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Hybridizing localized and itinerant electrons: A recipe for pseudogaps
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In a system where selective Mott localization is realized, some electrons show a gap to charge excitations
while others do not. A hybridization between these two kind of electrons will lead to a smoothening of this
sharp difference and can even bring the system back to a complete delocalization. We show here that there is a
large region of parameters at finite hybridization where the selective localization persists and the system shows
a partial filling of the selective gap with incoherent states, giving rise to a pseudogap. This result is illustrated
here in a two-orbital Hubbard model with Hund’s coupling, but is based on quite general assumptions and should
hold for a larger class of systems, and possibly be a paradigm for the pseudogap mechanism in cuprates.
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I. INTRODUCTION

Mott insulators are a widely studied class of compounds.
The localization of conduction electrons induced by their
mutual Coulomb repulsion and the consequent impeded
conduction are a striking manifestation of many-body physics.
Indeed these materials are predicted metallic by one-body
techniques (such as density functional theory) and it is
only when dynamical correlations are taken into account
that the observed insulating behavior can be accounted for.
Typical examples of these materials are found in organic
superconductors such as the Bechgaard salts and the fullerenes,
and in transition metal oxides like NiO, V2O3, and the high-Tc

superconducting cuprates [1].
An intriguing spin-off of this research is the study of

systems where orbital-selective Mott (OSM) localization
happens [2]. In these systems a subset of the conduction
electrons undergoes Mott localization, while the rest remains
itinerant and the system thus shows metallic conduction albeit
in the presence of well-formed local magnetic moments.

This physics is also the implicit starting point for under-
standing some old-standing problems like moment formation
in some f -electron systems (like elemental lanthanides and
late actinides), where electrons in incomplete f shells remain
localized while spd electrons are itinerant, but also in
manganites La1−xSrxMnO3, where electrons in the t2g subshell
of the Mn 3d orbital manifold are localized and give rise to
a strong local magnetic moment while the eg delocalize in
conduction bands [3].

More subtly this selective localization can happen for
electrons in the same subshell as it has been suggested for
CaxSr2−xRuO4 [4], LiV2O4 [5], among others, and for the α

phase of elemental iron [6] and the iron-based superconductors
[7,8]. This proposal has recently received a great deal of
attention (see Ref. [9] for a list of references).

The two parts of the fluid are indeed not completely
separated and two main effects couple them: hybridization
and the electronic Coulomb interaction. Hybridization, i.e., the
amplitude for an electron to jump between the more localized
and more itinerant orbitals, is the dominant effect in some
f -electron systems. Then the local moment can be quenched
by quantum fluctuations and a metallic state with electrons

bearing a strongly enhanced effective mass arises at low tem-
peratures. These materials are known as heavy fermions [10].

For d-only systems instead, the main coupling to be
taken into account is the on-site Coulomb repulsion between
conduction electrons, and Hund’s coupling—the exchange
energy favoring the distribution of electrons in the different
orbitals of the same shell with their spin aligned—plays a
key role in these systems (see Ref. [11] for a recent review).
This exchange term (which is also a measure of the reduced
interorbital repulsion that electrons feel when on the same
atom, compared to the intraorbital one) is known to favor a
strong differentiation of the correlation strength among the
different orbitals, ultimately leading to the selective Mott
localization [12].

Another effect due to the Hund’s coupling is the overall
reduction of the metallic coherence scale, whenever the
subshell mainly responsible for the electronic states at the
Fermi level is filled by more than one electron or one hole per
site [13,14].

In the realistic multiorbital band structures of d-orbital
materials, such as transition-metal oxides, interorbital hopping
is generally present and nonlocal, since hops between orbitals
of a given site are typically forbidden by symmetry. However,
structural distortions lowering the symmetry (like those intro-
duced by substituting calcium to strontium in CaxSr2−xRuO4)
can introduce such hybridization terms. All in all, in systems
where selective localization is expected on theoretical grounds
without local and nonlocal hybridizations between the orbitals,
one is led to ask if it will be spoiled by the presence of these
terms in realistic situations and a fully metallic—possibly
heavy-fermionic—behavior will be recovered, as it happens
in f -electron systems.

This issue is studied here on a minimal model of two half-
filled bands of different bandwidth, with electrons interacting
by means of local multiorbital Coulomb repulsion (in the stan-
dard Kanamori form for Hund’s coupling, see below) and in
presence of local hybridization between the orbitals. Nonlocal
hybridization is very briefly touched upon at the end of the
paper, with preliminary results confirming our main analysis.

The model is solved within dynamical mean-field theory
(DMFT) [15] that is able to describe both itinerant and local-
ized phases on the same footing. This method is formulated
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FIG. 1. (Color online) Electronic compressibility of electrons
in the localized orbital (U/D = 1.4, DN/DW = 0.5, J = U/4),
calculated by numerical differentiation of n(μ) of Fig. 7(b). The
incompressible fluid found in absence of hybridization (V = 0) due to
a clean gap in the orbitally resolved spectrum is replaced at nonzero V

by a phase in which the compressibility is reduced but nonvanishing.
Excitations filling the gap are incoherent, and the pseudogap remains
clearly delineated.

in the language of Green’s functions, and the local excitation
spectrum can thus be readily accessed. In the single band case
the Mott transition is signaled by the vanishing of the spectral
weight at the Fermi level, present in the metallic phase, with the
spectrum opening a gap to charge excitations in the insulating
phase. Correspondingly the population (n) ceases to grow with
the chemical potential (μ) when the latter lies within the gap,
and the system becomes incompressible (i.e., κ = dn

dμ
= 0).

The same analysis can be applied to the orbitally selective
Mott transition which is the focus here, and the main result
of this paper (which will be discussed more thoroughly in
Sec. III B) is plotted in Fig. 1.

In the absence of any hybridization between the two orbitals
in the selectively localized phase the system has a gap in the
spectrum for the creation of a charge excitation in the localized
orbital, while it has finite spectral weight at low energy for
charge excitations in the delocalized one. The state is overall
metallic and compressible but as function of the chemical
potential the electron density in the delocalized orbital grows,
while that in the localized orbital remains fixed to unity.
One can thus say that within the electronic fluid there is an
incompressible, insulating part.

Upon the onset of hybridization one could expect metal-
licity to be restored in the latter, the gap to be filled by
coherent excitations, and that the electron fluid becomes
wholly compressible again. What we have found is that
under quite general assumptions the gap is only poorly filled
and maintains clear edges, thus forming a pseudogap. The
spectrum for the formerly localized orbital becomes filled by
incoherent excitations and the incompressibility is replaced by
a finite but very reduced compressibility.

Thus, for all practical purposes the selective localization
survives the onset of hybridization, be it local or nonlocal.
Our numerical DMFT calculations are performed at zero
temperature, but have a finite energy resolution. They cannot
distinguish if the excitations filling the pseudogap will acquire
coherence below an energy scale that would be smaller than

our resolution, or if this phase is genuinely non-Fermi liquid.
This is discussed in Sec. IV. However, the physical message is
that at all temperatures relevant for experiments the selectively
localized phase is robust to hybridization in a large region
of the parameter space and that a depression in the physical
compressibility should be clearly observable in experiments.

This issue was partially treated in previous works [16,17].
Our results are compatible with these previous investigations
and complete them (in Ref. [16] only a few parameter values
were explored, and in Ref. [17] slave-spin mean field was used
which cannot account for incoherent excitations) and give a
complete phase diagram of the model, which is quite similar
to the one expected on general grounds [16].

Finally, it is worth mentioning that the present work may
have a bearing on the issue of the formation of a pseudogap in
the k-space resolved excitation spectrum in cuprates. Indeed
a pseudogap is observed in a large region of temperatures
and dopings around the directions (0,π ) of the Brillouin zone.
This physics can be described in terms of a k-space-selective
localization [18–21]. The Hamiltonian describing the short-
ranged correlations responsible for the pseudogap opening in
the cluster extensions of DMFT that correctly capture this
phenomenon and many other major features of the physics
of cuprates, can be recast in a multiorbital form that bears a
strong similarity to the problem we solve in this paper (see the
extended comparison in Ref. [9]). Interaction terms acting in
first approximation as hybridizations are present and possibly
responsible of a smoothening of the gap due to the selective
localization.

The paper is organized as follows: In Sec. II we describe the
two-orbital model we analyze and the DMFT equations used
to solve it. In Sec. III we report the results of our numerical
calculations: In Sec. III A the low-temperature phase diagram
of the half-filled system is analyzed as a function of interaction
strength and local hybridization, and in Sec. III B the OSM
phase is studied as a function of the chemical potential. In
Sec. IV we discuss the physics of the OSM phase as far as the
actual ground state—and thus the ultimate fate of the system
at strictly zero temperature—is concerned, and in Sec. V we
trace our conclusions and perspectives.

II. MODEL AND METHOD

We explore this problem considering here a local hybridiza-
tion. The case of nonlocal hybridization yields similar physics
and is briefly mentioned in Sec. V. We consider the following
two-band (describing a wide band and a narrow one, hence the
subscripts W , N ) Hamiltonian with on-site interactions, and
local hybridization:

H = −
∑

〈i,j〉,σ
l = N,W

tlc
†
ilσ cjlσ + V

∑
i,σ

(c†iWσ ciNσ + c
†
iNσ ciWσ )

−
∑
i,σ,l

μc
†
ilσ cilσ + Hint, (1)

where c
†
i,l,σ and ci,l,σ are the fermionic creation and annihila-

tion operators acting on site i, orbital l, and spin σ , tl is the
orbital-dependent hopping amplitude, and V is the amplitude
of the local hybridization. Hint describes the multiorbital
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electron-electron interaction and we use here the rotationally
invariant Kanamori Hamiltonian that reads

Hint = U
∑

i,l=N,W

ñil↑ñil↓ + U ′ ∑
i,σ

ñiWσ ñiN−σ

+ (U ′ − J )
∑
i,σ

ñiWσ ñiNσ

− J
∑

i

[c†iW↑ciW↓c
†
iN↓ciN↑ + c

†
iW↓ciW↑c

†
iN↑ciN↓]

− J
∑

i

[c†iW↑c
†
iW↓ciN↑ciN↓ + c

†
iN↑c

†
iN↓ciW↑ciW↓],

(2)

where for convenience we write ñilσ = nilσ − 1/2, with nilσ

the number operator on site i, orbital l, and spin σ . By doing
this shift, which only adds constant and quadratic terms to the
Hamiltonian, we guarantee that the particle-hole symmetric
solution corresponds to μ = 0, that can be easily proven by
performing a particle-hole transformation. U is the strength
of the intraorbital Coulomb repulsion between electrons, U ′
(= U − 2J for rotational invariance) is the interorbital one,
and J is the exchange Hund’s coupling.

It is important to point out that albeit it is possible to
diagonalize the local part of the Hamiltonian and eliminate the
hybridization in favor of a crystal field splitting, in doing this
a nonlocal hybridization term appears (as long as tW �= tN ),
so that the two transformed orbitals keep a finite tunneling

amplitude between them. Hence, in general the hybridization
introduces a new intrinsic complexity into the problem.

We solve this problem using dynamical mean-field theory
[15], where the lattice model is mapped into a single impurity
problem obeying a self-consistency condition. This allows
us to calculate nonperturbatively—through the numerical
solution of the impurity problem, in general—the self-energy
(which is then purely local) and other local correlation
functions.

For simplicity we choose here customarily a semicircular
density of states (which corresponds to the Bethe lattice),
which simplifies the self-consistency condition and the results
of which are usually general enough. We set the half-
bandwidth of the widest band DW = D as the unit of energy.

The imaginary-time action of the two-orbital auxiliary
Anderson impurity problem to be solved reads

S =−
∫ β

0
dτ

∫ β

0
dτ ′ ∑

l,l′,σ

c
†
lσ (τ )G−1

0,ll′,σ (τ − τ ′)cl′σ (τ ′)

+
∫ β

0
dτHint[{c†lσ (τ ),clσ (τ )}], (3)

where electron creation and annihilation operators here act on
the impurity orbitals, Hint is the local interaction of the original
lattice problem, and, in this case with local hybridization (in
contrast to the special case of nonlocal hybridization that we
mention in Sec. IV), the bare Green’s function of the impurity
problem Ĝ0,σ (iωn) is a nondiagonal 2 × 2 matrix subject to the
following self-consistency relation:

Ĝ−1
0,σ (iωn) =

(
iωn − t2

WGWW,σ (iωn) −V − tW tNGWN,σ (iωn)
−V − tW tNGNW,σ (iωn) iωn − t2

NGNN,σ (iωn)

)
, (4)

where Gll′,σ (iωn) = − ∫ β

0 dτeiωnτ 〈clσ (τ )c†l′σ (0)〉 is the im-
purity Green’s function (coinciding with the local Green’s
function of the lattice problem in the present framework), and
ωn are the fermionic Matsubara frequencies.

We solve the auxiliary impurity problem at zero temperature
through the exact diagonalization [22,23] (making use of the
Lanczos algorithm) of the discretized problem in which the
baths are expressed through finite number Ns of noninteracting
sites. The self-consistency condition is enforced on a mesh
of Matsubara frequencies ωn = π (2n + 1)/β, where D/β is
the scale setting the energy resolution. The latter cannot be
increased at will but has a lower limit, which is a function of
Ns . Standard calculations were performed at βD = 100 with
Ns = 10, which means that we considered one site for each
orbital plus eight for the bath. The results we present here were
successfully benchmarked against analogous calculations with
βD = 150 and Ns = 11 and Ns = 12, where the low energy
resolution is increased.

III. RESULTS

A. The phase diagram at half-filling

We start by analyzing the general structure of the low-
temperature phase diagram in the parameters V -U , which

is plotted in Fig. 2. Here we focus on the metal-insulator
boundaries which are represented by the solid lines and we
will discuss the color scale, which represents the magnetic
correlation functions, at the end of this section. Throughout
the paper we set the narrow bandwidth DN/DW = 1/2 and
Hund’s coupling J/U = 1/4 (a brief mention of another set
of values, DN/DW = 0.15, J/U = 0.1 yielding analogous
results is done in Sec. IV). We start studying the particle-hole
symmetric (half-filled) case μ = 0.

In absence of interactions (i.e., U = J = 0), at zero hy-
bridization the systems is metallic with two half-filled bands.
The onset of the hybridization V produces band repulsion,
giving rise to the bonding and antibonding bands. As V

increases, the bonding band gets more populated than the
antibonding band, and a band gap eventually opens when V >√

DNDW (= √
0.5 in the present case). It is readily shown

[17] that upon onset of the interaction this criterion becomes

|V + 	WN (0)| >
√

DWDN, (5)

where 	WN (0) is the off-diagonal component of the local
self-energy at zero frequency. In the weak-coupling limit it
can be shown that 	WN (0) ∼ U − 5J so that for the value of
J chosen in this study (J = U/4) the frontier moves to larger
V upon onset of the interaction.
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On the other hand at V = 0, when increasing U from the
noninteracting limit, the system goes through three different
phases. It is metallic at weak coupling and Mott insulating
at strong coupling as expected, whereas in an intermediate
U regime, an orbital-selective Mott phase appears where the
Mott gap opens only in the narrow band [4,17,24–27].

It is not a priori evident what happens to the OSM phase
for finite V . Previous studies (focusing on a limited set of
parameters [16] or using slave-variable techniques [17,28])
showed that the orbital-selective Mott phase seems to be
unstable to a finite hybridization. Here we explore the whole
phase diagram as a function of U and V within DMFT, which
is the state-of-the-art technique.

In Fig. 3 we plot the Matsubara Green’s functions of both
orbitals for different values of U at V = 0.15. We recall
that extrapolating the Green’s functions to ωn → 0, a finite
intercept indicates that the solution is metallic, while if the
intercept vanishes, the solution is insulating. The Green’s
functions are rescaled by the their corresponding bandwidth,
which is their natural energy scale.

From this figure it is clear that the situation is unchanged
compared to the V = 0 case. From weak to intermediate
coupling, both bands behave metallic. Increasing U further,
there is a regime where the wide band behaves metallic and the
narrow band is insulating. This is clearly shown by the Green’s
functions at U/D = 1.5. Then, for stronger interactions, both
bands are insulating.

We trace in Fig. 2 the border where we find the situation
just depicted, and we see that there is a sizable zone in the U -V
plane where the OSM phase persists even for finite V . This

FIG. 2. (Color online) V -U phase diagram of the half-filled
two-band Hubbard model with DN/DW = 0.5 and J = U/4. The
solid lines correspond to the metal-insulator boundaries. For weak
coupling and hybridization, the system is metallic. For high V and
U , the system is band insulating with a low-spin S = 0, and a
Mott insulator with a high-spin S = 1, respectively. For intermediate
coupling and weak-to-intermediate hybridization, there is an orbital-
selective phase, where only the narrow band localizes, even at finite
hybridization. The color scale represents the interorbital spin-spin
correlation function CWN , which is negative for the singlet state,
and positive for the triplet. The metallic phase has a crossover from
the limit in which the screened local moment is very small (labeled
LS metal) to the one in which it is very close to the S = 1 value
favored by Hund’s coupling (HS metal). The dashed line indicates the
corresponding low-to-high-spin transition that occurs in the atomic
limit, which is a good estimator of the crossover region.
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FIG. 3. (Color online) Imaginary part of the Green’s functions
for V = 0.15, for different values of the interactions. Notice that for
U/D = 1.5 the system is in an orbital-selective Mott phase.

zone shrinks for increasing V and ultimately closes. Also, both
boundaries for the OSM transition and the Mott metal insulator
one shift towards higher interaction strengths.

Both these effects of V are easily rationalized when one
realizes that as a first approximation V acts against Hund’s
coupling J and it simply counteracts its main effects. On the
atomic spectrum the Mott gap (as long as J > V/

√
2) for

the half-filled case reads 
at = U + J − 2V . Thus J enlarges
it and this has influence on the Mott transition happening in
the lattice model [12], with a strong reduction of the critical
interaction strength Uc. V instead reduces this atomic Mott
gap and then raises the Uc in the lattice model back towards
the values that it has at small J .

As we mentioned in the Introduction, Hund’s coupling also
favors the orbital differentiation. It does so by quenching the
local interorbital fluctuations [7,12,16]. Again, the hybridiza-
tion contrasts this effect by favoring the low-spin high-orbital
angular momentum atomic states, and thus enhancing orbital
fluctuations. One can expect then that its effect will be to
reduce orbital differentiation, as it is found in this study.

The metallic phase in which electrons in both orbitals are
delocalized (i.e., excluding the OSM phase) is a Fermi liquid.
In this framework, quasiparticles have an associated weight—
measuring metallicity—which in the single-band case reads
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FIG. 4. (Color online) Quasiparticle residue as a function of U .
Solid (dashed) lines correspond to the wide (narrow) orbital.

Z−1 = [1 − ∂	(iωn)/∂(iωn)|ωn=0]. In the present multiband
case we define the orbitally resolved quasiparticle weight (i.e.,
	 and Z are matrices) as Zl = [1 − ∂	l(iωn)/∂(iωn)|ωn=0]−1.
In the noninteracting case, Zl = 1, while it vanishes approach-
ing the Mott state.

In Fig. 4 we plot the weight of the quasiparticle peak
as a function of U for each of the bands, for V = 0 and
V = 0.15. Without hybridization, Z continuously decreases
until eventually vanishing for both orbitals. However, for
finite V , the system enters the OSM phase (according to their
corresponding Green’s functions), when Z is still finite for both
orbitals (we signal this by plotting a “jump” to a zero value
for Zl in Fig. 4, to signal the insulating behavior for orbital l).
The OSM phase is also metallic, but it has been shown to be
non-Fermi liquid [19], hence the above-defined quasiparticle
weight loses its original meaning. We plot it nevertheless as it
still gives a feeling of the robustness of the metallic phase. It
is seen to still decrease and again not to vanish continuously
when approaching the Mott insulating phase, as it happens
instead for V = 0.

It is important to remark that the OSM phase just mentioned
is a physical phenomenon and not an artifact of the analysis of
the Green’s functions in the chosen basis [29]. Indeed at the
OSM transition 	NN (0) diverges, thus the determinant of the
inverse Green’s function, which is invariant under rotations,
diverges as well. This means that at least one of the zero-
frequency eigenvalues of the Green’s function will vanish,
which is what we define as an OSM phase, since it shows
that there is a specific combination of electronic excitations
without coherence [30]. The trace of the Green’s function
at zero frequency (i.e., the spectral weight at the Fermi level)
however, another basis invariant, is finite in this phase, proving
it metallic. The OSM phase is thus a genuine physical phase,
well distinct from both a normal metal and a Mott insulator.
This reflects in physical observables, which are indeed also
basis independent, such as the magnetic correlation functions
to be discussed later.

These results show sharp changes at the transitions which
seem to suggest that both the OSM transition and the metal-
Mott insulator one are first order for finite V .

The order of the metal-insulator transition has been studied
for the case V = 0 in Refs. [13,31]. These preliminary studies

showed that it may be first order for J �= 0, even at T = 0. This
issue is beyond the scope of the present work, and hence we did
not study in detail the possible coexistence of both metallic and
insulating solutions, which would be a signature of a first-order
phase transition. However, our results are consistent with a
first-order phase transition.

However, another explanation seems compatible with these
results. We will discuss in Sec. IV the nature of the ground
state within the OSM phase at V �= 0. We will point out in that
section that at the frontier where the narrow band becomes
incoherent there may simply be a sharp (in fact exponential)
lowering of the Fermi-liquid coherence temperature, without
real phase transition. However, the crossing of this character-
istic coherence scale below our numerical energy resolution
may result in a sharp change in our results, as observed,
without this implying an actual first-order phase transition
at the metal-OSM phase frontier.

A metal-insulator transition happens also upon increasing
of V at finite U , as we mentioned before. The Green’s
functions behavior in this case is akin to the evolution of
the noninteracting Green’s functions, and the nature of the
insulating state will be very similar to the band insulator found
at U = 0 and large V .

The present phase diagram bares remarkable similarities
with the one for a system of two interacting bands with
the same bandwidth and no hybridization but a crystal-field
splitting of the local energies (explored in Refs. [32] and
[33], and discussed in Ref. [11]), although the two systems
differ for both the bandwidth ratio and for the fact that the
hybridization cannot be eliminated in our system, as mentioned
in Sec. II. Common points are the re-entrant shape of the
metallic phase signaling compensation between the effects of
Hund’s coupling and hybridization/crystal field and the fact
that the insulating phases are connected through a low-spin
(LS) to high-spin (HS) transition.

Indeed a clear difference between the insulating states at
large V /small J and at large J/small V is expected because
in the atomic limit there is a level crossing at V = √

2J , and
a corresponding LS-HS transition from an S = 0 to an S = 1
ground state. By inspecting the spin-spin correlation functions
one can see how the formation of the local moment happens,
progressively, in the lattice model.

The color scale of the phase diagram of Fig. 2 represents
the value of the off-diagonal spin-spin correlation function
CWN= 〈Sz

W (0)Sz
N (0)〉. In the noninteracting case and without

hybridization, CWN= 0. As V increases, a singlet state is
favored, and therefore CWN becomes negative. In the atomic
limit, CWN = −1/4. Upon increasing interactions, which
implies an increasing J , the spin triplet state is favored instead,
and CWN becomes positive and eventually saturates, when the
system is deeply in the Mott state, to the value of the atomic
limit for the S = 1 triplet CWN= 1/12.

In Fig. 2 we also trace as a dashed line the boundary for the
LS-HS transition (V = √

2J ) for the atomic limit, in which
CWN abruptly changes from −1/4 to 1/12. Notice that in the
lattice model the transition is replaced by a smooth crossover,
yet well represented by the atomic limit result.

In Fig. 5 we plot all the (z-axis) components of the
orbitally resolved spin-spin instantaneous correlation function
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FIG. 5. (Color online) Spin-spin correlation functions.

〈Sz
α(0)Sz

β(0)〉 (α,β =N,W ), and their sum 〈S2
z tot(0)〉 (with

Sz tot = SzW + SzN ), in a typical case.
The 〈S2

z tot〉 illustrates the saturation to the atomic value
for a spin-1 〈S2

z tot〉 = 2/3 in the Mott insulating phase. Once
decomposed one sees that the two orbitals also form an
instantaneous local moment saturating each to the value for a
spin-1/2 〈S2

z tot〉 = 1/4. However, they do this independently,
owing to the existence of the OSM phase, in which one orbital
has an atomic instantaneous local moment, while the moment
in the other orbital is still reduced by quantum fluctuations.

Regardless of the instantaneous local moment then, when
a metallic phase is formed for both orbitals, the local moment
is quenched and reduces to zero on a time scale inversely
proportional to the Kondo temperature, in order to establish
the Fermi-liquid coherence. One expects however quite some
difference in the Kondo scale depending on the size of the
instantaneous local moment to be screened. Indeed screening
a high-spin impurity results in an exponential reduction of
the Kondo temperature, compared to a low-spin one (see
discussion in Ref. [11] and references therein). The system
under examination shows a gradual crossover between the two
extreme cases of screening a very small local moment (close
to the spin-singlet state), named “LS metal,” and screening
the S = 1 local moment induced by Hunds coupling named
“HS metal.” Thus very different coherence temperatures are
expected in the different parts of the phase diagram.

Finally, in the OSM phase the instantaneous local moment
is only partially screened. A residual spin-1/2 remains
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FIG. 6. (Color online) Wide orbital self-energy in the metallic
(U/D = 0.7) and selective (U/D = 1.5) phases (for V/D = 0.2).
Red dashed line shows the fit with the non-Fermi-liquid 	 of Eq. (6),
and the green dashed one corresponds to a polynomial fit. The inset
shows that below the critical U of the metallic-OSP transition, the
polynomial fit, corresponding to the Fermi-liquid solution, is better
than the logarithmic one, and the opposite behavior starts at the
transition, suggesting that the metal is in a non-Fermi-liquid state.

unscreened at long times, which acting as a scatterer prevents
the Fermi-liquid behavior from being realized. Indeed the bad
metallic behavior [34] following from this non-Fermi-liquid
(NFL) physics of the OSM phase has been characterized as
having an anomalous self-energy similar to the one of the
ferromagnetic Kondo model at low energy [19,35]:

Im	NFL
W (iωn) = −a

ln2(iωn) + b ln(iωn) + c
. (6)

The self-energy of the itinerant component, in the OSM
phase, is indeed well fit by Eq. (6), as shown in Fig. 6,
where we also show a polynomial (i.e., Fermi liquid, FL)
fit of the self-energy for the case U/D = 0.7 which lies
inside the wholly metallic state. In the inset of Fig. 6 we plot
χ2 = ∑Nmax

n {Im[	W (iωn)] − Im[	α
W (iωn)]}2, for α = NFL

and α = FL. In both cases we used three parameters to fit and
use the same number of fitting points (Nmax = 6). From this
plot we can clearly see that starting from the weak coupling
limit, the Fermi-liquid fit is better up to U = UOSP, where
the χ2 curves cross. Increasing U further, the logarithmic
fit of Eq. (6) becomes more representative of the metallic
state, signaling the non-Fermi-liquid state. We expect that the
differences in the two χ2 would be even larger if we had access
to lower energy scales.

B. Doping the orbital-selective Mott phase: Pseudogap behavior

In this section we wish to characterize further the orbital-
selective phase of the phase diagram of Fig. 2. Instead of
plotting the spectral function, that within the ED is discretized,
we explore the charge dependence on the chemical potential,
that gives an approximate account of the excitation spectrum
across the gap, yet it is smooth in our method.

The total and orbitally resolved population is plotted in
Fig. 7 as a function of the chemical potential, for U/D = 1.4
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FIG. 7. (Color online) Charge density as a function of the chem-
ical potential for U/D = 1.4. Circles (squares) correspond to V = 0
(V = 0.1). The solutions for μ < 0 were obtained by a particle-hole
symmetry.

and both for V = 0 and for V/D = 0.1, values within the
OSM phase of the phase diagram.

From Fig. 7 we see that the system behaves metallic for both
values of the hybridization, since this state is characterized
by a monotonically increasing total number of particles as μ

increases. From the same plot we can also see that the same
qualitative behavior occurs in the wide orbital, so the wide
band is metallic.

The behavior of the narrow band is more subtle, and it
is also plotted in Fig. 7(b) in a different scale. While for
V = 0 this band has a clear plateau at n = 1, which signals the
strong suppression of charge fluctuations in the incompressible
Mott state [κN (μ) = ∂nN/∂μ = 0], in the hybridized case the
narrow band also has a strong reduction of charge fluctuations
but no plateau develops. Hence, this band displays strong
features of a Mott state, namely the reduction of the charge
fluctuations below some critical μc(V ) and its insulating
behavior at μ = 0 according to the Green’s function, but,
however, no gap opens. We identify this anomalous state as
the opening of a pseudogap in the narrow band.

This pseudogap is clearly seen by looking at the compress-
ibility on this band [which is simply the derivative of the curves
in Fig. 7(b)], reported in Fig. 1. Without hybridization there
is a well-defined incompressible state, while for finite V the

compressibility gets strongly reduced without vanishing. Still,
this drop is very sharp, and the pseudogap maintains clear
edges.

Hence in both cases a clear signature of the OSM phase
should be visible in the compressibility of the system.

IV. DISCUSSION: THE ACTUAL GROUND STATE
IN THE OSMP

In Sec. III A we showed by analyzing the Green’s functions
that in the two-band Hubbard model under examination,
with sizable Hund’s coupling J , the narrowest band becomes
insulating above a critical U , while the widest one remains
metallic, thus realizing an OSM phase both in absence and
presence of hybridization between the bands. Furthermore, the
abrupt change in the quasiparticle weight of Fig. 4 suggests
that the metal-insulator transition in each band might be of
first order for finite V .

This problem was partially addressed in previous studies.
Koga et al. [16] showed that for a sizable value of V the
OSM phase is turned back into a fully metallic one with
both orbitals delocalized, which is indeed compatible with
our results. Relatively high temperature and a large mesh of
values of V however prevent the use of data in Ref. [16] for
deciding if the OSM phase is replaced by a heavy-fermionic
behavior for any value of hybridization, however small. In
a previous work [17] of one of the authors and co-workers it
was suggested that the heavy fermionic behavior would always
replace the OSM phase at any finite V , but that the coherence
temperature established would in many cases be exponentially
reduced compared to the bare one. However, the method used
in Ref. [17] to address this issue is a slave-variable mean field,
which only captures correctly Fermi-liquid phases, thus its
bearing on the realization of the incoherent, pseudogapped,
non-Fermi-liquid phase we study in the present work is
questionable. Such a phase is probably described within
these approximation as a Fermi-liquid phase with a very
small coherence scale, ultimately preventing the method from
distinguishing between a pseudogapped and a heavy-fermionic
phase.

Our present analysis indeed shows that a substantial region
of parameters does exists where V is not big enough to restore
a fully coherent metallic phase.

However, a word of caution is in order. Despite that DMFT
can correctly capture NFL phases like the one we present
in this article, it is important to remark that within the exact
diagonalization method of solution of DMFT, that we use here,
the resolution of small energy scales is finite, as mentioned
in Sec. II, and thus an extremely small Kondo scale can go
undetected.

Indeed the resolution is determined by the number of sites
in the bath and from the mesh in Matsubara frequencies we
use in the implementation of the self-consistency conditions
of Eq. (4). The fictitious inverse temperature β parametrizing
this mesh cannot be brought to values that would uncover
the discretized nature of the baths [22,36]. By systematically
enhancing this resolution to the best of our possibilities, we
found these phases to be stable, which implies that the phase
diagram of Fig. 2 is accurate up to a very small energy scale,
compared to the bare scales of the model (DW,DN,U,J,V ).
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FIG. 8. (Color online) Imaginary part of the Green’s functions
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In Fig. 8 we plot the Green’s functions in the orbital-selective
phase, with different values of β, where we show that when we
increase the low energy resolution (increase β), the tendency
of our results remains unchanged. We also considered 10 to 12
sites in the exact diagonalization calculations, and we obtain
very similar results, with only a small discrepancy in the
critical values [37].

Despite all these considerations, this method does not let us
assert definitely the absence of a smaller scale which can make
the orbital-selective phase disappear as put forth in Ref. [17].
To this end, a numerical renormalization group calculation of
this model would be appropriate.

Anyway the solid result of our study is that a boundary
in the space of parameters marks a sharp change of the
metallic behavior for all practical purposes (meaning that if
a conventional metal is restored in the place of the OSM phase
this will probably happen outside of the temperature range of
experimental interest). Hund’s coupling overall reduction of
coherence scales certainly enhances the effect.

One may argue that for smaller Hund’s coupling ratio
J/U this scenario is less likely, and it is indeed true that
the OSM phase disappears below a critical ratio [7,17,25].
However, this critical ratio gets lower for more extreme
bandwith ratios (and eventually one always has an OSM phase
for DN/DW � 0.2). We have performed a similar analysis
for a model with DN/DW = 0.15 and J/U = 0.1 and we find
analogous results, with a large OSM phase both in absence and
presence of local hybridization, and as robust to refinements
of the numerical resolution as the one reported in the present
work.

Regardless of the existence or not of a tiny Fermi-liquid
scale below our resolution also in the OSM phase, an appealing
description of the switching between the two metallic phases
can be given in terms of the two screening channels of the
local moment forming in the more correlated “N” orbital
[29]. Indeed there is a screening due to the electrons hopping
from neighboring N orbitals, and a screening due to the
electrons in the W orbital (this dichotomy can be tracked
also in the magnetic susceptibilities [38]). The former can
be seen as of the “Hubbard” type, meaning that the effective
bath from which the electrons hop on the impurity in the

DMFT description [which reads t2
NGNN (ω)] has a density of

states that is directly related to the Green function in the N

orbital as in the DMFT description of the single-band Hubbard
model. If V is small this screening channel will prevail
and as in the Hubbard model the self-consistent adaptation
of the bath makes the Kondo energy scale (roughly the
quasiparticle weight in our framework) linear, as we observe in
the Fermi-liquid phase in Fig. 4. The second screening channel
is of the periodic Anderson model (PAM) type {it reads,
neglecting correlations involving the electrons in the W orbital,
[V + tN tWGNW (ω)]2/[ω − t2

WGWW (ω)]} and, when the first
channel becomes less effective with the increasing correlation
strength, tends to take over. This marks the switching from
a Hubbard-type physics to a PAM-type physics, in which
the bath screens the impurity in a way similar to a non-
self-consistent impurity, i.e., the Kondo scale is exponential
in both U,V . In absence of Hund’s coupling this switching
would mean that the quasiparticle scale changes from the linear
form to an exponential form, compatible also (in particular for
small V ) with a very quick crossing of our resolution and a
consequent sudden loss of the Fermi-liquid behavior, and thus
with our results. However, the Hund’s coupling adds further
complexity to the problem. Indeed it may only lower further
the Kondo scale, thus making the Fermi-liquid phase even
more unreachable and thus favoring the OSMT. However, as
investigated in Ref. [39], an NRG study in an extended periodic
Anderson model with Hund’s coupling (i.e., our model with
tW = 0, a sensible approximation of the present OSM phase)
in presence of J there may be a critical hybridization,
due to the competition between Hund’s ferromagnetic and
the hybridization’s antiferromagnetic Kondo couplings of the
localized orbital with the itinerant electrons, below which the
screening does not happen. If this is the case, the OSM phase
may be a genuine zero-temperature non-Fermi-liquid phase.

Finally, if Kondo screening actually sets in at an extremely
low temperature, two possible ground states are still possible,
as suggested by Koga et al. [40]. Indeed, as depicted in Fig. 9,
either a heavy-fermionic metallic ground state is realized or a
Kondo insulator, where a tiny band gap is opened between the

FIG. 9. Possible zero-temperature phases in cases where coher-
ence is restored at T = 0. Solid lines correspond to the hybridized
bands, while dotted lines correspond to the case V = 0. As interac-
tions increase, the bands get narrower and the effective hybridization
decreases. When interactions are high enough, depending on the value
of 	NW (0), either (i) a Mott-like gap opens in the narrow band,
renormalizing Veff = 0, and only one band crosses the Fermi level; or
(ii) a lower energy scale arises, opening a Kondo gap for any Veff �= 0.

085127-8



HYBRIDIZING LOCALIZED AND ITINERANT . . . PHYSICAL REVIEW B 89, 085127 (2014)

coherent bonding and antibonding bands, owing to the integer
filling.

It is easy to show [17] that the criterion for the opening of
such a gap is Eq. (5), in which electronic interactions only enter
through 	NW (0). If |V + 	NW (0)| is small enough [which
most probably always happen at small enough V since, for
vanishing V , 	NW (0) should be linear in V ] a heavy metal is
realized, otherwise a Kondo band gap is opened. We cannot
decide which of the ground states is realized in our case
because the extrapolation of 	NW to zero frequency cannot
be done from our numerical data, which are representative of
the incoherent phase in any event. If coherence is established
below our resolution, one expect a change of behavior in all
self-energies and thus numerical data below our resolution
should be used to correctly extrapolate 	NW (0).

V. CONCLUSIONS

In this paper we explored the effect of hybridization on the
orbital-selective Mott phase, through a study of a two-band
Hubbard model with different bandwidths DW,DN for the two
bands and local multiorbital interactions with Hund’s coupling.

We have explored the U -V phase diagram for a typical
choice DN/DW = 0.5,J = U/4 for which the OSM phase
is realized and have shown that this phase is stable, for all
practical purposes, under small to intermediate hybridization
(roughly as long as the local high-spin state is realized in this
model, i.e., as long as V �

√
2J ).

Furthermore, we have shown that the gap to charge
excitations in the localized band typical of the OSM phase is
turned into a pseudogap by the onset of hybridization, where
incoherent excitations bring in spectral weight all the way
down to zero energy. The pseudogap is clearly defined and a
clear signature should be visible in the total compressibility of
the system.

Generally speaking, the outlined “recipe for pseudogap”
should be actually more general than the somewhat specific
model that we explored. Indeed other studies [29,41,42] of
hybridized localized and itinerant electrons have reported
similar features in the spectrum. These studies together with
ours seem to support a common scenario in which hybridizing
localized and itinerant electrons can easily produce a metallic
phase with a very low coherence temperature, as it happens in
heavy fermions. On top of this the presence of an exchange
coupling (Hund’s coupling in our case, RKKY coupling in
Refs. [41,42]) in general further reduces the coherence scale at
an extremely low temperature and can even stabilize a genuine
OSM phase at zero temperature in some range of parameters.
When this happens we have shown that a clear signature in
the spectrum and compressibility is found in the form of a
pseudogap.

Experimentally a pseudogap has been found and thoroughly
studied in underdoped cuprate superconductors. Establishing
a precise link between our simple model and the vast body
of literature on the subject is beyond the scope of the present

article, however we quickly outline here why our study may
have a bearing on it. As mentioned in the Introduction the
pseudogap in cuprates has been recast in the language of se-
lective Mott transition in momentum space [18–21], meaning
that the selective localization that we study here in orbital
space may instead happen for the electrons in the different
parts of the Brillouin zone. In these studies—that use the
single-band Hubbard model and capture all the main features
of the low-temperature phase diagram of the cuprates—the
electronic correlations responsible for this phenomenology are
calculated through a multisite (or equivalently multiorbital)
cluster model. The cluster Hamiltonian has a form very
similar to the standard Kanamori Hamiltonian we use here.
Supplementary terms have the form of scattering vertex which
may be treated, as a first approximation, as hybridization terms
between the orbitals. We suspect then that the rounding of the
gap in k-resolved spectrum may be the result of our “recipe”
when applied to the cluster Hamiltonian, thus rounding the
gap of the k-space selective Mott transition into the pseudogap
observed in cuprates.

More concretely, a recent ARPES study [43] of Fe1.06Te
reported the appearance of a pseudogap on the electron
pockets, while the hole pockets have the expected intensity
at the Fermi surface. We deem this phenomenon a clear
manifestation of the orbital selective coherence suggested to
happen in iron-based superconductors (see Ref. [9] for an
experimental and theoretical overview). Among them FeTe is
considered the most strongly correlated [44,45], and where
the OSM phase is most likely to be realized. Clearly the
high-temperature (i.e., T � 80 K) paramagnetic phase is bad
metallic and shows selective coherence on the different Fermi
sheets (besides the pseudogap on the electron pocket, the sheet
mainly coming from the iron dxy orbital, the more correlated
in all studies, is not observed at all). This strong departure
from Fermi-liquid transport characterized in Ref. [19] and the
pseudogap studied in this work are signatures expected in an
OSM phase at finite temperature.

Let us finally remark that the physics due to the hybridiza-
tion that we report in this article may also occur in the presence
of nonlocal hybridization (instead of the local V considered
here), as the one considered in Ref. [46]. We performed some
calculations on that model, and we obtained similar effects
upon the onset of the nonlocal V . Hence we deem that the
pseudogap phase we report in this paper is not restricted to the
particular model we studied, but is probably a general behavior
coming from the competition between Hund’s coupling and
hybridization in the OSM phases.
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