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In this work, we develop a time-dependent extension of the Landauer-Büttiker approach to study transient
dynamics in time-dependent quantum transport through molecular junctions. A key feature of the approach is
that it provides a closed integral expression for the time dependence of the density matrix of the molecular
junction after switch-on of a bias in the leads or a perturbation in the junction, which in turn can be evaluated
without the necessity of propagating individual single-particle orbitals or Green’s functions. This allows for the
study of time-dependent transport in large molecular systems coupled to wide-band leads. As an application
of the formalism, we study the transient dynamics of zigzag and armchair graphene nanoribbons of different
symmetries. We find that the transient times can exceed several hundreds of femtoseconds while displaying
a long-time oscillatory motion related to multiple reflections of the density wave in the nanoribbons at the
ribbon-lead interface. This temporal profile has a shape that scales with the length of the ribbons and is modulated
by fast oscillations described by intraribbon and ribbon-lead transitions. Especially in the armchair nanoribbons
there exists a sequence of quasistationary states related to reflections at the edge state located at the ribbon-lead
interface. In the case of zigzag nanoribbons, there is a predominant oscillation frequency associated with virtual
transitions between the edge states and the Fermi levels of the electrode. We further study the local bond currents
in the nanoribbons and find that the parity of the edges strongly affects the path of the electrons in the nanoribbons.
We finally study the behavior of the transients for various added potential profiles in the nanoribbons.
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I. INTRODUCTION

The Landauer-Büttiker (LB) formalism [1,2] has been a
real milestone in the quantum theory of charge transport. Its
success is attributable to the simplicity of the LB equations,
which provide a transparent and physically intuitive picture
of the steady-state current, as well as to the possibility
of combining the formalism with density-functional theory
(DFT) for first-principles calculations [3–9]. Nevertheless,
due to the rising interest in the microscopic understanding
of ultrafast charge-transfer mechanisms, the last decade has
seen heightened effort in going beyond the (steady-state)
LB formalism, thus accessing the transient regime. Different
time-dependent (TD) approaches have been proposed to
deal with different systems. Approaches based on the real-
time propagation of scattering states [10–15], wave packets
[16–18], extended states with sharp boundaries [19–22] or
complex absorbing potentials [23–25], and noninteracting
Green’s functions [26–37] are suited to include the electron-
electron interaction in a DFT framework. Interactions can al-
ternatively be treated using nonequilibrium diagrammatic per-
turbation theory and solving the Kadanoff-Baym equations for
open systems [38–40]. Several nonperturbative methods have
been put forward too but, at present, they are difficult to use for
first-principles calculations. These include master-equation-
type approaches [41–47], real-time path-integral methods
[48–51], nonequilibrium renormalization group methods
[52–58], the quantum-trajectory approach [59,60], the TD den-
sity matrix renormalization group [61–65], and the nonequi-
librium dynamical mean field theory [66,67].

In its original formulation, the LB formalism treats the
electrons as noninteracting. Indubitably, the neglection of the

electron-electron and electron-phonon interactions is in many
cases a too crude approximation. However, in the ballistic
regime, interaction effects play a minor role and the LB
formalism is, still today, very useful to explain and fit several
experimental curves. For instance, the identification of the
different transport mechanisms, the temperature dependence
of the current, the exponential decay of the conductance as
a function of the length of the junction, etc., can all be
interpreted within the LB formalism [68]. The TD approaches
previously mentioned have the merit of extending the quantum
transport theory to the time domain. However, they all are
computationally more expensive and less transparent than the
LB formalism even for noninteracting electrons. Therefore,
considering the widespread use of the LB formalism in both
the theoretical and experimental communities, it is natural to
look for a TD-LB formula which could give the current at time
t at the same computational cost as at the steady state.

For a single level initially isolated and then contacted to
source and drain electrodes, a TD-LB formula was derived by
Jauho et al. in 1994 [69]. The treatment of the contacts in the
initial state introduces some complications which, however,
were overcome about 10 years later [70]. The approach
of Ref. [70] was then applied to generalize the TD-LB
formula to a single level with spin [71]. Nevertheless, only
recently we have been able to derive a TD-LB formula for
arbitrary scattering regions [72,73]. The only restriction of
this formula is that the density of states of the source and drain
electrodes is smooth and wide enough that the wide-band limit
approximation (WBLA) applies. In this case, one can derive a
TD-LB formula not only for the total current, but for the full
one-particle density matrix. The explicit analytic result allows
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for interpretation of typical transient oscillations in terms of
electronic transitions within the molecular junction or between
the junction and the leads, as well as the different damping
times. Owing to the low computational cost, one can consider
very large systems and arbitrarily long propagation times.

In this work, we briefly review the results of Refs. [72,73]
and generalize them to include arbitrary perturbations in
the molecular junction. We further present a convenient
implementation scheme to extract densities and local currents,
and demonstrate the feasibility of the method in graphene
nanoribbons (GNR) [74–77]. So far, real-time investigations
of GNRs have been limited to small size [78] and weak biases
[79]. As the TD-LB formalism is not limited to weak driving
fields we could study the transient dynamics in the unexplored
strong-bias regime. In GNRs there are plenty of interesting
nanoscale size effects depending on the topology of the edges.
Our main findings are that for large biases (i) the time to
relax to the steady state exceeds hundreds of femtoseconds;
(ii) in the transient current and density of zigzag GNRs there
is a predominant oscillation frequency associated with virtual
transitions between the edge states and the Fermi levels of the
electrodes; (iii) the currents in the armchair GNRs exhibit a
sequence of quasistationary states whose duration increases
with the length of the GNR; and (iv) the parity of the edges
strongly affects the path of the electrons inside the GNR.

The paper is organized as follows. In Sec. II, we introduce
the system and present the main results of the TD-LB
formalism. Here, we also illustrate the implementation scheme
and defer the numerical details to the Appendix. The TD results
on GNRs are collected in Sec. III where we investigate the
effects of the edge states, the quasistationary currents, the
even-odd parity effect on the current-density profile, and a
perturbed GNR. Finally, we draw our conclusions in Sec. IV.

II. THEORETICAL BACKGROUND

A. System setup and earlier work

We investigate quantum transport between metallic wide-
band leads and a noninteracting central region. The setup is
otherwise as general as possible; the number and the structure
of the leads are arbitrary as is the size and the structure of the
central region. The Hamiltonian is of the form

Ĥ =
∑
kα,σ

εkαd̂
†
kα,σ d̂kα,σ +

∑
mn,σ

Tmnd̂
†
m,σ d̂n,σ

+
∑

mkα,σ

(Tmkαd̂†
m,σ d̂kα,σ + Tkαmd̂

†
kα,σ d̂m,σ ). (1)

Here, σ is a spin index and kα denotes the kth basis function
of the αth lead while m and n label basis states in the central
region. The corresponding creation and annihilation operators
for these states are denoted by d̂† and d̂, respectively. The
single-particle levels of the leads are given by εkα while the
matrices T give the hoppings between the molecular and
molecule-lead states. This is depicted schematically in Fig. 1.

At times t < t0, the system is in thermal equilibrium at
inverse temperature β and chemical potential μ, the density
matrix having the form ρ̂ = 1

Z e−β(Ĥ−μN̂ ) whereZ is the grand-
canonical partition function of the connected lead-molecule

FIG. 1. (Color online) Schematic of the quantum transport setup:
a noninteracting central region C is coupled to an arbitrary number
of leads.

system. At t = t0, a sudden bias of the form

V̂ = θ (t − t0)
∑
kα,σ

Vαd̂
†
kα,σ d̂kα,σ

is applied to leads, where Vα is the bias strength in lead α.
This potential drives the system out of equilibrium and charge
carriers start to flow through the central region. To calculate
the time-dependent current, we use the equations of motion
for the one-particle Green’s function on the Keldysh contour
γK. This quantity is defined as the ensemble average of the
contour-ordered product of particle creation and annihilation
operators in the Heisenberg picture [72]

Grs(z,z
′) = −i〈TγK [d̂r,H(z)d̂†

s,H(z′)]〉, (2)

where the indices r , s can be either indices in the leads or in the
central region and the variables z, z′ run on the contour. This
contour has a forward and a backward branch on the real-time
axis [t0,∞[ and also a vertical branch on the imaginary axis
[t0,t0 − iβ] describing the initial preparation of the system
[39]. The matrix G with matrix elements Grs satisfies the
equations of motion [80][

i
d

dz
− h(z)

]
G(z,z′) = δ(z,z′)1, (3)

G(z,z′)

[
−i

←
d

dz′ − h(z′)

]
= δ(z,z′)1, (4)

with Kubo-Martin-Schwinger boundary conditions, i.e., the
Green’s function is antiperiodic along the contour. Here, h(z)
is the single-particle Hamiltonian. In the basis kα and m the
matrix h has the following block structure:

h =

⎛⎜⎜⎜⎜⎜⎜⎝

h11 0 0 . . . h1C

0 h22 0 . . . h2C

0 0 h33 . . . h3C

...
...

...
. . .

...

hC1 hC2 hC3 . . . hCC

⎞⎟⎟⎟⎟⎟⎟⎠, (5)
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where (hαα′ )kk′ = δαα′δkk′εkα corresponds to the leads,
(hαC)km = Tkαm is the coupling part, and (hCC)mn = Tmn

accounts for the central region. We approximate the retarded
embedding self-energy as a purely imaginary constant, accord-
ing to WBLA:

ΣR
α,mn(ω) =

∑
k

Tmkα

1

ω − εkα − Vα + iη
Tkαn

= − i

2
Γ α,mn. (6)

In other words, the level-width functions Γα appear
as the wide-band approximation for the retarded em-
bedding self-energy ΣR

α (ω) = −iΓα/2 for which Γ =
�αΓα . Due to the coupling between the central region
and the leads, the matrix G has nonvanishing entries
everywhere:

G =

⎛⎜⎜⎝
G11 . . . G1C

...
. . .

...

GC1 . . . GCC

⎞⎟⎟⎠. (7)

The equations of motion (3) and (4) for the Green’s function
GCC projected onto the central region have been solved
analytically in WBLA [73] to give the time-dependent one-
particle reduced density matrix (TD1RDM) as the equal-time

limit ρ(t) = −iG<
CC(t,t):

ρ(t) =
∫

dω

2π
f (ω − μ)

∑
α

{
Aα(ω + Vα)

+Vα[ei(ω+Vα−heff )tGR(ω)Aα(ω + Vα) + H.c.]

+V 2
α e−iheff tGR(ω)Aα(ω + Vα)GA(ω)eih

†
eff t

}
, (8)

where f is the Fermi function, GR(ω) = (ω − heff)−1 and
GA(ω) = [GR(ω)]† are the retarded and advanced Green’s
functions, heff = hCC − iΓ /2 is the effective single-particle
Hamiltonian, and the partial spectral functions are Aα(ω) =
GR(ω)ΓαGA(ω). The full spectral function is then simply
A(ω) = �αAα(ω).

We emphasize that Eq. (8) is an explicit closed formula
for the equal time G< or, equivalently, for the TD1RDM. All
the quantities inside the integral can be calculated without the
need of storing auxiliary quantities at earlier times. In other
words, if we want to know the TD1RDM at time t , we simply
need to evaluate the integral in Eq. (8). As no propagation
is required, we have access to nonequilibrium quantities at
arbitrary times after the switch-on of the bias. This is the most
important feature of Eq. (8). In fact, for large and weakly
coupled junctions, the transient regime can exceed several
hundreds of femtoseconds and, at present, these time scales
are out of reach of the available TD approaches.

Similarly to the TD1RDM, the time-dependent current
through the interface of the αth lead has an explicit closed
expression which generalizes the LB formula to the time
domain [73]

Iα(t) = −2
∫

dω

2π
f (ω − μ)

∑
β

Tr
{
ΓαGR(ω + Vβ)ΓβGA(ω + Vβ) − ΓαGR(ω + Vα)ΓβGA(ω + Vα)

+Vβ [Γ αei(ω+Vβ−heff )tGR(ω)( − iδαβGR(ω + Vβ) + Aβ(ω + Vβ)) + H.c.]

+V 2
β Γ αe−iheff tGR(ω)Aβ(ω + Vβ)GA(ω)eih

†
eff t

}
, (9)

where β runs over all the leads. As heff is non-Hermitian,
the terms in the last two rows of Eq. (9) vanish exponentially
when t → ∞ and one recovers the steady-state LB formula. It
is easy to verify that the current correctly vanishes for all t at
zero bias, Vα = 0, and for t = 0 at any bias. In the remainder
of this section, we present a convenient numerical procedure
to evaluate Eq. (8) as well as a generalization of the same
formula to include arbitrary spatially dependent perturbations
in the central region.

B. Expansion in the heff eigenbasis

We expand the result in Eq. (8) in the eigenbasis of the non-
Hermitian effective Hamiltonian heff . This object has separate
left and right eigenvectors forming a mutually biorthogonal
set {|�L

j 〉,|�R
j 〉} with

〈
�L

j

∣∣heff = εj

〈
�L

j

∣∣, heff

∣∣�R
j

〉 = εj

∣∣�R
j

〉
. (10)

By the biorthogonality we have 〈�L
j |�R

k 〉 = δjk〈�L
j |�R

j 〉,
where we can choose an appropriate normalization of the
diagonal elements.

We notice that in Eq. (8), in every term there is heff on the
left and h

†
eff on the right. This in mind, and looking at how the

matrix operates in Eq. (10), we choose to expand in the “left-
left” eigenbasis, i.e., we multiply the density matrix in Eq. (8)
from left with a row vector 〈�L| and from the right by a column
vector |�L〉. In order to calculate a matrix element 〈m|ρ(t)|n〉
in the original basis of region C, we insert a complete set of
left and right eigenvectors of heff . The resolution of identity
reads as

1 =
∑

j

∣∣�R
j

〉〈
�L

j

∣∣〈
�L

j

∣∣�R
j

〉 =
∑

j

∣∣�L
j

〉〈
�R

j

∣∣〈
�R

j

∣∣�L
j

〉 (11)

and hence

〈m|ρ(t)|n〉 =
∑
j,k

〈
m

∣∣�R
j

〉〈
�L

j

∣∣�R
j

〉 〈
�R

j

∣∣n〉〈
�R

k

∣∣�L
k

〉 〈�L
j

∣∣ρ(t)
∣∣�L

k

〉
. (12)
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The matrix elements ρjk(t) = 〈�L
j |ρ(t)|�L

k 〉 can easily be
extracted from Eq. (8) and read as

ρjk(t) =
∑

α

Γ α,jkΛα,jk

+
∑

α

VαΓ α,jk[Πα,jk(t) + Π∗
α,kj (t)]

+
∑

α

V 2
α Γ α,jke

−i(εj −ε∗
k )tΩα,jk (13)

with

Γ α,jk = 〈
�L

j

∣∣Γ α|�L
k

〉
(14)

and

Λα,jk =
∫

dω

2π

f (ω − μ)

(ω + Vα − εj )(ω + Vα − ε∗
k )

, (15)

Πα,jk(t) =
∫

dω

2π

f (ω − μ)ei(ω+Vα−εj )t

(ω − εj )(ω + Vα − εj )(ω + Vα − ε∗
k )

,

(16)

Ωα,jk

=
∫

dω

2π

f (ω − μ)

(ω − εj )(ω + Vα − εj )(ω + Vα − ε∗
k )(ω − ε∗

k )
.

(17)

The first row of Eq. (13) gives the steady-state value of
the TD1RDM. The time-dependent part is contained in the
functions Π in the second row and in the exponential in the
third row. By inspection of Eq. (13) we see that transitions
between the leads and the central region are described by
the terms Π (oscillations of frequency ωj = |Vα − Re εj |),
whereas transitions within the central region are described
by the exponential term in the third line (oscillations of
frequency ωjk = | Re εj − Re εk|) [73]. As the eigenvalues εj

are, in general, complex, we infer that electronic transitions
between states in the central region are damped faster than
those involving states at the Fermi energies μ + Vα . In the
zero-temperature limit, the integrals in Eqs. (15)–(17) are given
in terms of logarithms and exponential integral functions (of
complex variable), which can be evaluated using an extremely
accurate numerical algorithm proposed recently in the context
of computer graphics [81] (see Appendix A).

C. Switching-on of electric and magnetic fields in the central
region

The TD1RDM of Eq. (8) and the TD current of Eq. (9) refer
to systems driven out of equilibrium by an external bias. Here,
we generalize these results to include the sudden switch-on
of electric and/or magnetic fields in the central region. We
consider the system described in Sec. II A with central-region
Hamiltonian hCC in equilibrium and h̃CC for t > t0, where t0
is the time at which the bias is switched on. The switch-on of
an electric field is useful to study, e.g., the effects of a gate
voltage or to model the self-consistent voltage profile within
the central region. In this case,

(̃hCC)mn = Tmn + umn, (18)

where umn are the matrix elements of the scalar potential
between two basis states of the central region. The switch-on of
a magnetic field is instead useful to study, e.g., the Aharonov-
Bohm effect in ring geometries or the Landau levels in planar
junctions such as graphene nanoribbons. In this case,

(̃hCC)mn = Tmne
iαmn , (19)

where the sum of the Peierls phases αmn = −αnm along a
closed loop yields the magnetic flux (normalized to the flux
quantum φ0 = h/2e) across the loop.

Having two different Hamiltonians for the central region
(hCC at times t < t0 and h̃CC at times t > t0), we need to adjust
the derivation worked out in the earlier study in Ref. [73]. By
definition, the Matsubara Green’s function remains unchanged
since it only depends on the Hamiltonian at times t < t0.
On the other hand, for Green’s functions having components
on the horizontal branches of the Keldysh contour, we have to
use the Hamiltonian h̃CC . The calculations are rather lengthy
but similar to those presented in Ref. [73]; we outline the main
steps in Appendix B and state here only the final result for the
TD1RDM:

ρ(t) =
∫

dω

2π
f (ω − μ)

∑
α

{Ãα(ω + Vα)

+ [ei(ω+Vα−h̃eff )tGR(ω)ṼαÃα(ω + Vα) + H.c.]

+ e−ih̃eff tGR(ω)ṼαÃα(ω + Vα)Ṽ †
αGA(ω)eih̃

†
eff t },

(20)

where the functions with a tilde signify that they are calculated
using h̃CC , except for Ṽα = Vα1 − (̃hCC − hCC) which is to
be understood as a matrix in this case [in Eq. (8) it was
proportional to the identity matrix]. The retarded/advanced
Green’s functions in Eq. (20) do not have tilde since they
originate from the analytic continuation of GM. In the limit
h̃CC → hCC , it is easy to check that the results in Eqs. (8) and
(20) agree.

For the case of perturbed central region, we would also like
to have a similar result as in Eq. (13). Since heff and h̃eff do
not necessarily commute, the left/right eigenstates are not the
same. For instance, in the second row of Eq. (20) we need to
insert a complete set of left/right eigenstates of heff (resolution
of the identity) in-between the first exponential and GR, and
so on. This leads to extra sums and overlaps between different
bases. The resulting generalization of Eq. (13) is derived in
Appendix B.

D. Physical content of the TD1RDM

From the TD1RDM in the left-left basis we can extract the
matrix elements in the site basis according to Eq. (12). In the
site basis, the diagonal elements give the site densities (or local
occupations) of the central region. The off-diagonal elements
are instead related to the bond currents and the kinetic energy
density [14,82]. The site densities and the bond currents are
related by the continuity equation ∂tnm = �nImn, stating that
the currents flowing in and out of site m must add up to the
temporal change of density in that site. It is easy to show that
the bond currents are given by

Imn = 2 Im[Tmne
iαmnρnm]. (21)
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FIG. 2. (Color online) Transport setup of a (zigzag) graphene
nanoribbon connected to metallic leads: contacts to leads are between
doubly colored bonds; bridge (explained in text) is shown by the
green cutting line. The structure of the leads is shown for illustrative
purposes. Voltage profile is shown below the structure.

At the steady state (t → ∞) one can verify that our equations
for the TD1RDM correctly imply �nImn = 0.

III. RESULTS

We implement the framework described in the previous
section and in the Appendices to study the transient dynamics
of GNRs coupled to metallic leads in the zero-temperature
limit. We are especially interested to investigate the so-far
unexplored region of large biases, where the Dirac (low-
energy) Hamiltonian is inadequate. By looking at time-
dependent quantities, such as densities and bond currents, we
perform a sort of spectroscopical analysis by discrete Fourier
transforming the transient curves and reveal the dominant
transitions responsible for the slow relaxation to a steady state.

The transport setup is shown in Fig. 2. The leads are
semi-infinite with terminal sites coupled to a GNR. The GNR is
modeled by a single-orbital π -electron network, parametrized
by nearest-neighbor hopping tC = −2.7 eV [83]; second and
third nearest-neighbor hoppings [83] are neglected but can be
included at the same computational price. The size and the
orientation [zigzag (zGNR), armchair (aGNR)] of the GNR
can be chosen freely as well as the structure of the leads.
The strength of the level-width functions Γ α depends on
both the couplings to the leads and the internal properties
of the leads. Even though in our framework Γ α can be
any positive-semidefinite matrix [84,85], here we take it of
the form

Γ α,mn = γα �α,mn, (22)

where �α,mn = δmn when m,n labels edge atoms contacted
to lead α and �mn,α = 0 otherwise. In our calculations, we
choose γα = 0.1 eV independent of α. The chemical potential
is set to μ = 0 in order to have a charge-neutral GNR in
equilibrium. The system is driven out of equilibrium by a
sudden symmetric bias voltage between source and drain
electrodes, i.e., Vα = ±Vsd/2. The strength of the potential
profile within the central region is of amplitude Vg and can be,
e.g., linear or sinusoidal as illustrated in Fig. 2, or of any other
shape. To analyze the output of the numerical simulations, we
consider a cutting line or a bridge in the middle of the GNR and

(a)

(b)

(c)

FIG. 3. (Color online) Time-dependent bond currents through
ribbons of varying length: (a) aGNR [fixed width W = 1.5 nm (13)],
(b) zGNR [fixed width W = 1.6 nm (8)], and (c) the corresponding
Fourier transforms (zGNR is offset for clarity); the inset shows the
long-time behavior of the currents for L = 10.5 nm in (a) and (b).
[The line colors and styles correspond to those in (a) and (b).]

calculate the sum of all bond currents for the bonds cut by the
bridge (see Fig. 2). In the following, this sum of bond currents
is denoted by I . We measure energies in units of ε = 1 eV and
therefore the unit of time t = �/ε ≈ 6.58 × 10−16 s and the
unit of current I = eε/� ≈ 2.43 × 10−4 A.

A. Transient spectroscopy of zGNR and aGNR

Let us study the dependence of the TD current on the length
of the GNR at fixed width and bias voltage. For aGNRs of
width 1.4 nm (this is a 13-aGNR where 13 refers to the number
of armchair dimer rows [86]) and a zGNRs of width 1.6 nm
(this is an 8-zGNR where 8 is the number of zigzag rows [86]),
we show I in Figs. 3(a) and 3(b) and the Fourier transforms
in Fig. 3(c). The Fourier transforms are calculated from the
long-time simulations shown in the inset of Fig. 3(c) where
we subtract the steady-state value from the sample points, take
the absolute value of the result, and use Blackman-window
filtering [87]. In both cases, the bias voltage is Vsd = 5.6 eV
and Vg = 0 eV. By increasing the length of the ribbon, the
initial transient starts with a delay since the current is measured
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(a)

(b)

(c)

FIG. 4. (Color online) Time-dependent bond currents through
ribbons of varying width: (a) aGNR (fixed length L = 4.1 nm), (b)
zGNR (fixed length L = 4.1 nm), and (c) the corresponding Fourier
transforms (zGNR is offset for clarity); the inset shows the long-time
behavior of the currents for W = 3.6 nm in (a) and W = 3.7 nm in
(b), respectively. [The line colors and styles correspond to those in
(a) and (b).]

in the center (see Fig. 2), but the steady-state value is roughly
the same. The overall number of states also increases, and
hence more states close to the Fermi level are available as
transport channels. Consequently, smaller transition energies
become dominant and the peaks in the Fourier spectra shift
towards smaller frequencies. For the zGNRs we also find
a high-energy peak independent of the length; this peak is
responsible for the fast superimposed oscillations in the time
domain. The peak appears at frequency ω = Vsd/2 = 2.8 eV
and therefore corresponds to transitions between the lead
Fermi energy and zero-energy states in the ribbon, i.e., the
edge states. The edge states are weakly coupled to the leads and
therefore these transitions are slowly damped. As a matter of
fact, similar high-frequency oscillations are visible in aGNRs
as well [see Fig. 3(a)] . Nevertheless, the Fourier transform
does not show any high-frequency peak in this case. In aGNRs,
we have zigzag edges at the interface and hence edge states
strongly coupled to the leads. The high-frequency oscillations
in aGNRs are damped faster than in zGNRs [see the inset in
Fig. 3(c)], and are not visible in the Fourier spectrum.

(a)

(b)

(c)

FIG. 5. (Color online) Time-dependent bond currents through
fixed-size ribbons with varying bias voltage (a) aGNR [W = 1.5 nm
(13), L = 4.1 nm], (b) zGNR [W = 4.1 nm (8), L = 4.1 nm], and (c)
the corresponding Fourier transforms (zGNR is offset for clarity); the
inset shows the long-time behavior of the currents for Vsd = 10.6 eV
in (a) and (b).

Next, we vary the width of the ribbons while keeping the
length and the bias voltage fixed. In Fig. 4, we show the
dependency on the width for aGNRs and zGNRs of length
4.1 nm. Depending on the width, the ribbon is either metallic or
semiconducting [77]. However, as the gap in the semiconduct-
ing case is much smaller than the applied voltage Vsd = 5.6 eV,
the conducting properties are not affected by the gap. When
increasing the width of the ribbon, the length of the bridge,
through which the cumulative bond current I is calculated,
increases and so does the steady-state value of I . However,
the transient features remain the same as clearly illustrated in
the Fourier spectrum of Fig. 4(c) . Thus, at difference with the
results of Fig. 3(c), the widening of the ribbon does not cause
a shift of the low-energy peaks toward smaller energies. As
expected, this is true also for the high-energy peak in zGNRs,
in agreement with the fact that the energy of the edge states is
independent of the size of the ribbon.

As a third case, we study the effect of increasing the bias
voltage (while still keeping Vg = 0). In Figs. 5(a) and 5(c),
we show the results for 13-aGNR of length 4.1 nm and width
1.4 nm, and in Figs. 5(b) and 5(c) the results for 8-zGNR
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of length 4.1 nm and width 1.6 nm (ribbons of comparable
sizes). For zGNR, the frequency of the oscillations associated
to the edge-state transitions increases linearly with the bias, as
it should be. We also observe that for both ribbons the transient
regime lasts longer the larger is the bias, and that the steady
state is attained after several hundreds of femtoseconds.

As a general remark, of all the simulations shown in this
section we can say that the absolute values of the steady-
state currents are higher through zGNRs than through aGNRs
(of comparable sizes). It is not easy to provide an intuitive
explanation of this observation since at large biases there are
very many states which contribute to the absolute value of
the steady-state current. We also observe that the μA–mA
range for the current with bias in the eV range agrees with the
experimental results of Refs. [88–95].

B. Quasistationary currents

In Fig. 3(a), we notice the formation of quasistationary
states as we increase the length of the ribbon. The current
steeply increases from zero to some value and then grows
linearly before decreasing again. The growth is slower and
lasts longer the longer is the ribbon. Let us investigate further
the dependence of the current on the length of the ribbon.
In Fig. 6, we show the transient currents through 13-aGNR
(W = 1.4 nm) and 8-zGNR (W = 1.6 nm) of similar lengths
with Vsd = 5.6 eV. For graphical purposes, we normalize the
current by the number of bonds in the bridge and the time by
the length L of the ribbon. The curves do essentially collapse
on one single curve. The peculiar feature of the aGNRs is
the current plateau for 1 � t/L � 2. The duration of the
plateau corresponds to the time for an electron with velocity
v ∼ 1 nm/fs to cross the ribbon. This velocity is consistent
with the value of the Fermi velocity vF = 3|tC |a/(2�) where
a = 1.42 Å is the carbon-carbon distance [74]. The physical
picture is that an almost steplike, right-moving density wave
reaches the bridge (positioned in the middle of the ribbon) at
t/L � 1

2 and the right interface at t/L � 1. At this time, the
wave is reflected backward and at time t/L � 3

2 reaches the

FIG. 6. (Color online) First transients of the time-dependent cur-
rent through ribbons of varying length divided by the number of
bonds in the bridge. The horizontal axis is scaled by the length of the
corresponding ribbon.

bridge thus destroying the plateau. No pronounced plateau is
instead observed in zGNRs. As we shall see in the next section,
the current distribution along the ribbon is strongly dependent
on the orientation of the bonds. The tilted bonds in zGNRs
cause multiple reflections at the edges, thus preventing the
formation of a current plateau. Also, more powerful reflection
can be seen from the zigzag edge state (at the lead interface)
in the case of aGNRs.

C. Even-odd parity effects in charge and current profiles

The GNRs are parametrized by integer numbers (even or
symmetric and odd or asymmetric) for width and length. In
this section, we study how the parity of the GNRs affects
the charge and current profiles in the transient regime. We
choose ribbons of equivalent lengths, approximately 6 nm (14
armchair cells and 25 zigzag cells) and equivalent widths,
approximately 1.5 nm. However, we take the widths as {7,8}
zigzag lines and {12,13} armchair dimer lines which, in turn,
correspond to either symmetrical or asymmetrical ribbon in
the longitudinal direction (see Figs. 7 and 8). A bias voltage
Vsd = 5.6 eV is applied to the leads and Vg is set to zero. In
Figs. 7 and 8, we show snapshots of the density variation and
bond-current profiles. The density variation is defined as the
difference between the density at time t and the ground-state
density. Since the size of the ribbons is comparable to that in
Sec. III A, we choose the snapshot times to correspond to the
first wave crest {9,10} fs (on the left panels) and to the first
wave trough {16,20} fs (on the right panels). The full density
and current dynamics are shown in an animation [96].

The symmetry of the ribbon is responsible for the charge
and current profiles. In the aGNR case (see Fig. 7), the top
panel shows a fully symmetric 13-aGNR (invariant structure
for mirrorings both in the transverse and longitudinal direction)
and the bottom panel shows a 12-aGNR (invariant structure for
mirroring only in the longitudinal direction). The asymmetry
does not lead to dramatic differences in the charge and current
distributions. In the charge profile of the symmetric aGNR,
certain “cold” and “hot” spots show up in the middle region
whereas in the asymmetric aGNR the charge is more evenly
distributed from the source electrode to the drain electrode.
Also, in both aGNR structures, the current is mostly flowing
through the edges and the wavefront is flat [96]. In the zGNR
case (see Fig. 8), the top panel shows an even 8-zGNR and
the bottom panel shows an odd 7-zGNR. In both structures,
we observe diagonal charge patterns along the ribbon; in the
even zGNR these patterns are symmetric, whereas in the odd
zGNR the patterns show asymmetric features. Certain cold and
hot spots show up in the crossings of density wavefronts. In
addition, the current is mostly flowing longitudinally through
the interior of the ribbons with a much smaller contribution
coming from the edges. From the animation in Ref. [96], we
also see that the wavefront has a triangular shape.

The pattern of the charge-current profile is quite different
at different times. On the left panels, we have a perfect wave
propagating along the ribbon, whereas on the right panels
we see an interference pattern due to the reflected wave. In the
density-wave profile, there are two antinodes at the electrode
interfaces, at the time corresponding to the first maximum
(t = 10 fs) and one antinode together with two nodes in the
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FIG. 7. (Color online) Temporal snapshots of spatial charge densities and bond currents along aGNRs. Upper panel shows the fully
symmetric aGNR and lower panel transversally asymmetric aGNR. Left panel shows the snapshots corresponding to the first maximum in the
transient current and the right panel shows the ones corresponding to the first minimum. The charge densities are calculated as the difference
from the ground-state density (color map). The bond currents are drawn as solid arrows where the width of the arrow indicates the relative
strength of the current.

middle region. At the time corresponding to the first minimum
(t = 20 fs), the antinodes remain at the electrode interface but
additional nodes arise in the middle region.

D. Perturbed central region

As an illustration of the formula in Eq. (20) for perturbed
central regions, we study the transient of a 4-zGNR (or more
accurately a “4 × 4 graphene flake”). The system consists of
32 carbon sites and an onsite potential φm is switched on at
site m concurrently with the applied bias. Let us investigate
how the form of the voltage profile within the flake affects the
transient dynamics. We define xm to be the distance of the mth
carbon atom from the left interface and take φm = φ(xm). For
a linear potential profile, we use

φ(xm) = −2Vg

L
xm + Vg,

and for a sinusoidal potential profile

φ(xm) =

⎧⎪⎨⎪⎩
Vg, xm < L/10

Vg cos
(

5π
4L

xm − π
8

)
, L/10 � xm � 9L/10

−Vg, xm > 9L/10

where L is the length of the flake.
In Fig. 9, we show the time-dependent currents through the

flake with fixed bias voltage Vsd/2 = 3.5 eV and varying linear
potential in panel Fig. 9(a) and sinusoidal potential in Fig. 9(b).

The comparison with the previous result of nonperturbed “no
gate” and perturbed “Vg = 0.0 eV” central region provides a
numerical check of the correctness of Eq. (20).

For voltages smaller than 1 eV, the transient is not so
different from the nonperturbed results. However, for stronger
voltages, a rather nontrivial transient behavior is observed.
Notice that the largest value Vg = 3.5 eV corresponds to the
physical situation of a continuous potential profile. The Fourier
spectrum of the transient is shown in Fig. 9(c). The much richer
structure in several high-energy spectral windows is due to
transitions involving levels of the perturbed central region.

The dependence of the energy and spectral weight of
the levels on Vg is most clearly visualized by plotting the
nonequilibrium spectral function

A(ω) = − 1

π
Im Tr[GR(ω)], (23)

where the trace is over the states of the central region. The
spectral function is displayed in Fig. 10. As expected, the
spectrum widens with increasing Vg. The high-energy peaks
at ω ≈ ±8 eV (in the nonperturbed case: Vg = 0 eV) shift
to ω ≈ ±10 eV (when the perturbation is at its maximum:
Vg = 3.5 eV). This is consistent with the peaks occurring at
around ω ≈ 10 eV in Fig. 9(c). With a similar analysis, one
can show that all other main peaks in the Fourier spectrum can
be interpreted by inspecting the spectral function.

FIG. 8. (Color online) Temporal snapshots as in Fig. 7 but for zGNRs and at different times.
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(a)

(b)

(c)

FIG. 9. (Color online) Time-dependent bond currents through a
4-zGNR (length 0.7 nm and width 0.9 nm) with fixed bias voltage
Vsd/2 = 3.5 eV and with varying potentials: (a) linear potential
profile, (b) sinusoidal potential profile, (c) the corresponding Fourier
transforms (sinusoidal is offset for clarity).
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FIG. 10. (Color online) Nonequilibrium spectral functions of the
studied zGNR with varying potential: (a) linear potential profile, and
(b) sinusoidal potential profile.

IV. CONCLUSION

In this work, we developed a time-dependent extension of
the Landauer-Büttiker approach to study transient dynamics
in time-dependent quantum transport through molecular junc-
tions. We have derived a closed integral expression for the time
dependence of the density matrix of the molecular junction
after switch-on of a bias voltage in the leads or a perturbation
in the junction as well as for the current flowing into the
leads. Both equations can be evaluated without the necessity
of propagating individual single-particle orbitals or Green’s
functions. We applied the approach to study the transient
dynamics of zigzag and armchair graphene nanoribbons of
different symmetries. We found a rich transient dynamics
in which the saturation times can exceed several hundreds
of femtoseconds while displaying a long-time oscillatory
motion related to multiple reflections of the density wave
in the nanoribbons at the ribbon-lead interface. In the case
of armchair nanoribbons, we find pronounced quasi-steady
states which can be explained by multiple reflections of the
density wave passing through the ribbon with the edge states
located at the ribbon-lead interfaces. We see further in the case
of zigzag nanoribbons that there is a predominant oscillation
frequency associated with virtual transitions between the edge
states and the Fermi levels of the electrode. The transient
dynamics therefore gives detailed spectral information on the
structure of the nanoribbons. Recently, the ultrafast dynamics
of individual carbon nanotubes has been measured using
laser optics by four-wave-mixing techniques [97]. There
are therefore important experimental developments that can,
in the future, give access to the direct study of transient
dynamics. Such transient spectroscopy can give important
detailed information on the structure of molecular junctions
out of equilibrium.

ACKNOWLEDGMENTS

R.T. wishes to thank Väisälä Foundation of The Finnish
Academy of Science and Letters for financial support and CSC,
the Finnish IT Center for Science, for computing resources.
R.v.L. thanks the Academy of Finland for support. E.P.
and G.S. acknowledge funding by MIUR FIRB Grant No.
RBFR12SW0J. G.S. acknowledges financial support through
travel Grant No. Psi-K2 5813 of the European Science
Foundation (ESF). C. Gomes da Rocha, A.-M. Uimonen,
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APPENDIX A: RESULTS IN THE
ZERO-TEMPERATURE LIMIT

By taking into account the behavior of the Fermi function
in the zero-temperature limit and adjusting accordingly the
integrals in Eqs. (15)–(17), we get the following explicit
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expressions:

Λα,jk = ln(ε∗
k − μα) − ln(εj − μα)

2π (ε∗
k − εj )

, (A1)

Πα,jk(t) =
e−i(εj −μα)t

{
F [i(ε∗

k − μα)t] + ε∗
k −εj −Vα

Vα
F [i(εj − μα)t] − ε∗

k −εj

Vα
F [i(εj − μ)t]

}
2π (ε∗

k − εj )(ε∗
k − εj − Vα)

, (A2)

Ωα,jk = (ε∗
k − εj + Vα)[ln(ε∗

k − μα) − ln(εj − μ)] + (ε∗
k − εj − Vα)[ln(εj − μα) − ln(ε∗

k − μ)]

2π
[
(ε∗

k − εj )V 3
α − (ε∗

k − εj )3Vα

] , (A3)

where we defined μα = μ + Vα and

F (z) =
{
ez[2πi − E1(z)], if arg(z) ∈] − π, − π/2]
−ezE1(z), otherwise. (A4)

Here ln is the principal branch complex logarithm function,
arg the principal argument, and E1 the exponential integral
function:

E1(z) =
∫ ∞

1

e−zt

t
dt. (A5)

About the implementation of the complex-valued (complex
variable) exponential integral, there is a thorough introduction
in Ref. [81]. The piecewise definition of the function F is due
to branch cuts in the z plane.

We notice in Eqs. (A1)–(A3) that it is possible that the
structure of the single-particle Hamiltonian h would together
with the coupling matrices Γ produce such an effective
Hamiltonian heff with degenerate eigenvalues: Im εj = 0
and Re εj = Re ε∗

k . In this case, we consider the left/right
eigenbases of the effective Hamiltonian heff : Since heff =
hCC − i

2Γ , where hCC and Γ are Hermitian matrices, then

εj

〈
�L

j

∣∣�L
j

〉 = 〈
�L

j

∣∣heff

∣∣�L
j

〉
= 〈

�L
j

∣∣hCC

∣∣�L
j

〉 − i

2

〈
�L

j

∣∣Γ ∣∣�L
j

〉
, (A6)

which, in turn, gives

εj =
〈
�L

j

∣∣hCC

∣∣�L
j

〉〈
�L

j

∣∣�L
j

〉 −
i
2

〈
�L

j

∣∣Γ ∣∣�L
j

〉〈
�L

j

∣∣�L
j

〉 . (A7)

Since the expectation values are real and Γ is a positive-
definite matrix, we get

Im εj = −1

2

〈
�L

j

∣∣Γ ∣∣�L
j

〉〈
�L

j

∣∣�L
j

〉 < 0. (A8)

Then, suppose that Im εj = 0. This gives 〈�L
j |Γ |�L

j 〉 = 0, and
since the level-width matrices are calculated from the tunneling
matrices by Γ ∼ T †T , we get〈

�L
j

∣∣T †T
∣∣�L

j

〉 = 0 ⇒ 〈
χL

j

∣∣χL
j

〉 = 0, (A9)

where |χL
j 〉 = T |�L

j 〉. Having then a zero-norm vector |χL
j 〉 it

means that vector itself must be zero, i.e., 0 = |χL
j 〉 = T |�L

j 〉
for all j . This means that |�L

j 〉 is an eigenvector of T

with zero eigenvalue. In particular, Γ |�L
j 〉 = T †T |�L

j 〉 = 0,

and hence

Γ jk = 〈
�L

j |Γ ∣∣�L
k

〉 = 0, ∀ j,k. (A10)

Therefore, the case of degenerate eigenvalues can be excluded
from the derived formulas altogether. This also relates to
some particular systems having states that are eigenfunctions
of Γ α,mn with zero eigenvalue. In these cases, it becomes
important to take into account the infinitesimal iη in the
retarded Green’s function for these states, i.e., the Green’s
function operator acting on these states has the effective
form GR(ω) = (ω − hCC + iη)−1. This effectively amounts
to an infinitesimal value of Γ α,mn for these particular states
in Eq. (13) which leads to sharp delta peaks in the spectral
function. However, since these states are inert and do not
contribute to the dynamics, they only affect the static part of
the density matrix. Numerically, it is then more advantageous
to calculate these states separately and add a cutoff in Eq. (13).
We evaluate Eq. (13) only for Γ α,mn > ε with ε a small
number and treat the inert states separately. The part of the
density matrix corresponding to these inert states is then
given by

ρ̂ =
∑
εj <μ

|φj 〉〈φj |, (A11)

where we sum over all eigenstates of hCC that satisfy Γ α|φj 〉 =
0 for all α. Note that the existence of the inert states is
a very special case caused by symmetries of the molecule
and Γ α . The only case we encountered in this study where
such states exist is the case of the fully symmetric aGNR of
Fig. 7. There, the inert states are given by wave functions that
have nodal planes exactly at the rows which are contacted to
the leads.

APPENDIX B: RESULTS FOR THE PERTURBED
CENTRAL REGION

In this appendix, we guide the reader through the derivation
of Eq. (20). As we will often refer to results in Ref. [73],
we here append the suffix “I” to every equation or section
in this reference. The results of Ref. [73] are general and
remain valid in the presence of electric or magnetic fields
in the central region until Sec. 3.2-I. In the Green’s function
calculations, the Matsubara Green’s function does not change
as it depends only on the ground-state Hamiltonian hCC . On
the other hand, for Green’s functions having components on the
horizontal branch of the Keldysh contour, we have to use the
Hamiltonian h̃CC . Therefore, the Eqs. (24-I) and (25-I) change
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according to

G�(t,τ ) = e−ih̃efft

[
GM(0,τ ) −

∫ t

0
dt ′eih̃efft

′

×
∫ β

0
dτ̄ Σ�(t ′,τ̄ )GM(τ̄ ,τ )

]
, (B1)

GR(t − t ′) = −iθ (t − t ′)e−ih̃eff(t−t ′), (B2)

where h̃eff = h̃CC − i
2Γ . All steps in Appendix C-I and D-I as

well as in Sec. 3.3-I should change accordingly. In particular,
we stress the GM and GR in Eq. (C.9-I) are now different,
that Ṽα is a matrix (Appendix D-I) and that the Dyson-type
equation [Eq. (D.1-I)] relating the nonperturbed and perturbed

Green’s functions now reads as

GR(ω) − G̃R(ω + Vα) = GR(ω)ṼαG̃R(ω + Vα). (B3)

With these considerations and following the same steps as in
Ref. [73], we arrive at the result shown in Eq. (20).

Next, by expanding in the left eigenbasis of h̃eff we find

ρ̃jk(t) = 〈
�̃L

j

∣∣ρ(t)
∣∣�̃L

k

〉
=

∑
α

[Γ̃ α,jkΛ̃α,jk + Π̃α,jk(t) + Π̃
∗
α,kj (t) + Ω̃α,jk(t)]

(B4)

with the introduced functions

Γ̃ α,jk = 〈
�̃L

j

∣∣Γ α

∣∣�̃L
k

〉
,

Λ̃α,jk =
∫

dω

2π

f (ω − μ)

(ω + Vα − ε̃j )(ω + Vα − ε̃∗
k )

,

Π̃α,jk(t) =
∑
m,n

〈
�̃L

j

∣∣�R
m

〉〈
�L

m

∣∣Ṽα

∣∣�̃R
n

〉
Γ̃ α,nk〈

�L
m

∣∣�R
m

〉〈
�̃L

n

∣∣�̃R
n

〉 ∫
dω

2π

f (ω − μ)ei(ω+Vα−ε̃j )t

(ω − εm)(ω + Vα − ε̃n)(ω + Vα − ε̃∗
k )

,

Ω̃α,jk(t) =
∑

m,n,p,q

〈
�̃L

j

∣∣�R
m

〉〈
�L

m

∣∣Ṽα

∣∣�̃R
n

〉
Γ̃ α,np

〈
�̃R

p

∣∣Ṽ †
α

∣∣�L
q

〉〈
�R

q

∣∣�̃L
k

〉〈
�L

m

∣∣�R
m

〉〈
�̃L

n

∣∣�̃R
n

〉〈
�̃R

p

∣∣�̃L
p

〉〈
�R

q

∣∣�L
q

〉
× e−i (̃εj −ε̃∗

k )t
∫

dω

2π

f (ω − μ)

(ω − εm)(ω + Vα − ε̃n)(ω + Vα − ε̃∗
p)(ω − ε∗

q )
, (B5)

where eigenvalues εj and ε̃∗
k refer to the complex eigenvalues of heff and h̃eff , respectively. In the limit h̃eff → heff , this result

can also be checked to reduce to the earlier result in Eqs. (13), (15), (16), and (17). In the limit of uncontacted system, Eq. (B4)
describes the dynamics of an isolated (perturbed) system, in which case the same result could be derived directly from the
equations of motion of the one-particle density matrix.

In the zero-temperature limit, the integrals in Eq. (B5) can be calculated analytically also in this case. The integrals now
only have more constants and the final results can not be simplified as much as earlier. The explicit forms can be found in the
following:

Λ̃α,jk = ln(̃ε∗
k − μα) − ln(̃εj − μα)

2π (̃ε∗
k − ε̃j )

, (B6)

Π̃α,jk(t) =
∑
m,n

〈
�̃L

j

∣∣�R
m

〉〈
�L

m

∣∣Ṽα

∣∣�̃R
n

〉〈
�̃L

n

∣∣Γ α

∣∣�̃L
k

〉〈
�L

m

∣∣�R
m

〉〈
�̃L

n

∣∣�̃R
n

〉 e−i (̃εj −μα )t

2π (̃ε∗
k − ε̃n)(̃ε∗

k − εm − Vα)

×
{
F [i (̃ε∗

k − μα)t] − ε̃∗
k − εm − Vα

ε̃n − εm − Vα

F [i (̃εn − μα)t] + ε̃∗
k − ε̃n

ε̃n − εm − Vα

F [i(εm − μ)t]

}
, (B7)

Ω̃α,jk(t) =
∑

m,n,p,q

〈
�̃L

j

∣∣�R
m

〉〈
�L

m

∣∣Ṽα

∣∣�̃R
n

〉〈
�̃L

n

∣∣Γ α

∣∣�̃L
p

〉〈
�̃R

p

∣∣Ṽ †
α

∣∣�L
q

〉〈
�R

q

∣∣�̃L
k

〉〈
�L

m

∣∣�R
m

〉〈
�̃L

n

∣∣�̃R
n

〉〈
�̃R

p

∣∣�̃L
p

〉〈
�R

q

∣∣�L
q

〉 e−i (̃εj −ε̃∗
k )t

2π

×
[

ln(εm − μ)

(εm − ε̃n + Vα)(εm − ε̃∗
p + Vα)(εm − ε∗

q )
+ ln(̃εn − μα)

(̃εn − εm − Vα)(̃εn − ε̃∗
p)(̃εn − ε∗

q − Vα)

+ ln(ε∗
q − μ)

(ε∗
q − εm)(ε∗

q − ε̃n + Vα)(ε∗
q − ε̃∗

p + Vα)
+ ln(̃ε∗

p − μα)

(̃ε∗
p − εm − Vα)(̃ε∗

p − ε̃n)(̃ε∗
p − ε∗

q − Vα)

]
, (B8)

where μα = μ + Vα and F is as in Eq. (A4). Also, these results can be checked to reduce to the earlier results in Eqs. (A1)–(A3)
when �̃ → � and ε̃ → ε (̃heff → heff).
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