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We combine the effect of the electron-electron and electron-phonon interactions to study the electronic and
optical properties of zb-GaN. We show that only by treating the two effects at the same time is it possible to obtain
an unprecedented agreement of the zero- and finite-temperature electronic gaps and absorption spectra with the
experimental results. Compared to the state-of-the-art results our calculations predict a large effect on the main
absorption peak position and width as well as on the overall absorption line shape. These important modifications
are traced back to the combined electron-phonon damping mechanism and nonuniform GW level corrections.
Our results demonstrate the importance of treating on equal footing the electron and phonon mediated correlation
effects to obtain an accurate description of the physical properties of group III nitrides.
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I. INTRODUCTION

The group III-nitride semiconductors, i.e., GaN, AlN, InN,
and their alloys are materials with many applications in the
field of optoelectronics. These include, among others, light
emitting diodes (LEDs), laser diodes (LDs), and heterojuction
field-effect transistors (HFETs) [1–5]. This class of com-
pounds is widely used, being characterized by the most stable
wurtzite structure. They have built-in electric fields arising
from the spontaneous and piezoelectric polarization along
the c axis. These fields are, however, undesirable in the
application of the heterostructures as quantum wells (QWs) or
superlattices since they complicate the design and worsen the
sample malleability. One of the approaches to eliminate these
internal fields is the use of metastable nonpolar zinc-blende
(zb) structures. It has also been reported that zb group III ni-
trides have a quantum confined Stark effect in low-dimensional
heterostructures [6], high p-type conductivity in (Ga,Mn)N
thin films [7], and negative differential resistance (NDR) at
the resonant tunneling diode of the cubic Al(Ga)N/GaN [8,9].
Consequently a lot of interest is constantly attracted by this
family of materials.

In the last few years zb-GaN with high phase-purity and
crystalline quality has been fabricated as a nearly strain-free
epitaxial layer on 3C-SiC(001)/Si pseudosubstrates by plasma-
assisted molecular beam epitaxy [6,9–11]. This experimental
achievement boosted the interest on fundamental optical
properties such as photoluminescence, photoreflectance, and
ellipsometry with particular attention on their temperature
dependence.

In contrast to such abundance of experimental results
the agreement with the state-of-the-art calculations of the
optical properties of zb-GaN is still not satisfactory. In these
approaches the absorption spectrum is calculated [12] by in-
cluding electron-hole interaction by solving the Bethe-Salpeter
equation (BSE) derived within the many-body perturbation
theory (MBPT) [13]. Nevertheless, the main peak position is
strongly underestimated when compared to the experimental

result. Also the complex temperature dependence observed
experimentally is not captured at all. Similarly, the band
structure of zb-GaN has been deeply investigated by using the
most up-to-date theoretical approaches. In this case electron-
electron correlation only has been included, by means of
the well-known GW approximation [14]. The corresponding
quasiparticle (QP) gap, calculated by using the one-shot GW

approximation on top of Kohn-Sham (KS) Heyd-Scuseria-
Ernzerhof (HSE) [15] hybrid orbital (HSE + G0W0) [16],
is 3.427 eV, which overestimates the experimental value of
3.295 eV [6].

The common denominator to these calculations of the
electronic and optical properties is that electron-phonon (EP)
interaction is not considered. As a natural consequence no
temperature dependence is captured. More importantly, also
the well-known zero-point motion effect is neglected. This
assumption is, on the basis of very recent results [17–21], not
well motivated. Indeed the majority of the ab initio simulations
of the electronic and optical properties of a wide class of
materials are generally performed by keeping the atoms frozen
in their crystallographic positions. Nevertheless, many years
ago, Heine, Allen, and Cardona (HAC) [22,23] pointed out
the fact that the electronic states can be strongly affected
by the lattice vibrations even when T → 0 K through the
quantum zero-point motion effect. In the HAC approach the
EP interaction is treated in a static manner and the atomic
displacements are considered as static perturbations. The HAC
approach successfully explained the temperature dependence
of the gap shift and peak broadening in semiconductors like Si
or Ge [24]. BSE calculations on top of QP states including EP
correction have also been performed, showing a remarkable
EP effect on the excitonic states and explaining the finite
temperature evolution of the optical absorption measured
experimentally [25].

Despite these successful results based on the HAC ap-
proach, the key importance of considering dynamical correc-
tions to the static HAC picture has been recently discovered.
For instance, diamond has been shown to have large dynam-
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ical EP effects, which explains the subgap states observed
experimentally in the absorption spectrum [18]. Similarly, car-
bon polymer systems like trans-polyacetylene and polyethy-
lene, show a severe breakdown of the QP picture induced by
the EP interaction [18,19].

In this work we calculate the electronic and optical
properties of zb-GaN by including the EP and electron-
electron interactions. Our results show a remarkable impact
of EP interaction even at zero temperature which corrects the
overestimation of the QP gap obtained within the HSE +G0W0

method. At the same time we prove that only by treating on the
same level electron-electron and EP interactions is it possible
to obtain an unprecedented agreement with experiment results,
both at zero temperature and at finite temperature.

The paper is organized as follows. In Sec. II the EP
interaction is briefly discussed in a MBPT framework. In
Sec. III the electronic gap and transition energies at high-
symmetry points of the Brilloun zone of zb-GaN are studied.
In Sec. IV we analyze the zero- and finite-temperature optical
absorption by including both electron-hole attraction and EP
effects by using the BSE.

II. A MANY-BODY PERTURBATION THEORY APPROACH
TO THE ELECTRON-PHONON PROBLEM

The total Hamiltonian of the coupled electron-nuclei system
Ĥ can be divided into three parts,

Ĥ = Ĥ0 + Ĥ1 + Ĥ2, (1)

where Ĥ0 is the electronic Hamiltonian corresponding to the
case where the atoms are frozen at their equilibrium positions
R0,

Ĥ0 =
∑

i

[
−1

2

∂2

∂ r̂i
2

+ V̂ion[{R}]|R=R0 (ri)

]
+ Ŵe−e. (2)

Ĥ1 and Ĥ2 represent, respectively, the first and second term in
the Taylor expansion of Ĥ0 when the atomic positions {R} are
expanded around the equilibrium positions {R0}. At this stage
electron-electron correlations (described by Ŵe−e) are treated
at a mean-field level by using the standard density-functional
theory (DFT). In DFT Ĥ0 ≈ ∑

i [̂h(ri)] with

ĥ(r) = −1

2

∂2

∂ r̂ 2
+ V̂scf[{R}]|R=R0 (r), (3)

and the derivatives of the electronic effective potential V̂scf =
V̂ion + V̂H + V̂xc with respect to the atomic coordinates R can
be calculated, self-consistently, by using density-functional
perturbation theory (DFPT).

Within MBPT [18,19] the exact single-particle excitation
energies of the total Hamiltonian Ĥ are obtained as poles of
the Green’s function [26] Gnk(ω) that is the solution of the
Dyson equation:

Gnk(ω) = G
(0)
nk(ω)[1 + �nk(ω)Gnk(ω)]. (4)

MBPT allows one to calculate self-energy � in terms of Ĥ1

and Ĥ2. We consider now the two lowest-order nonvanishing

contributions to � written as functionals of the noninter-
acting Green’s function G0

nk(ω). The second-order term in
the perturbative expansion in powers of Ĥ1 gives the Fan
contribution [27] to the self-energy:

�Fan
nk (ω,T ) =

∑
n′qλ

∣∣gqλ

nn′k

∣∣2

Nq

[
Nqλ(T ) + 1 − fn′k−q

ω − εn′k−q − ωqλ − i0+

+ Nqλ(T ) + fn′k−q

ω − εn′k−q + ωqλ − i0+

]
, (5)

where εn′k−q is Kohn-Sham energy of the n′th band at the point
k − q in the Brillouin zone. ωqλ is phonon energy relative
to the mode λ and transferred momentum q. Nqλ(T ) is the
Bose-Einstein distribution function of the phonon mode (q,λ)
at temperature T and fn′k−q is the occupation number of the
bare electronic state at (n′,k − q). gqλ

n′nk is the electron-phonon
matrix element [19] defined as

g
qλ

nn′k =
∑
sα

(2Msωqλ)−1/2eiq·τs 〈nk|∂V̂scf(r)

∂Rsα

|n′k − q〉

× ξα(qλ|s), (6)

with Ms being the mass of the atom whose position in the
unit cell is τs . ξα(qλ|s) are the phonon polarization vectors. As
already pointed out all ingredients of Eq. (6) are calculated by
using DFPT.

Similarly to the Fan term, the Debye-Waller (DW) self-
energy arises from the first-order term in the perturbative
expansion in powers of Ĥ2,

�DW
nk (T ) = 1

Nq

∑
qλ



qλ,−qλ

nnk (2Nqλ(T ) + 1), (7)

where 

qλ,−qλ

nnk is a second-order EP matrix element [19]:



qλ,q′λ′
nn′k = 1

2

∑
s

∑
α,β

ξ ∗
α (qλ|s)ξβ(q′λ′|s)

2Ms(ωqλωq′λ′)1/2

×〈nk| ∂2V̂scf(r)

∂Rsα∂Rsβ

|n′k − q − q′〉. (8)

By solving explicitly Eq. (4) the fully interacting Green’s
function Gnk(ω,T ) can be written as

Gnk(ω,T ) = 1

ω − εnk − �Fan
nk (ω,T ) − �DW

nk (T )
. (9)

The imaginary part of the Green’s function Ank(ω,T ) ≡
π−1|Im[Gnk(ω,T )]| gives the electronic spectral func-
tion (SF). In the quasiparticle approximation (QPA) the SF
is assumed to be well described by a Lorentzian function.
Mathematically this means that the self-energy frequency de-
pendence can be expanded linearly around the bare electronic
energy. In this case, Enk(T ), the pole of Gnk(ω,T ) is given by

Enk(T ) = εnk + Znk(T )
[
�Fan

nk (εnk,T ) + �DW
nk (T )

]
,

(10)

with Znk(T ) = (1 − ∂�Fan
nk (ω,T )
∂ω

|ω=εnk )−1 representing the renor-
malization factor. The on-the-mass-shell (OMS) approxima-
tion represents the static limit of the QPA, obtained by
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assuming �Fan
nk (ω,T ) ≈ �Fan

nk (ω,T )|ω=εnk , which is equivalent
to assume Znk(T ) = 1 in the QPA. The Fan and DW self-
energies are complex and real functions, respectively; thus the
former gives both an EP-induced energy shift and broadening
while the latter contributes only with a constant energy shift.
Both self-energies depend explicitly on the temperature T via
the Nqλ(T ) factor.

III. RENORMALIZATION OF THE SINGLE-PARTICLE
ENERGY LEVELS: THE COMBINED EFFECT OF THE
ELECTRON-ELECTRON AND ELECTRON-PHONON

INTERACTIONS

zb-GaN is a polar material and, as a consequence, large
static EP effects are expected [28]. As mentioned above, a
strong EP coupling might eventually induce the breakdown of
the QPA. A clear and simple way to test the QPA validity is to
calculate the renormalization factors Znk(T ). Indeed, by using
Eqs. (9) and (10) it turns out that, within the QPA, the Green’s
function G

QP
nk (ω,T ) can be written as

G
QP
nk (ω,T ) = Znk(T )

ω − Enk(T )
, (11)

with Enk(T ) evaluated by means of Eq. (10). When Znk = 1,
the SF reduces to a Lorentzian function with a pole at ω =
Re[Enk(T )] and width nk(T ) = Im[Enk(T )]. Thus, the Znk
values measure the strength of the QP pole; i.e., the QP picture
is well motivated when the SF can be well approximated with
a single Lorentzian-like function.

In our EP calculations the optimized geometry and the
electronic state are obtained by using the PWSCF code [29].
EP calculations are performed with the YAMBO code [30]
by using the phonons frequencies and g

qλ

nn′k matrix elements
calculated with PWSCF within DFPT. An energy cutoff on
the plane-wave expansion of 80 Ry and a uniform k-point
sampling of 8 × 8 × 8 are used in the ground-state and DFPT
calculations. In order to obtain converged EP self-energies, a
large number of q points and unoccupied bands are required.
Therefore we used 400 bands to evaluate the energy shift
(related to Re[�(ω)]) and 700 randomly generated q points
for the broadening (linked to the Im[�(ω)]), respectively. As
a result of our simulations the majority of the states that
contribute to the optical absorption are well described by
Lorentzian-like SF, as shown in Fig. 1. In addition most of
the states show values of Znk very close to 1. For example, the
states corresponding to the valence band maximum and the
conduction band minimum at the  point have Znk = 0.91
and Znk = 0.98, respectively.

This indicates that, in zb-GaN, the OMS approximation
is well motivated and most of the weight can be safely
assumed to be in one single peak. There is, however, another
and more stringent motivation in favor of OMS as far as
the calculation of the optical properties is concerned. A
Znk factor smaller than 1 is known to reduce the intensity
of the absorption spectrum. At the same time, however, it
is well known that such reduction is compensated by the
dynamical electron-hole interactions [31,32]. As far as these
dynamical effects are neglected (as is commonly done in the
state-of-the-art implementation of the BSE used in this work)
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FIG. 1. (Color online) Spectral function of a valence band state.
This well represents the general trend of the majority of spectral
functions covering the energy range involved in the absorption
process, as discussed in the text. The blue line with dots is the
calculated SF. This is compared with two Lorentzian functions
corresponding to the OMS (red solid line) and to the QPA (black
dashed line). Both approximations reproduce the calculated SF quite
well and the use of the OMS is, therefore, well motivated.

the OMS assumption of Znk = 1 is well motivated also from
a purely theoretical point of view.

In order to describe the impact of the EP interaction on
the electronic states we consider the energies corresponding to
the lowest transitions at several high-symmetry points. These
energies are compared with the experimental results in Table I.
DFT is well known to underestimate the band gaps by about
	40%. In fact, our DFT calculation [performed with the local
density approximation (LDA)] yields 2.231 eV as the band gap
of zb-GaN. This is clearly less than the experimental value, that
is 3.295 eV at 10 K [6]. Our LDA + G0W0 calculations within
the plasmon-pole approximation [14] open the gap to 3.239 eV,
which well agrees with the experiment. Still, however, the
LDA + G0W0 largely underestimates the transition energies
at L and X. In our G0W0 calculation the energy cutoff in
the Fourier expansion of the response function is 13 Ry and
80 bands are included.

This underestimation can be traced back to the local
treatment of electron-electron correlation effects in the self-
consistent DFT-LDA calculation. This limitation can be

TABLE I. Lowest transition energies at high-symmetry points
in the Brillouin zone of zb-GaN. The values obtained from LDA,
LDA + G0W0, HSE + G0W0 [16], and HSE + G0W0 + OMS
calculations are compared with the experimental values [6]. All values
are in eV.

 L X

LDA 2.231 5.952 6.034
LDA + G0W0 3.239 7.117 7.105
HSE + G0W0 3.427 7.707 7.755
HSE + G0W0 + OMS 3.300 7.517 7.624
Exp (T = 10 K) 3.295 7.33a 7.62a

aExcitation peak positions including the electron-hole binding
energies.
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overcome by using the AM05 [33] functional to calculate
the optimized geometry and the HSE [15] functional for
the start point of the G0W0 calculation, as previously
reported [16].

From Table I it is evident that HSE + G0W0 opens the band
gaps further and overestimates the transition energies at all
three high-symmetry points [16]. However, the combination
of EP interaction with HSE + G0W0 greatly compensates
this overestimation leading to an excellent agreement with
the experimental results. Our calculation at the OMS level
gives a gap correction of −0.127 eV at , which reduces
the HSE + G0W0 gap to 3.300 eV, in agreement with the
experiment. Similarly, at the L and X points, the EP-induced
corrections are −0.190 and −0.132 eV, resulting in transition
energies of 7.517 and 7.624 eV, again in very good agreement
with the experiment. Such moderate EP corrections result
from the large cancellation between the Fan and the DW
contributions to the total self-energy. For instance, the gap
correction −0.127 eV at the  point is decomposed into a Fan
contribution (+2.101 eV) and a DW contribution (−2.228 eV).
This large cancellation clearly points to the importance of
including, at the same time, both contributions to the total
self-energy. Moreover, our result indicates the significance
of the EP correction in zb-GaN, pointing to similar and
potentially important corrections in the whole III-nitrides
group of materials.

IV. FINITE-TEMPERATURE OPTICAL ABSORPTION
SPECTRA INCLUDING ELECTRON-HOLE EFFECTS

The optical absorption spectrum is defined as the imaginary
part of the macroscopic dielectric function Im[εM (ω)]. This
can be easily expressed, in the long wavelength limit, as

εM (ω) = 1 − lim
q→0

v0(q)
∫

drdr′e−iq(r−r′)χ (r,r′; ω), (12)

with vG(q) = 4π/|G + q|2 being the Coulomb potential and
χ (r; r′; ω) the two-point polarizability. The equation of motion
for the polarizability [13] can be rewritten by introducing a
single-particle basis set ({φn,k}) to expand the density operator.
This is equivalent to define the electron-hole probability
functions �K(r) = φck(r)φ∗

vk(r). Here K represents the general
conduction-valence pairs, K = (c,v,k). In this basis χ is

χ (r; r′; ω) = −
(

i

�N

) ∑
K1,K2

�∗
K1

(r)LK1K2 (ω)�K2 (r′).

(13)

Equation (13) introduces the electron-hole Green’s function
LK1K2 (ω) that satisfies the BSE equation [13]:

LK1K2 (ω) = L0
K1K2

(ω) + L0
K1K3

(ω)�K3K4 (ω)LK4K2 (ω).

(14)

The Bethe-Salpeter kernel � is defined as � = −iV + iW ,
with V and W being the exchange and the screened Coulomb
interactions, respectively. L0

K1K2
(ω), in Eq. (14), is the free

electron-hole Green’s function, defined in Eq. (15).
As previously described by Marini [25] it is possible to

include the finite-temperature effect in the BSE by using as
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FIG. 2. (Color online) Theoretical and experimental absorption
spectra of zb-GaN at T = 10 K. The spectrum obtained by solving
the BSE including both HSE + G0W0 and EP corrections (thick
black line) is in excellent agreement with the experimental results [6]
(bold dashed green line). Compared to the state-of-the-art calculation
of Benedict and Shirley [12] (dashed red line), the agreement is
largely improved. A blue line shows the BSE spectrum only with the
HSE + G0W0 correction.

reference the single-particle energies and the temperature-
dependent and complex QP energies Enk(T ). In this way
the free electron-hole Green’s function L0

K1K2
(ω,T ) depends

explicitly on the temperature:

L0
K1K2

(ω,T ) = i

[
fc1k1 − fv1k1

ω − Ec1k1 (T ) + Ev1k1 (T ) + i0+

]
δK1K2 .

(15)

Equation (15) ensures that also the fully interacting electron-
hole Green’s function and the absorption spectra depend
explicitly on the temperature, thanks to Eqs. (12) and (13).

In order to solve the BSE we adopt two standard approxi-
mations. The first is the Tamm-Dancoff approximation which
corresponds to neglecting the coupling between the resonant
and the antiresonant part of the BSE kernel. The second is the
use of the statically screened electron-hole potential W .

In Fig. 2 we show the calculated absorption spectrum. In
addition to the G0W0 corrections, as described in Sec. III, we
include EP effects. To obtain a converged absorption spectra
we employed the random-integration method (RIM) [30]
by selecting around 30 000 random k points in the whole
Brillouin zone. The energy cutoffs for the exchange and
screened Coulomb interactions are set to 60 and 3 Ry,
respectively. The artificial damping parameter 0+ in Eq. (15),
which is introduced only for numerical reasons, is 10 meV.
The resulting spectrum (thick black line) is compared to the
previous calculation of Benedict and Shirley [12] (dashed red
line) which is performed in a LDA basis without including the
EP interaction. The BSE spectrum, obtained by including only
the HSE + G0W0 correction, is also shown (blue line).

We notice, indeed, that, compared to the Benedict’s cal-
culation, the calculated position and width of the main peak
are in very good agreement with the experimental spectrum
at T = 10 K [6] (bold dashed green line). This pronounced
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FIG. 3. (Color online) Absorption spectra of zb-GaN at T = 0,
300, and 600 K. Red circles are experimental results at 10 and
295 K [6].

peak, located at around 7.62 eV in the experiment, is due to
interband transitions in a region of the Brillouin zone near
the X point. These transitions extend over regions where
the valence and conduction bands are parallel with a similar
energy distance [6]. Therefore the present improvement is
largely due to the correction from HSE + G0W0 that induces
a large stretching of the bands. In the BSE spectrum only with
HSE + G0W0, the peak position is clearly shifted to higher
energies and it is much less energetically wide.

Indeed, one of the most significant effects of the EP
interaction is the broadening of the QP states that fully
dictates the smooth energy dependence of the absorption
spectrum. We use a very small artificial damping (10 meV)
in Eq. (15) that leads, when the EP interaction is neglected,
to a very spiky absorption spectrum. To avoid this unphysical
behavior an arbitrary 200 meV broadening is chosen in the
previous BSE calculations. In the present case, instead, the
effect of the EP interaction correctly describes both the main
peak and the steep absorption edge.

Finally we investigate how the optical spectrum evolves
as the temperature is increased. In Fig. 3 we show the
calculated absorption spectra at T = 0, 300, and 600 K. In
the first two cases the numerical simulation is compared
with the available experimental results [6]. The agreement
is fairly good and confirms that the present approach is
able to correctly capture the finite-temperature effects. The
energy shifts of the first excitation peaks due to electron-hole
transitions occurring at , L, and X are experimentally −63,
−100, and −110 meV, respectively, when the temperature is
increased from 10 to 295 K [6]. Our calculations give −83,
−144, and −106 meV, respectively, which show a quantitative
agreement with experiment. Also the general trend observed
experimentally that the peak shift is larger at critical points
with higher transition energy is reproduced.

On the other hand, from Fig. 3 we deduce that the
broadening of the main peak at the X point is slightly
overestimated at T = 300 K compared to the experiment.
In order to understand the source of this overestimation we
notice that, in the QP picture, the EP-induced broadening of

the valence band top and the conduction band bottom at the
X point is 121.8 and 12.1 meV, respectively, at T = 300 K.
In the independent particle approximation (where LK1K2 ≈
L0

K1K2
δK1K2 ) the electron-hole broadening is simply the sum of

the two. Now, as also in the case where electron-hole attraction
is included, the main absorption peak originates from the
lowest transitions concentrated around X. Thus we deduce
that the overestimation is due to too large broadening of the
underlying QP states.

In the experimental work by Logothetidis et al. [34] the
broadening at the main absorption peak is described by a
phenomenological model,

(T ) = 1 + 0

[
1 + 2

exp(�/T ) − 1

]
, (16)

with 1 = 27 meV, 0 = 44 meV, and � = 522 K. The
first term in 1 is ascribed to a temperature-independent
mechanism, such as surface scattering; thus we set it to 0
to be compared with our theoretical results. Equation (16),
indeed, predicts (T = 300 K) ∼ 62.7 meV that is half of the
value of our results.

A reasonable explanation of this deviation is in the
underlying unperturbed band structure. The band curvature
has a large impact on the EP-induced broadening through
the denominator of Eq. (5), especially by the dominant
intraband-scattering terms with ω = εnk, n′ = n, and small q.
Since our EP self-energies are calculated on top of Kohn-Sham
states from the LDA, the resulted band widths are too small.
As shown in previous calculations [16] the valence band
at the X point is characterized by a large curvature that is
underestimated by the LDA calculations. We expect that the
broadening would be improved by EP calculations performed
on top of the HSE +G0W0 band structure, but it is prohibitively
expensive from the computational point of view. Nevertheless
our approach, based on the LDA, gives excellent results
especially at the low temperature.

V. CONCLUSION

In this work we study the zero- and finite-temperature
electronic and optical properties of zb-GaN. The effect
of EP interaction, treated in a fully dynamical approach
based on the MBPT, shows that the simple on-the-mass-shell
approximation to the QP energies and widths is well motivated
for the low-energy states involved in the absorption spectrum.

By including, in an ab initio manner, the combined effect
of the electron-electron interaction and the EP interaction
we obtain an excellent agreement with the experimental
fundamental band gaps.

The solution of the BSE calculated on top of the
HSE + G0W0 band structure including EP effects leads
to an excellent agreement also for the optical absorption
spectrum measured on high phase-purity samples. Both the
position and the broadening of the most intense absorption
peak are correctly reproduced in the low-temperature regime.
In the room-temperature case, instead, the red-shift of the
main peak position is well described while the broadening is
slightly overestimated. Despite this overestimation the present
results still represent a major improvement with respect to the
state-of-the-art simulations.
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Our results clearly point to the crucial importance of
including at the same time electron-electron and electron-
phonon correlation effects for a comprehensive and quanti-
tative understanding of the electronic and optical properties of
group III nitrides.
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