb both have a
slightly distorted simple cubic crystal structure. Due to this
small crystallographic distortion, the six first neighbors in the
cubic structure become three first neighbors and three second
neighbors. In Fig. 1, atom B is the first neighbor to atom A
and the second neighbor to atom C. The almost collinear chain
consisting of AB and BC forms the ninth-neighbor relation,
and atom C is the ninth neighbor to atom A. In the following
discussions, the fourth and ninth neighbors are frequently men-
tioned to discuss the range of the force constants. The fourth
and ninth neighbors in the rhombohedral crystal structure of
Bi correspond to the second neighbor (separated by

√
2a)

and the fourth neighbor (separated by 2a), respectively, in the
undistorted cubic structure, where a is the lattice constant of
the simple cubic structure.

The third-order force constants were calculated by taking
finite differences of the second-order force constants [23]. We
built a 3 × 3 × 3 supercell consisting of 54 atoms, and we
displaced one of the two basis atoms along the +R1 direction in
Fig. 1 by 0.04 Å. The displacement value of 0.04 Å was chosen
after carefully checking the convergence of third-order force
constants with respect to the displacement values. The size of
the supercell was large enough to include the significant ninth-
neighbor interaction. In addition, the large size of the supercell
minimizes the effect from the periodic images of the displaced
atom due to periodic boundary conditions. For the cal-
culation, a cutoff energy of 30 Ry and a 3 × 3 × 3 k-point
mesh are used. We then calculate the second-order force
constants using density functional perturbation theory [24,25].
All of the procedures are repeated for another supercell with
the displacement along the −R1 direction. By taking the
finite differences of the second-order force constants of the
two different supercells, the third-order force constants with
respect to the R1 direction are calculated. Rotational invariance
with respect to the trigonal direction is then applied to calculate
the third-order force constants with respect to the R2 and R3

directions. Translational invariance is applied to the third-order
force constants by modifying the self-interaction terms.

We calculated phonon dispersions and mode Grüneisen
parameters to validate the calculated second- and third-order
force constants. In Fig. 2(a), we plot the trace of the
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FIG. 2. (Color online) Force constants (FCs) of Bi and Sb versus
interatomic distance: (a) Trace values of second-order FC tensors and
(b) two-body third-order FCs.
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FIG. 3. (Color online) Phonon dispersion of (a) Bi and (b) Sb.
Dots are experimental values from [37] for Bi and [38] for Sb. (c)
The high symmetry points in the Brillouin zone.

second-order force constant tensors versus distance. Both Bi
and Sb have the interactions of significant magnitude occurring
at the ninth neighbors, which agree well with the previous
reports [17,18]. In Fig. 3, the calculated phonon dispersions
for Bi and Sb are compared with the experimental values. Both
calculated phonon dispersions are similar to the experimental
data, confirming the accuracy of the calculated second-order
force constants.

Since the ninth neighbors in Bi and Sb have significant
second-order force constants, the third-order force constants
at the ninth neighbors should also be of interest. In Fig. 2(b),
we plot the two-body third-order force constants as a function
of distance. Each dot represents a third-order force constant.
As seen in Fig. 2(b), the third-order force constants have
substantial values at the ninth neighbors. The importance of
the ninth-neighbor interaction on crystal anharmonicity can
be checked with the mode Grüneisen parameters. The mode

Grüneisen parameters are calculated with the two different
sets of third-order force constants: one includes up to the
fourth neighbors and the other includes up to the 10th
neighbors. To validate the third-order force constants, the
reference mode Grüneisen parameters are also calculated.
For the reference mode Grüneisen parameters, we used
density functional perturbation theory to calculate the phonon
frequencies for two different crystal volumes: a crystal at
equilibrium and one with the volume increased by 1%. We
then take the finite differences of the two different phonon
frequencies and calculate the mode Grüneisen parameters
from the definition γ = −dlnω/dlnV , where ω and V are a
phonon frequency and a crystal volume, respectively. Shown in
Fig. 4 are the calculated acoustic mode Grüneisen parameters.
Figure 4 shows that the acoustic mode Grüneisen parameters
are underestimated over a range of wave vectors when the
third-order force constants are considered only up to the fourth
neighbors. Even after considering up to the eighth neighbors,
the mode Grüneisen parameters are relatively unchanged. This
is consistent with the negligible third-order force constants
at the fifth, sixth, seventh, and eighth neighbors, as shown
in Fig. 2(b). However, when extending the range up to
the 10th neighbors, the calculated acoustic mode Grüneisen
parameters agree reasonably well with the reference Grüneisen
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FIG. 4. (Color online) Acoustic mode Grüneisen parameters of
(a) Bi and (b) Sb comparing inclusion up to the fourth and 10th
neighbors to the references. The reference Grüneisen parameters are
calculated using the difference of phonon frequencies of the two
different crystal volumes.
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parameters. This confirms that the ninth-neighbor interaction
is playing a significant role in the anharmonic properties. The
optical mode Grüneisen parameter was also determined from
third-order force constants that included up to the fourth- and
10th-neighbor interaction terms. Both cases yielded similar
values for the optical Grüneisen parameter.

The significant interaction at the ninth-nearest neighbors
can be explained by the resonant bonding in Bi and Sb [26]. Bi
and Sb have very weak sp hybridization, and the s band is well
below the p band [27]. Therefore, s electrons do not participate
in the chemical bonding, and we can consider only p electrons
forming the chemical bonds. For the three p electrons per atom
in Bi or Sb to meet the six coordination number requirement
in the cubiclike crystal structure, the electrons alternate their
positions among six chemical bonds, leading the chemical
bonding called resonant bonding [28]. This resonant bonding
picture implies two important features: (1) electrons are highly
delocalized and are therefore easily polarized upon external
perturbations, and (2) the chemical bonds in Bi and Sb are
almost collinear due to the cubiclike crystal structure. The
almost collinear bonding can be found in Fig. 1, as explained
earlier. These two features result in the significant interaction
at the ninth-nearest neighbors. The electron polarization by
the displacement of the origin atom is long ranged along
the collinear bonding direction due to the large electronic
polarizability and almost collinear bonding. This long-ranged
electron polarization reaches the ninth-nearest neighbors,
giving rise to the significant interatomic interaction between
the origin and the ninth-nearest neighbor atoms.

To study the effects of alloying on κph, the virtual crystal
approximation is used [29]. The atomic mass and the force
constants of the virtual crystal were linearly interpolated
between Bi and Sb, weighted by the composition ratio of the
constituents. The lattice constant of the virtual crystal is also
averaged according to the composition ratio, which is well
justified by the fact that the Bi-Sb alloy follows Vegard’s
law [30]. Three-phonon scattering is calculated using the
virtual crystal approximation, while the atomic mass disorder
is treated as an additional elastic scattering mechanism. This
approach is successful in predicting the Si-Ge alloy thermal
conductivity [16].

III. SCATTERING RATE AND LATTICE
THERMAL CONDUCTIVITY

The lattice thermal conductivity can be calculated from
the distribution function of the phonon modes. We calculate
the distribution function by solving the linearized Boltzmann
equation with the scattering rates due to the three-phonon
process and mass disorder. The scattering rate of the three-
phonon process is given by

W 3
1,2 = 2π |V3(−1,−2,3)|2n0

1n
0
2

(
n0

3 + 1
)
δ(−ω1 − ω2 + ω3)

for coalescence processes (2)

W
2,3
1 = 2π |V3(−1,2,3)|2n0

1

(
n0

2 +1
)(

n0
3 + 1

)
δ(−ω1+ω2+ω3)

for decay processes (3)

where 1, 2, and 3 denote phonon modes in the three-phonon
process, while n0 and ω indicate the Bose-Einstein equilibrium
distribution function and the phonon frequency, respectively.
The three-phonon scattering matrix element V3 is given by

V3(1,2,3) =
(

�

8Nω1ω2ω3

)1/2

×
∑

b1b2b3

∑
αβγ

∑
R2R3

	αβγ (0b1,R2b2,R3b3)

× eiq2·R2eiq3·R3
eαb1 eβb2 eγ b3√
mb1mb2mb3

(4)

where 	αβγ (0b1,R2b2,R3b3) is a third-order force constant
with Cartesian coordinates αβγ and Rb representing the
lattice vector and basis atom. Here, eαb denotes the phonon
eigenvector component of the basis atom b along direction
α, while N is the total number of wave vectors in the first
Brillouin zone. The mass disorder scattering rate is

W 2
1 = π

2
gω1ω2n

0
1

(
n0

2 + 1
) ∑

b

|e∗
b · eb|2δ(ω1 − ω2) (5)

with the mass variance factor g defined by g =∑
i fi(1 − Mi/Mavg)2, where fi is the fraction of element i.
Putting both scattering rates above into the Boltzmann

equation, we obtain

− v1 · ∇T

(
∂n0

1

∂T

)
=

∑
2,3

[
W 3

1,2(�1 + �2 − �3)

+ 1

2
W

2,3
1 (�1 − �2 − �3)

]

+
∑

2

W 2
1 (�1 − �2) (6)

where � is a linearized deviation of the distribution function
from equilibrium, defined as � = (n0 − n)/(∂n0/∂β) with
β = �ω/kBT . We solve the linearized Boltzmann equation
above iteratively to find �/∇T . The detailed procedure is
provided in other papers [12]. In contrast to the iterative
method mentioned above, a more commonly used method
to solve the Boltzmann equation is to neglect �2 and �3 in
Eq. (6), and this approximation is known as the single-mode
relaxation time (SMRT) approximation. The SMRT assumes
only one phonon mode is ever out of equilibrium. The
time for the nonequilibrium mode to relax to equilibrium
is then calculated. We used both the full iterative method
and the SMRT approximation to calculate the lattice thermal
conductivity from the Boltzmann equation, and we compare
the results from the two methods. After solving the Boltzmann
equation, the lattice thermal conductivity can be obtained by

καβ = − 1

V

∑
BZ

�ωvαn0(n0 + 1)
�β

∇βT
(7)

where α and β are Cartesian directions, V is the crystal volume,
and v is the phonon group velocity.

One of the numerical uncertainties in this calculation occurs
in the energy conservation of the scattering rate calculation.
Due to the computational limitations, the Brillouin zone is
sampled with a relatively coarse mesh. To find sets of three
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phonons satisfying the energy and momentum conservation,
each point in the coarse mesh is usually broadened by a
Gaussian function. However, in this case, numerical uncertain-
ties arise from the tuning of two adjustable parameters (mesh
size and Gaussian width). To avoid this artifact, a tetrahedron
method is utilized for the Brillouin zone integrations of δ

functions [31]. With this method, the mesh size is the only
adjustable parameter; consequently, the calculation should
converge as the mesh size is increased. For our calculation,
the mesh size of 16 × 16 × 16 was suitable for convergence.

IV. RESULTS AND DISCUSSION

In Fig. 5(a), we show that the ninth-neighbor interaction
has a significant effect on the lattice thermal conductivity.
We compare the κph in the binary direction calculated with
the two different force constant sets: one set includes up
to the 10th neighbor, and the other includes up to the
fourth neighbor for the third-order force constants. In both
cases, the second-order force constants include up to the
14th neighbor; otherwise, the phonon dispersion is not stable
and the phonon frequencies of some modes have imaginary
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FIG. 5. (Color online) Thermal conductivity of Bi (a) in the
binary direction and (b) in comparison between the binary and
the trigonal directions. κph in (b) is calculated with the SMRT
approximation and using third-order force constants up to the 10th
neighbors. The solid lines and dots represent our first-principles
calculation results and the experimental data from the literature,
respectively.

values. As shown in the mode Grüneisen parameter plot
(Fig. 4), when the ninth-neighbor interaction is not included
for the third-order force constants, the crystal anharmonicity
is largely underestimated. Figure 5(a) explicitly shows that
the κph is significantly overestimated when the ninth-neighbor
interaction is not included for the third-order force constants.
However, when the third-order force constants include up to
the 10th-neighbor interactions, the calculated κph is half of the
value obtained when including only third-order force constants
up to the fourth neighbor.

The calculated results with the ninth-neighbor interaction
are validated by comparing these results to the previously
reported experimental data [6,7]. Figure 5(a) shows that our
calculation results with the ninth-neighbor interaction agree
well with the experimental data by Uher and Goldsmid [6].
Our calculation is further confirmed by comparing to another
measurement by Kagan and Red’ko [7], showing κph �
5 W/m-K around 250 K. In contrast, another reported value for
κph by Gallo et al. [8], which is calculated from the difference
between measured κtot and calculated κe, as briefly discussed
later, shows disagreement with our calculation near room
temperature. Our calculated κph is twice the reported value
[8] at room temperature. This disagreement could stem from
the simple electron transport model used in the referenced
paper [8]. Instead of directly measuring the lattice thermal
conductivity, Gallo et al. obtained the electronic thermal con-
ductivity from an electron transport model using a parabolic
band structure and an electron scattering rate that obeys a
simple power law. The measured Seebeck coefficient and
electrical resistivity determine the electron contribution to the
thermal conductivity, and then the lattice thermal conductivity
is calculated by subtracting the deduced electronic thermal
conductivity from the measured total thermal conductivity.
To reiterate, our calculation near room temperature is well
validated by Kagan and Red’ko’s direct measurement [7].

We also see in Fig. 5(a) that the results from the SMRT
approximation are similar to the calculations from the full
iterative solution of the Boltzmann equation. This is because
the temperatures in our calculations are large compared to
the Debye temperature of Bi (120 K). When the temperature is
not significantly smaller than the Debye temperature, umklapp
scattering is dominant over normal scattering. In this case, the
SMRT is usually a good approximation.

In Fig. 5(b), we compare the binary (⊥) and the trigonal (‖)
directions of Bi in terms of κph. The previous paper based on
obtaining the electronic thermal conductivity [8], mentioned
above, estimates that κph,‖ is half of the value of κph,⊥ in Bi
at room temperature. Our calculation shows values for κph,‖
is smaller than for κph,⊥, but the difference is less than 10%.
The relative value of κph,‖ compared to κph,⊥ can be explained
by the fact that the rhombohedral structure of Bi is close to
the cubic structure but slightly stretched along the trigonal
direction. Therefore, the atomic bonding is slightly softer in
the trigonal direction than in the binary direction, resulting in
the lower lattice thermal conductivity in the trigonal direction.
However, the distortion from the exact cubic structure is very
small: the rhombohedral angle of Bi (α in Fig. 1) is 57°30′,
similar to 60° for the exact cubic structure [30]. This very
small distortion explains the almost isotropic κph of Bi shown
in Fig. 5(b). The almost isotropic lattice thermal conductivity
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of Bi is in contrast with its well-known highly anisotropic
electron transport properties [5]. This shows that the small
distortion of crystal structure of Bi affects the electron and
the phonon transport to a different extent. Even though the
distortion of the Bi crystal structure is very small from the exact
cubic structure, this small distortion causes highly anisotropic
shapes to occur in the very small electron and hole pockets
responsible for its electronic transport properties, giving rise
to largely anisotropic electron transport behavior. However,
the small distortion does not much affect the lattice vibrational
properties; thus, κph is observed to be almost isotropic.

We also compare the κph and κtot of Bi in Fig. 5(b) to
estimate the relative contributions from phonons and electrons
to κtot. In the binary direction, κph,⊥ is �60% of κtot,⊥ at 100 K,
and its contribution decreases with temperature. In the trigonal
direction, the phonon contribution from κph,‖ to κtot,‖ is more
significant than in the binary direction, with a contribution of
�75% at 100 K. Based on this large contribution from phonons
with κph,‖ to κtot,‖, we conclude here that it can be possible
to reduce the thermal conductivity effectively by enhancing
phonon scattering, as recently demonstrated in Bi1.4Sb0.6Te3

and PbTe [32,33]. In particular, the large lattice contribution
in the trigonal direction would be interesting, because the
electron transport in this direction of Bi has a favorable feature
for a high thermoelectric power factor. The electrons in the
trigonal direction of Bi have an extremely large value for
the product of mobility and the density-of-states effective
mass, μ(m∗/m)3/2, due to the high anisotropy in its electronic
structure, which is directly related to the thermoelectric power
factor [5].

Many features of κph in Sb, presented in Fig. 6, show
strong similarities to the thermal conductivity of Bi. The ninth-
neighbor interaction in Sb is also significant, and the κph is
significantly overestimated without including this contribution
in the calculation. The SMRT is a good approximation for
Sb since its Debye temperature is also small (�200 K). The
distortion from the exact cubic structure is also small for Sb,
as it is in Bi, resulting in an almost isotropic κph. The most
noticeable difference between Bi and Sb is the contribution of
κph to κtot, comparing Figs. 5(b) and 6(b). The κph contribution
is comparable to the κe in Bi, but the κph contributes only a
small portion of κtot in Sb. In other words, κe is significant in
Sb, because the carrier density in Sb is two orders of magnitude
larger than that of Bi [34].

The κph of Bi, Sb, and Bi-Sb alloys is presented in Fig. 7.
Our calculation for Bi88Sb12 agrees well with the experimental
data for the κph by Kagan and Red’ko [7], showing �3 W/m-K
around 100 K and �2 W/m-K around 250 K for Bi87Sb13.
Figure 7(a) shows that the κph of Bi can be significantly reduced
by alloying with small concentrations of Sb. The composition
Bi88Sb12, which has the highest ZT among the Bi-Sb alloys,
has four times smaller κph than Bi at 100 K. In order to study
the anisotropy of phonon transport, we compare the κph in the
binary and trigonal directions. The Bi-Sb alloy, like its Bi and
Sb constituents, has a smaller κph in the trigonal direction, but
the difference between the trigonal and the binary directions
is very small, indicating a predominantly isotopic κph.

The comparison of κtot and κph in Figs. 7(b) and 7(c)
indicates whether electrons or phonons are the predominant
heat carrier in Bi, Sb, and Bi88Sb12. Unlike Bi and Sb, the κtot
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FIG. 6. (Color online) Thermal conductivity of Sb (a) in the
binary direction and (b) in comparison between the binary and the
trigonal directions. The solid lines and dots in (b) represent our
first-principles calculation results and the experimental data from
the literature, respectively.

of Bi88Sb12 comes predominantly from lattice contributions at
low temperature. Around 75 K, the calculated κph of Bi88Sb12

is comparable to the measured κtot for either the trigonal or
the binary direction. The κe, in this case, is expected to be
small due to the positive electronic band gap (�30 meV) of
Bi88Sb12 [34]. The number of charge carrier in Bi88Sb12 is
much less than that in Bi and Sb, resulting in the smaller κe.
However, from comparing the measured κtot and the calculated
κph, the κe increases with temperature. This can be explained
by the increasing charge carrier density and increasing bipolar
thermal transport as temperature increases. From Fig. 7(c), the
κe becomes comparable to the κph near room temperature.
Another noticeable feature in κph of Bi88Sb12 is that its
insensitivity to temperature variation. This is because mass
disorder scattering, a temperature-independent process, is the
dominant phonon scattering mechanism in this alloy.

Finally, we show in Fig. 8 the accumulated thermal
conductivity versus phonon mean free path. This accumulated
thermal conductivity is defined as [35,36]

κacc(�) =
∑
qλ

κqλχ (�) (8)

where κqλ represents the thermal conductivity of the phonon
mode with wave vector q and polarization λ. Here, � is
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FIG. 7. (Color online) Thermal conductivity of the Bi-Sb alloys:
(a) the effect of Sb content on the lattice thermal conductivity of
Bi-Sb alloys; (b) comparison between the total and the lattice thermal
conductivities of Bi, Sb, and Bi88Sb12; and (c) an enlarged plot for
the Bi88Sb12 data along the binary and trigonal directions.

phonon mean free path, and χ (�) is a step function: χ (�) = 1
when �qλ < �, and χ (�) = 0 otherwise. The accumulated
thermal conductivity shows the range of mean free paths of the
phonon modes that significantly contribute to thermal transport
[35,36]. From Fig. 8(a), we see that most of the heat is carried
by phonons with mean free paths ranging from 10 to 100 nm
at 100 K. However, the phonon mean free path range of the
Bi88Sb12 alloy is slightly different from that of Bi in the 50-
to 100-nm region in Fig. 8(b): the mean free path range of
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FIG. 8. (Color online) Phonon mean free path distribution of (a)
Bi, Bi99Sb1, Bi88Sb12, and Sb at 100 K; (b) Bi and Bi88Sb12 at 100 K;
and (c) Bi at 50, 100, 200, and 300 K for the binary and trigonal
directions. In (b) and (c), the accumulated thermal conductivity is
normalized by the lattice thermal conductivity value.

the alloy is extended to longer mean free paths compared
to Bi. This is because the alloy scattering is effective for
high-frequency phonons but not as effective for low-frequency
phonons. If the alloy scattering is approximated by a point
defect scattering mechanism, the Rayleigh scattering model
shows that the scattering rate is proportional to the fourth
power of phonon frequency.

Figure 8(a) shows that the nanostructures in the 10- to
100-nm range scale can significantly contribute to phonon
scattering, ultimately resulting in a greatly reduced thermal
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conductivity in both the Bi and Bi-Sb alloys. In addition to
the reduction in κph, it is known that Bi nanowires become
semiconducting and exhibit a high power factor when the
diameter is on the order of 10 nm [3,4]. If harmonic and
anharmonic force constants of Bi nanowires are not drastically
different from those of bulk phase Bi, the phonon mean free
path distribution from bulk Bi calculations can guide the
design of Bi nanowires for high ZT. To provide a strategy for
reducing κph through nanostructuring, we present the phonon
mean free path distributions of Bi at various temperatures
in Fig. 8(c). From Fig. 8(c), we see that nanostructures
having characteristic sizes of �10 nm would be effective
for suppressing κph in the temperature range of 100 to
300 K, because they are expected to reduce the lattice thermal
conductivity by a factor of 10 at 100 K to a factor of 3 at 300 K
if boundary scatterings are assumed to be completely diffuse.

V. CONCLUSIONS

We calculate the lattice thermal conductivities of Bi, Sb,
and Bi-Sb alloys from first principles. We explicitly show
that the significant ninth-neighbor interaction is important for
anharmonic interatomic force constants, phonon scattering,
and lattice thermal conductivity. Our calculation agrees well
with the experimental lattice thermal conductivity values for
the binary direction. We also provide the lattice thermal
conductivity values for the trigonal direction, which has not
been directly measured. From our calculation, the lattice
thermal conductivities are almost isotropic in Bi, showing
a significant contrast with its highly anisotropic electron
transport. This implies that the small distortion in the crystal

structure can affect the electron and the phonon transport
to a much different extent. By comparing our calculated
lattice thermal conductivity to the measured total thermal
conductivity, we compare the relative thermal conductivity
contributions from phonons and electrons. The lattice thermal
conductivity is comparable in magnitude to the electronic
thermal conductivity in Bi. In Sb, however, the electronic
contribution to the thermal conductivity is much more dom-
inant because of the larger charge carrier concentration. In
Bi88Sb12, the lattice thermal conductivity is the dominant
contributor below 75 K but it becomes less significant as
the temperature increases. Finally, we calculate the phonon
mean free path distributions at various temperatures, provid-
ing a useful guide in determining appropriate nanostructure
sizes for achieving significant lattice thermal conductivity
reduction.
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