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By making use of the Kubo formula, we calculate the conductivity of Dirac and Weyl semimetals in a magnetic
field. We find that the longitudinal (along the direction of the magnetic field) magnetoresistivity is negative at
sufficiently large magnetic fields for both Dirac and Weyl semimetals. The physical reason of this phenomenon is
intimately connected with the dimensional spatial reduction 3 → 1 in the dynamics of the lowest Landau level.
The off-diagonal component of the transverse (with respect to the direction of the magnetic field) conductivity
in Weyl semimetals contains an anomalous contribution directly proportional to the momentum-space separation
between the Weyl nodes. This contribution comes exclusively from the lowest Landau level and, as expected,
is independent of the temperature, chemical potential, and magnetic field. The other part of the off-diagonal
conductivity is the same as in Dirac semimetals and is connected with a nonzero density of charge carriers.
The signatures for experimental distinguishing Weyl semimetals from Dirac ones through the measurements of
conductivity are discussed.

DOI: 10.1103/PhysRevB.89.085126 PACS number(s): 71.30.+h, 03.65.Vf, 71.55.Ak

I. INTRODUCTION

The discovery of graphene [1], whose quasiparticle exci-
tations are described by the two-dimensional massless Dirac
equation, drew a lot of attention to the unique electronic and
transport properties of materials with a relativisticlike electron
spectrum. As a result, materials with an approximate three-
dimensional (3D) Dirac electron spectrum also moved to the
forefront of theoretical and experimental studies. Historically,
bismuth is the first condensed matter material in which the
electron states near the L point in the Brillouin zone are
described by the 3D massive Dirac equation [2–5]. It is
also known that the corresponding value of the Dirac mass
decreases when bismuth is doped with a small amount of
antimony. Moreover, such an alloy Bi1−xSbx with the antimony
concentration of about x ≈ 0.03 becomes a semimetal with
massless Dirac fermions [6,7].

Although other materials with 3D Dirac fermions can be
obtained by fine tuning the strength of the spin-orbital coupling
or chemical composition [8–12], it is difficult to control such
realizations. An interesting idea was expressed recently in
Ref. [13], where it was shown that the formation of Dirac
points can be protected by a crystal symmetry, and metastable
β-cristobalite BiO2 was suggested as a specific example of
a massless Dirac material. Later, by using first-principles
calculations and effective model analysis, the authors of
Refs. [14,15] predicted that A3Bi (A = Na, K, Rb) and
Cd3As2 should be Dirac semimetals with bulk 3D Dirac points
protected by crystal symmetry. The experimental discovery of
the 3D Dirac fermions in Na3Bi and Cd3As2 was recently
reported in Refs. [16] and [17,18], respectively. The Dirac
nature of the quasiparticles was confirmed by investigating
the electronic structure of these materials with angle-resolved
photoemission spectroscopy.

The Dirac four-component spinor is composed of two (i.e.,
left-handed and right-handed) two-component fermions. The

latter are described by the Weyl equation of the corresponding
chirality. If the requirement of inversion or time-reversal
symmetry is relaxed, the degeneracy of the dispersion relations
of the left- and right-handed Weyl modes can be lifted,
transforming the Dirac semimetal into a Weyl one. While
pyrochlore iridates [19], as well as some heterostructures of
topological and normal insulators [20], are conjectured to be
Weyl semimetals (for a review, see Refs. [21–23]), no material
at present is experimentally proved to be a Weyl semimetal.
Since magnetic field breaks time-reversal symmetry, one may
engineer a Weyl semimetal from a Dirac one by applying the
external magnetic field. One such mechanism was originally
described in the context of high-energy physics some time ago
[24] and was applied to studies of Dirac and Weyl semimetals
in Ref. [25]. It is expected that the same mechanism can be
realized in the newly discovered 3D Dirac semimetals Na3Bi
and Cd3As2 [16–18] (in addition to the magnetic field, a
necessary condition for this mechanism to operate is a nonzero
density of charge carriers).

Negative longitudinal magnetoresistivity in Weyl semimet-
als [26–28] is a consequence of the chiral anomaly [29] and
is considered in the literature as a fingerprint of a Weyl
semimetal phase. It is noticeable that in a magnetic field the
chiral anomaly is generated entirely on the lowest Landau
level (LLL) [30]. In particular, the anomaly is responsible for
pumping the electrons between the nodes of opposite chirality
at a rate proportional to the scalar product of the applied electric
and magnetic fields E · B. Recently, a negative longitudinal
magnetoresistivity [31] was observed in Bi1−xSbx alloy with
x ≈ 0.03 in moderately strong magnetic fields [32] and was
interpreted as an experimental signature of the presence of a
Weyl semimetal phase, where a single Dirac point splits into
two Weyl nodes with opposite chiralities and the separation
between the nodes in momentum space is proportional to the
applied field. As we will show in this study, however, the
observation of the negative longitudinal magnetoresistivity is
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also expected in Dirac semimetals. Therefore, negative mag-
netoresistivity alone may not be sufficient to unambiguously
distinguish between the Dirac and Weyl semimetals. Note that
a nonlocal transport can be another way of probing the chiral
anomaly in Weyl semimetals [33].

In Refs. [26–28], the magnetoresistivity in Weyl semimetals
was studied by using the semiclassical Boltzmann kinetic
equation. Since negative longitudinal magnetoresistivity is
one of the key characteristics of Weyl semimetals intimately
connected with the chiral anomaly, in this paper we derive
magnetoresistivity using the microscopic Kubo formalism,
which takes into account quantum effects. (In a special
class of gapless Dirac semiconductors with a small carrier
concentration, transverse magnetoresistivity was previously
studied in Ref. [34].) We found that the negative longitudinal
magnetoresistivity takes place not only in Weyl semimetals,
but also in Dirac ones.

As we argue in Sec. V, the origin of the negative
magnetoresistivity is intimately connected with the spatial
dimensional reduction 3 → 1 in the low-energy dynamics
dominated by the LLL. Such a dimensional reduction is
a universal phenomenon, taking place in the dynamics of
charged fermions in a magnetic field [35]. The low-energy
quasiparticles are described by the spin-polarized LLL states
and effectively have one-dimensional dispersion relations,
which depend only on the longitudinal momentum k3 and do
not contain the magnetic field at all [see Eq. (25)]. The physics
behind this phenomenon is the following. As is well known,
the transverse momenta k1 and k2 are not good quantum
numbers for quasiparticles in a magnetic field. In the dispersion
relations, such momenta are replaced by a single discrete
quantum number n, labeling the Landau levels (which have
a degeneracy proportional to the value of the magnetic field).

The consequences of the dimensional reduction are rather
dramatic in the case of relativisticlike massless fermions
because of their chiral nature: such fermions disperse only

one way in the longitudinal direction for each chirality [36].
The existence of massless chiral fermions and their high
degeneracy in the presence of a magnetic field are topologically
protected by the index theorem [37]. We find that it is this
unique nature of the low-energy states that is responsible for
the main contribution (growing linearly with the field) to the
longitudinal conductivity in Dirac/Weyl semimetals. In fact,
as we will see in the following, the special nature of the LLL
plays a profound role also in the anomalous Hall contribution
to the transverse conductivity.

Finally, we would like to mention that electric transport in
Weyl semimetals in the absence of magnetic field was studied
in Refs. [38,39]. The magneto-optical conductivity of Weyl
semimetals was investigated in Ref. [40]. Recent developments
in transport phenomena in Weyl semimetals are reviewed in
Ref. [36] focusing on signatures connected with the chiral
anomaly.

The paper is organized as follows. The model is described
and the notations are introduced in Sec. II. The quasiparticle
propagator and the spectral function are derived in Sec. III.
In Sec. IV, the general expression for the conductivity in the
Kubo formalism is obtained. The longitudinal and transverse
components of the conductivity are calculated in Secs. V
and VI, respectively. The results are summarized and the
conclusion is given in Sec. VII. For convenience, throughout
this paper, we set � = 1.

II. MODEL

The low-energy Hamiltonian of a Weyl semimetal in an
external magnetic field is given by

H (W) = H
(W)
0 + Hint, (1)

where Hint is the electron-electron interaction Hamiltonian
(since for the rest of this study the explicit form of Hint is not
important, we do not write it here) and

H
(W)
0 =

∫
d3r

[
vF ψ†(r)

(
σ · (−i∇ + eA/c − b) + b0 0

0 −σ · (−i∇ + eA/c + b) − b0

)
ψ(r) − μψ†(r)ψ(r)

]
(2)

is the Hamiltonian of the free theory, which describes two
Weyl nodes of opposite (as required by the Nielsen-Ninomiya
theorem [26]) chirality separated by vector 2b in momentum
space and by 2b0 in energy. In the above Hamiltonian, we used
the following notation: vF is the Fermi velocity, A is the vector
potential, which describes a constant magnetic field, c is the
speed of light, μ is the chemical potential, and σ = (σx,σy,σz)
are Pauli matrices. In the special case when b = 0 and b0 = 0,
the Hamiltonian (2) describes a Dirac semimetal. Note that
here we consider the simplest example of a Weyl semimetal
with a single pair of Weyl nodes, but the generalization to a
larger number of Weyl nodes is straightforward.

We would like to remind that while the momentum shift 2b
is odd under the time-reversal symmetry, the energy shift 2b0 is
odd under the inversion symmetry (parity). The experimentally
discovered 3D semimetals, mentioned in the Introduction, are
all Dirac-type semimetals that preserve both time reversal and

parity. When a Weyl semimetal is produced from a Dirac one
by applying an external magnetic field, parity will remain
preserved, unlike time reversal, which is explicitly broken by
the magnetic field. In this work, we consider only this type of
Weyl semimetals. In the most general case, on the other hand,
the Weyl points can be shifted in energy. The effect of such
a shift is not immediately obvious because of the anomaly-
related contributions that need a very careful analysis. Some
of the subtleties (although in a slightly different context) have
been discussed in Refs. [41,42]. These types of Weyl systems
are beyond the scope of this paper and will be considered
elsewhere.

In the case when a Dirac semimetal is formed in a multilayer
heterostructure, composed of alternating layers of topological
and normal insulator materials without magnetic impurities,
a nonzero magnetic field will turn it into a Weyl semimetal
via the Zeeman interaction [21]. The corresponding induced
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separation between the Weyl nodes in momentum space is
determined by b = −gμBB, where B is the magnetic field and
g is the spin g factor. Note that the typical values of the g

factor in topological insulators are rather large, g � 50 [21].
In bismuth, on the other hand, the spin interaction with the
magnetic field is already accounted for by the Dirac equation
of the low-energy effective theory [3] (recall that the spin g

factor is g = 2 in the Dirac equation). The same is true also
for the Bi1−xSbx alloy with a low concentration of antimony
[43] as well as for the recently discovered 3D Dirac semimetals
Na3Bi and Cd3As2 [16–18]. In all of these materials, therefore,
there is no additional Zeeman interaction that would be able to
generate the separation in momentum space between the left-
and right-handed modes. However, as argued in Ref. [25], there
is a different mechanism that transforms Dirac semimetals
of this type into Weyl semimetals. The new mechanism was
originally proposed in the context of high-energy physics
[24]. It is driven by the electron-electron interaction in matter
with a nonzero density of charge carriers and has a subtle
connection with the chiral anomaly. The dynamically induced
chiral shift is directed along the magnetic field and its
magnitude is determined by the quasiparticle charge density,
the strength of the magnetic field, and the strength of the
interaction.

Before proceeding with the analysis, we find it very
convenient to introduce the four-dimensional Dirac matrices
in the chiral representation:

γ 0 =
(

0 −I

−I 0

)
, γ =

(
0 σ

−σ 0

)
, (3)

where I is the two-dimensional unit matrix. In this notation,
the free Weyl Hamiltonian (2) for b0 = 0 takes the following
form:

H
(W)
0 =

∫
d3r ψ̄(r){−ivF [γ · (∇ + ieA)]

− (b · γ )γ 5 − μγ 0}ψ(r), (4)

where, by definition, ψ̄ ≡ ψ†γ 0 is the Dirac conjugate spinor
field and the matrix γ 5 is

γ 5 ≡ iγ 0γ 1γ 2γ 3 =
(

I 0
0 −I

)
. (5)

As it is clear from the first term in the free Hamiltonian (2), the
eigenvalues of γ 5 correspond to the node (chirality) degrees
of freedom.

III. PROPAGATOR AND SPECTRAL FUNCTION

The inverse propagator in a Weyl semimetal can be written
in the following form:

iG−1(u,u′) = [(i∂t + μ)γ 0 − vF (π · γ )

+ vF (b · γ )γ 5]δ4(u − u′), (6)

where u = (t,r) and π ≡ −i∇ + eA/c is the canonical mo-
mentum. In order to derive the propagator G(u,u′) in the
Landau-level representation, we invert G−1(u,u′) in Eq. (6)
by using the approach described in Appendix A of Ref. [44].
The result takes the following form:

G(u,u′) = ei�(r⊥,r′
⊥)Ḡ(u − u′), (7)

Ḡ(t − t ′; r − r′) =
∫

dω d3k
(2π )4

e−iω(t−t ′)+ik·(r−r′)Ḡ(ω; k), (8)

where �(r⊥,r′
⊥) = −eB(x + y ′)(x − y ′)/2 is the Schwinger

phase [45] for the vector potential in the Landau gauge A =
(0,Bx,0), which describes the magnetic field B that points in
the +z direction. The propagator is described by two separate
Weyl node contributions, i.e.,

Ḡ(ω; k) =
∑
χ=±

Ḡ(χ)(ω; k)P (χ)
5 , (9)

where the chiral shift is assumed to be along the direction of
the magnetic field, i.e., b = (0,0,b), P (χ)

5 ≡ 1
2 (1 + χγ 5) are

the Weyl node (chirality) projectors, and

Ḡ(χ)(ω; k) = ie−k2
⊥l2
∑
λ=±

∞∑
n=0

(−1)n

E
(χ)
n

{[
E(χ)

n γ 0 − λvF (k3 − χb)γ 3
]
[P−Ln(2k2

⊥l2) − P+Ln−1(2k2
⊥l2)]

+ 2λvF (k⊥ · γ ⊥)L1
n−1(2k2

⊥l2)
} 1

ω + μ − λE
(χ)
n

. (10)

Here, Lα
n(z) are the generalized Laguerre polynomials, E(χ)

n = vF

√
(k3 − χb)2 + 2n|eB|/c is the energy in the nth Landau level,

k⊥ = (k1,k2) is the transverse pseudomomentum, P± ≡ 1
2 (1 ± is⊥γ 1γ 2) are spin [or pseudospin if the Pauli matrices in the free

Hamiltonian (2) are pseudospin matrices] projectors, and l = √
c/|eB| is the magnetic length. By definition, s⊥ = sign(eB) and

Lα
−1 ≡ 0.
The spectral function is given by the difference of the advanced and retarded propagators, i.e.,

A(ω; k) = 1

2πi
[Ḡμ=0(ω − i0; k) − Ḡμ=0(ω + i0; k)] ≡

∑
χ=±

A(χ)(ω; k)P (χ)
5 , (11)

and in the case under consideration equals

A(χ )(ω; k) = ie−k2
⊥l2
∑
λ=±

∞∑
n=0

(−1)n

E
(χ)
n

{[
E(χ)

n γ 0 − λvF (k3 − χb)γ 3][P−Ln(2k2
⊥l2) − P+Ln−1(2k2

⊥l2)]

+ 2λvF (k⊥ · γ ⊥)L1
n−1(2k2

⊥l2)
}
δ
(
ω − λE(χ)

n

)
. (12)
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In the calculation of conductivities, we have to take into account that quasiparticles have a nonzero decay width (or equivalently,
a finite scattering time). In order to model the corresponding effects, we replace the δ function in the spectral function (12) by a
Lorentzian function, i.e.,

δ
(
ω − λE(χ)

n

)→ 1

π

�n(
ω − λE

(χ)
n

)2 + �2
n

. (13)

Thus, we obtain

A(χ)(ω; k) = ie−k2
⊥l2

π

∑
λ=±

∞∑
n=0

(−1)n

E
(χ)
n

{[
E(χ)

n γ 0 − λvF (k3 − χb)γ 3
]
[P−Ln(2k2

⊥l2) − P+Ln−1(2k2
⊥l2)]

+ 2λvF (k⊥ · γ ⊥)L1
n−1(2k2

⊥l2)
} �n(

ω − λE
(χ)
n

)2 + �2
n

. (14)

As is clear, the phenomenological modeling of the spectral
functions is not complete without the calculation of the
decay widths of quasiparticles in all Landau levels. The
corresponding calculation of �n due to disorder/interaction
will be very important for quantitative studies. That, however,
is beyond the scope of this study, which aims at revealing
the qualitative features of the magnetotransport characteristics
in Weyl and Dirac semimetals. We expect, however, that
the decay width in the LLL should be smaller than (or
at most the same as) the decay widths in higher Landau
levels. As soon as this assumption holds, our qualitative
results should remain valid, i.e., the negative longitudinal
magnetoresistivity will be realized in both Weyl and Dirac
semimetals.

IV. KUBO FORMULA

According to the Kubo linear-response theory, the direct
current conductivity tensor

σij = lim
�→0

Im �ij (� + i0; 0)

�
(15)

is expressed through the Fourier transform of the current-
current correlation function

�ij (�; 0)

= e2v2
F T

∞∑
k=−∞

∫
d3p

(2π )3
tr[γ iḠ(iωk; p)γ j Ḡ(iωk − �; p)].

(16)

Note that this function is given in terms of the translation-
invariant part of the quasiparticle Green’s function. By making
use of the spectral representation for the Green’s function

Ḡ(iωk; p) =
∫ ∞

−∞

dω A(ω; p)

iωk + μ − ω
, (17)

we obtain the following standard representation for the current-
current correlation function:

�ij (� + i0; 0) = e2v2
F

∫
dω

∫
dω′ nF (ω) − nF (ω′)

ω − ω′ − � − i0

×
∫

d3k
(2π )3

tr[γ iA(ω; k)γ jA(ω′; k)], (18)

where nF (ω) = 1/[e(ω−μ)/T + 1] is the Fermi distribution
function.

In the expression for the diagonal components of the
current-current correlation function (18), the traces in the
integrand are real [see Eqs. (A15) and (A17) in Appendix A].
Therefore, in order to extract the imaginary part of �ii(� +
i0; 0), we can use the identity

1

ω − ω′ − � − i0
= P 1

ω − ω′ − �
+ iπδ(ω − ω′ − �).

(19)

Taking this into account in Eq. (18) and using the definition
in Eq. (15), we derive a much simpler and more convenient
expression for the diagonal components of the conductivity
tensor:

σii = −πe2v2
F

∑
χ=±

∫
dω

4T cosh2 ω−μ

2T

×
∫

d3k
(2π )3

tr
[
γ iA(χ)(ω; k)γ iA(χ)(ω; k)P (χ )

5

]
. (20)

(Here there is no sum over index i.)
The calculation of the off-diagonal components of the

transverse conductivity σ12 = −σ21 is complicated by the fact
that the corresponding traces in Eq. (18) are imaginary [see
Eq. (A16) in Appendix A]. In this case, it is convenient
to rewrite the expression for the current-current correlation
function as follows:

�ij (� + i0; 0)

= e2v2
F

∑
χ=±

∫
d3k

(2π )3

∫
dω nF (ω)

× tr
[
γ iA(χ)(ω; k)γ j Ḡ

(χ)
μ=0(ω − � − i0; k)P (χ )

5

+ γ iḠ
(χ)
μ=0(ω + � + i0; k)γ jA(χ)(ω; k)P (χ )

5

]
, (21)

where we used Eq. (17) at μ = 0 in order to eliminate one of
the energy integrations. By substituting this result into Eq. (15)
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and taking the limit � → 0, we obtain

σij = e2v2
F

∑
χ,=±

Im
∫

d3k
(2π )3

∫
dω nF (ω)

× tr

[
γ i

dḠ
(χ)
μ=0(ω + i0; k)

dω
γ jA(χ)(ω; k)P (χ)

5

− γ iA(χ)(ω; k)γ j
dḠ

(χ)
μ=0(ω − i0; k)

dω
P (χ)

5

]
. (22)

In principle, this is valid for both the diagonal and off-
diagonal components. In the case of the diagonal components,
however, this is equivalent to the much simpler expression in
Eq. (20). In order to show their equivalency explicitly, one
needs to integrate the expression in Eq. (22) by parts and
use the definition for the spectral function in Eq. (11). In
the calculation of the off-diagonal components σij , only the
representation in Eq. (22) is valid.

Before concluding this section, it may be appropriate to
mention that our analysis of the conductivity in Dirac/Weyl
semimetals in the presence of the magnetic field does not take

into account the effect of weak localization/antilocalization
[46,47]. (For a recent study of weak localization and an-
tilocalization in 3D Dirac semimetals, see Ref. [48].) The
corresponding quantum interference effects play an impor-
tant role in weak magnetic fields and can even change
the qualitative dependence of the conductivity/resistivity
on the magnetic field. This expectation is also supported
by the analysis of the experimental results [32], where the signs
of weak antilocalization are observed in weak magnetic fields.
While the physics behind this effect is very interesting, it is not
of prime interest for the purposes of our study here. Indeed, in
the case of moderately strong magnetic fields considered, the
effect of the weak antilocalization is not expected to modify
the qualitative behavior of the magnetoresistance.

V. LONGITUDINAL CONDUCTIVITY

As we discussed in the Introduction, the longitudinal
conductivity is of special interest in Weyl semimetals because,
as first suggested in Ref. [26], it may reveal a unique behavior
characteristic for these materials. Using Eq. (20), we find that
the longitudinal conductivity is given by

σ33 = e2v2
F

24π3l2T

∑
χ

∞∑
n=0

∫
dω dk3

cosh2 ω−μ

2T

�2
n

[
[ω − s⊥χvF (k3 − χb)]2 + 2nε2

L + �2
n

]2
[(

ω − E
(χ)
n

)2 + �2
n

]2[(
ω + E

(χ)
n

)2 + �2
n

]2

+ e2v2
F

24π3l2T

∑
χ

∞∑
n=1

∫
dω dk3

cosh2 ω−μ

2T

�2
n

[
[ω + s⊥χvF (k3 − χb)]2 + 2nε2

L + �2
n

]2
[(

ω − E
(χ)
n

)2 + �2
n

]2[(
ω + E

(χ)
n

)2 + �2
n

]2

− e2v2
F

π3l2T

∑
χ

∞∑
n=1

∫
dω dk3

cosh2 ω−μ

2T

�2
nω

2nε2
L[(

ω − E
(χ)
n

)2 + �2
n

]2[(
ω + E

(χ)
n

)2 + �2
n

]2 , (23)

where εL ≡ vF /l ≡ vF

√|eB|/c is the Landau energy scale.
Before analyzing the complete expression, it is instructive

to extract the LLL contribution σ
(LLL)
33 to the longitudinal

conductivity. It is given by the following exact result:

σ
(LLL)
33 = e2v2

F

24π3l2T

∑
χ

∫
dω dk3

cosh2 ω−μ

2T

× �2
0[

[ω + s⊥χvF (k3 − χb)]2 + �2
0

]2

= e2vF

4π2l2�0
= e2vF |eB|

4π2c�0
. (24)

This is a topological contribution associated with the chiral
anomaly, which is generated entirely on the LLL in the
presence of a magnetic field [30]. It is completely independent
of the temperature and the chemical potential. This result
agrees also with the corresponding result obtained by using
the semiclassical Boltzmann kinetic equation in Refs. [26–28].
By comparing the expression in Eq. (24) with those in
Refs. [26–28], we see that the quasiparticle width �0 is related
to the collision time as follows: �0 = �/τ .

It is interesting that the origin of the topological contribution
in Eq. (24) is intimately connected with the spatial dimensional
reduction 3 → 1 in the LLL dynamics [35]. The dimensional

reduction of the LLL states can be made explicit by noting that
the propagator of the corresponding quasiparticles of given
chirality χ (Weyl node), according to Eq. (10), is given by

Ḡ
(χ)
LLL(ω,k)

= ie−k2
⊥l2 (ω + μ)γ 0 − vF (k3 − χb)γ 3

(ω + μ)2 − v2
F (k3 − χb)2

(1 − is⊥γ 1γ 2).

(25)

This propagator implies that the LLL modes are characterized
by a one-dimensional form of the relativisticlike dispersion
relation ω(χ) = −μ ± vF (k3 − χb), which is independent of
the magnetic field. The final expression for the topological con-
tribution is proportional to the magnetic field only because the
LLL density of states is determined by the strength of the field.

The remaining higher Landau level (HLL) contribution
to the longitudinal conductivity is given by the following
expression:

σ
(HLL)
33 = e2v2

F

4π3l2T

∞∑
n=1

∫
dω dk3

cosh2 ω−μ

2T

× �2
n

[(
ω2 + E2

n + �2
n

)2 − 4nε2
Lω2

]
[
(ω − En)2 + �2

n

]2[
(ω + En)2 + �2

n

]2 , (26)
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FIG. 1. (Color online) Longitudinal conductivity σ33 at zero temperature as a function of the magnetic field. The solid line shows the
complete result, the dashed line shows the contribution without the lowest Landau level, and the dotted line shows the topological contribution
of the lowest Landau level alone. The quasiparticle width in higher Landau levels is � = 0.1μ (left panels) and � = 0.2μ (right panels). The
LLL quasiparticle width is the same (upper panels) or half (lower panels) the width in higher Landau levels.

where En = vF

√
k2

3 + 2n|eB|/c. Note that the integration
over k3 in the last expression can be performed analytically.
Moreover, in the limit of zero temperature, the remaining
integration over ω can be performed as well. The correspond-
ing explicit results are presented in Eqs. (B2) and (B3) in
Appendix B.

The numerical results for the longitudinal magnetoconduc-
tivity as functions of v2

F |eB|/μ2c are plotted in Fig. 1 for
two fixed values of the quasiparticle widths in the higher
Landau levels, i.e., � = 0.1μ (left panels) and � = 0.2μ

(right panels), and with the two possible choices of the
LLL quasiparticle width �0, i.e., the same (upper panels)
or two times smaller (lower panels) than the width in the
higher Landau levels. The LLL contribution is shown by the
red dotted line, the HLL contribution is shown by the blue
dashed line, and the complete expression for the longitudinal
magnetoconductivity σ33 = σ

(LLL)
33 + σ

(HLL)
33 is shown by the

black solid line. Leaving aside the characteristic Shubnikov–de
Haas oscillations, we see that the HLL contribution has an
overall tendency to decrease with increasing the field. In spite
of that, the total longitudinal magnetoconductivity, which also
includes the linearly increasing topological LLL contribution,
has the opposite tendency.

Taking into account that σ13 = σ31 = σ23 = σ32 = 0 and
using σ33 calculated above, we also find the longitudinal
magnetoresistivity. It is given by ρ33 = 1/σ33. The corre-

sponding numerical results are plotted in Fig. 2 as functions
of v2

F |eB|/μ2c. Oscillations of magnetoresistivity connected
with the Shubnikov–de Haas effect are clearly seen in the
left panels in Fig. 2, which show the results for a smaller
value of the quasiparticle width � = 0.1μ in higher Landau
levels. The oscillations in the case of twice as large width
� = 0.2μ are not as well pronounced. The longitudinal
magnetoresistivity in the case with the LLL quasiparticle width
two times smaller than the width of higher Landau levels
is plotted in the two lower panels. Overall, the longitudinal
magnetoresistivity decreases as the magnetic field grows.
As we mentioned in the Introduction, this phenomenon is
known in the literature as negative magnetoresistivity. As
is clear from our results in Fig. 2, the negative longi-
tudinal magnetoresistivity is exclusively due to the LLL
contribution [26] which in turn is connected with the chiral
anomaly [29].

We would like to emphasize that we did not assume in
our calculations that �0 is much less than the quasiparticle
width in higher Landau levels. This assumption was made in
semiclassical calculations in Refs. [26–28] due to the fact that
the quasiparticle width �0 in the LLL is not equal to zero
only because of the internode scatterings. This is unlike the
quasiparticle width in higher Landau levels where intranode
scatterings contribute too. Since Weyl nodes are separated
by the distance 2b in momentum space in Weyl semimetals,
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FIG. 2. (Color online) Longitudinal resistivity ρ33 at zero temperature as a function of the magnetic field. The solid line shows the complete
result, the dashed line shows the contribution without the lowest Landau level, and the dotted line shows the topological contribution of the
lowest Landau level alone. The quasiparticle width is � = 0.1μ (left panels) and � = 0.2μ (right panels). The LLL quasiparticle width is the
same (upper panels) or half (lower panels) the width in higher Landau levels.

internode scattering processes are less efficient compared to
intranode ones. Therefore, it is usually assumed that �0 is
much less than �n in higher Landau levels n � 1. Although
we did not make this assumption, we still observe the negative
longitudinal magnetoresistivity. It is also important to empha-
size another point. After the change of the integration variable
k3 → k3

new ≡ k3 − χb, the chiral shift b does not enter in the
longitudinal magnetoconductivity (23) and affects the result
only indirectly through the quasiparticle width [26]. Since our
results show that the negative longitudinal magnetoresistivity
takes place even when the LLL quasiparticle width �0 is
comparable to the width �n in the higher Landau levels, we

conclude that this phenomenon is quite robust and will also
take place in Dirac semimetals as well.

VI. TRANSVERSE CONDUCTIVITY

A. Diagonal components of the transverse conductivity

In this section, we calculate the diagonal component
σ11 = σ22 of the transverse conductivity by starting from
the definition in Eq. (20). The key intermediate steps of the
derivation are given in Appendix B. The final result takes the
following form:

σ11 = e2v2
F

4π3l2T

∞∑
n=0

∫
dω dk3

cosh2 ω−μ

2T

�n+1�n

[(
ω2 + E2

n + �2
n

)(
ω2 + E2

n+1 + �2
n+1

)− 4(vF k3)2ω2
]

[(
E2

n + �2
n − ω2

)2 + 4ω2�2
n

][(
E2

n+1 + �2
n+1 − ω2

)2 + 4ω2�2
n+1

] . (27)

In the limit of zero temperature, we can easily integrate over
ω and k3. The corresponding analytical result is presented in
Eq. (B6) in Appendix B.

The numerical results for the transverse diagonal conduc-
tivity σ11 as a function of v2

F |eB|/(μ2c) are shown in Fig. 3
for three different values of the quasiparticle width. Just as in
the case of longitudinal conductivity, the Shubnikov–de Haas
oscillations are clearly seen for smaller values of the width,
but gradually disappear when the width becomes larger. In all

cases, however, the transverse diagonal conductivity has an
overall tendency to decrease with increasing the field.

B. Off-diagonal components of the transverse conductivity

In order to calculate the off-diagonal components of the
transverse conductivity, we use Eq. (22). Let us start from
the simplest case when �n → 0. In this limit, the spectral
function (12) contains δ function and the analysis greatly
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simplifies. The corresponding result reads as

σ12 = −e2v2
F s⊥

4π2l2

∑
λ,λ′=±

∑
n

∫
dk3

nF (λ′En) − nF (λ′En+1)

(En − λEn+1)2

(
1 − λ(vF k3)2

En+1En

)

+ e2v2
F

8π2l2

∑
χ=±

∑
λ,λ′=±

∑
n,n′

∫
dk3

nF

(
λE

(χ)
n

)
E

(χ)
n E

(χ)
n′

χvF (k3 − χb)

λ′E(χ)
n − λE

(χ)
n′

(δn−1,n′ + δn,n′−1)

= −e2s⊥
4π2

∑
n

αn

∫
dk3

sinh μ

T

cosh En

T
+ cosh μ

T

− e2

8π2

∑
χ=±

χ

∫
dk3

sinh vF (k3−χb)
T

cosh vF (k3−χb)
T

+ cosh μ

T

, (28)

where αn = 2 − δn,0 is the spin degeneracy of the Landau
levels. The first term in the last line is associated with a
nonzero density of charge carriers. It comes from the occupied
Landau levels and, as expected, depends on the temperature,
chemical potential, and magnetic field. In contrast, the last
term in Eq. (28) is a topological vacuum contribution (which
is present even at μ = 0) and comes exclusively from the
lowest Landau level. Such a contribution is a specific feature of
Weyl semimetals and is directly related to the anomalous Hall
effect [49], which is produced by the dynamical Chern-Simons
term in Weyl semimetals [20,41,50–52]. This topological
(anomalous) contribution is independent of the temperature,
chemical potential, and magnetic field and equals

σ12,anom = − e2

8π2vF

T ln
cosh vF (k3−b)

T
+ cosh μ

T

cosh vF (k3+b)
T

+ cosh μ

T

∣∣∣∣∣
k3=∞

k3=−∞

= e2b

2π2
. (29)

As usual, in calculations of anomalous quantities, the integral
form of the topological contribution in the last term in Eq. (28)
should be treated with care. Indeed, while separate left- and
right-handed contributions appear to be poorly defined because
of a linear divergency, the sum of both chiralities results in a
convergent integral.

It should be noted that there is no interference between
the topological contribution and the remaining contribution
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FIG. 3. (Color online) Diagonal components of the transverse
conductivity σ11 = σ22 at zero temperature as a function of the
magnetic field. The quasiparticle width is � = 0.05μ (black solid
line), � = 0.1μ (blue dashed line), and � = 0.2μ (red dotted line).
The sum over Landau levels includes nmax = 104 levels.

due to the finite density of charge carriers. We should also
emphasize that the anomalous contribution (29) will be present
even in Dirac semimetals in a magnetic field because, as we
discussed in the Introduction, b 
= 0 is generated in Dirac
semimetals by the Zeeman interaction or dynamically [25].
The anomalous contribution (29) unambiguously distinguishes
a Weyl semimetal from a Dirac one only in the absence of a
magnetic field. In such a case, nonzero b breaks time-reversal
symmetry in Weyl semimetals and provides finite σ12 unlike
the case of Dirac semimetals where b is absent and, therefore,
time-reversal symmetry is preserved and σ12 vanishes.

In the limit of zero temperature, the complete expression
for the off-diagonal conductivity is given by the following
analytical expression:

σ12 = e2b

2π2
− e2s⊥sgn(μ)

4π2

∑
n

αn

∫
dk3θ (|μ| − |En|)

= e2b

2π2
− e2s⊥sgn(μ)

2π2vF

nmax∑
n=0

αn

√
μ2 − 2nv2

F |eB|/c, (30)

where nmax is given by the integer part of μ2/(2ε2
L) and has

the meaning of the Landau level index in the highest occupied
Landau level. The off-diagonal component of the conductivity
is plotted in Fig. 4 (green thin solid line).
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FIG. 4. (Color online) Off-diagonal components of the trans-
verse conductivity σ12 = −σ21 as a function of the magnetic field
for the vanishing chiral shift b = 0. The results are shown for
� = T = 0 (green thin solid line), � → T = 0.05μ (black solid line),
� → T = 0.1μ (blue dashed line), and � → T = 0.2μ (red dotted
line). If b 
= 0, the conductivity will simply shift by e2b/(2π 2).
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It may be appropriate to note here that the expression
for the off-diagonal component of the conductivity in the
case of quasiparticles with nonzero widths, modeled by the
Lorentzian distribution (13), is not as convenient or even
useful as the above expression. In fact, unlike the similar
expressions for the diagonal components of the conductivity,
off-diagonal component σ12 contains a formally divergent sum
over the Landau levels when �n 
= 0. This can be checked
by first explicitly calculating the integrals over the energy
and the longitudinal momentum, and then examining the
contributions of the Landau levels with large values of Landau
index n. The corresponding contributions are suppressed only
as 1/

√
n when n → ∞ and, therefore, cause a divergence

in the sum. From the physics viewpoint, the origin of the
problem is rooted in the use of the simplest Lorentzian
model (13) for the quasiparticle spectral function with
nonzero quasiparticle widths. The corresponding distribution
falls off too slowly as a function of the energy. As a
result, the Landau levels with very large n, which are
completely empty and should not have much of an effect
on the conductivity, appear to give small individual contri-
butions (suppressed only as 1/

√
n) that collectively cause a

divergence.
In order to illustrate the problem in the simplest possible

mathematical form, we can mimic the result of the integration
by the following approximate form:

σ12 � −e2s⊥
4π3

∑
n

αn

∫
dk3

[
arctan

En + μ

�
− arctan

En − μ

�

]

= − e2s⊥√
2π2vF

∑
n

αn

�μ√
2nε2

L + �2 − μ2 +
√(

2nε2
L + �2 − μ2

)2 + 4�2μ2

, (31)

which correctly captures the zero quasiparticle width approx-
imation on the one hand and shares the same problems as the
exact result obtained from the expression in the model with
the Lorentzian quasiparticle widths.
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FIG. 5. (Color online) Transverse components of resistivity ρ11 and ρ12 at zero temperature as functions of the magnetic field for b = 0
(upper panels) and b = 0.3μ (lower panels). The quasiparticle width is � = 0.05μ (black solid line), � = 0.1μ (blue dashed line), and
� = 0.2μ (red dotted line). The sum over Landau levels includes nmax = 104 levels.

Ideally, in order to better incorporate the effects of finite
widths of quasiparticles in the calculation of the off-diagonal
component of the conductivity, one has to use a better and
more realistic model for the spectral function. Such a task is
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beyond the scope of this paper. An alternative sensible way to
incorporate the effect of the finite widths of quasiparticles is
suggested by the finite-temperature expression in Eq. (28). It
is not unreasonable at all to assume that a nonzero but small
width � may be mimicked by the effects of a small temperature
T � �. Then, by making use of the expression in Eq. (28) with
the corresponding replacement, we can roughly estimate the
effect of a small nonzero width. The corresponding numerical
results for � → T = 0.05μ, � → T = 0.1μ, and � → T =
0.2μ are shown in Fig. 4 as the solid black line, the blue dashed
line, and the red dotted line, respectively.

By making use of the transverse conductivity, we calculate
all remaining nonzero components of the resistivity tensor, i.e.,

ρ11 = ρ22 = σ11

σ 2
11 + σ 2

12

, (32)

ρ12 = −ρ21 = − σ12

σ 2
11 + σ 2

12

. (33)

Using the conductivity results at zero temperature, we calculate
ρ11 and ρ12 numerically. The corresponding diagonal and off-
diagonal components of resistivity are shown as functions of
v2

F |eB|/(μ2c) in Fig. 5 for b = 0 (upper panels) and b = 0.3μ

(lower panels).

VII. CONCLUSION

In this paper, we calculate the longitudinal (along the
direction of the magnetic field) and transverse (with respect
to the direction of the magnetic field) components of the
conductivity of Dirac and Weyl semimetals in a magnetic field.
All calculations are performed in the quantum regime by using
the Kubo’s linear-response theory. We find that all components
of conductivity have the characteristic Shubnikov–de Haas
oscillations as functions of the magnetic field when the Landau
levels are well resolved (i.e., the quasiparticle widths are
sufficiently small). In both Dirac and Weyl semimetals, the
magnitudes of the transverse components of conductivity on
average decrease with increasing the field. We find that both
types of semimetals exhibit the regime of negative longitudinal
magnetoresistivity at sufficiently large magnetic fields and the
assumption [26–28] usually made that the decay width of
quasiparticles in the LLL is much smaller than that in higher
Landau levels is not necessary. The immediate implication
of this fact is that the experimental observation of negative
longitudinal magnetoresistivity cannot be used alone as an
unambiguous signature of a Weyl semimetal.

As our calculations show, the negative magnetoresistivity
in the longitudinal conductivity occurs solely due to the lowest
Landau level. This contribution has a topological origin and is
associated with the chiral anomaly. It is also intimately con-
nected with the dimensional reduction 3 → 1 in the dynamics
of the LLL in three-dimensional relativisticlike systems. While
the dispersion relation of the LLL quasiparticles is independent
of the magnetic field, the longitudinal conductivity σ33 grows
linearly with the magnetic field because it is proportional
to the LLL density of states, i.e., ∝ |eB|. In essence, this
growth is the main mechanism behind the negative longitudinal
magnetoresistivity.

The present results qualitatively agree with the quasiclas-
sical results obtained in Refs. [26–28] using the Boltzmann

equation. In general, however, the quasiclassical results are
not sufficient because the quantum corrections due to higher
Landau levels are quantitatively important in the complete
result, especially in the regime of moderately strong magnetic
fields when a few Landau levels are occupied.

We found that the longitudinal conductivity does not explic-
itly depend on the value of the shift b between the Weyl nodes.
A potential indirect dependence may enter, however, through
the corresponding dependence of the widths of quasiparticles
[26–28]. This is in contrast to the transverse transport which
does reveal an explicit dependence on the chiral shift b. Specif-
ically, the off-diagonal transverse component of conductivity
σ12 has an anomalous contribution directly proportional to
the chiral shift, but independent of the temperature, chemical
potential, and magnetic field. From our analysis, we see that
this anomalous part of conductivity is determined exclusively
by the LLL quasiparticles. It is also interesting to point out
that this contribution has exactly the same form as in a
Weyl semimetal (with an intrinsic b 
= 0) without an external
magnetic field. It is manifested via the anomalous part of the
electric current janom = e2/(2π2)b × E which is perpendicular
to the applied electric field [20,41,50–52].

In both Dirac and Weyl semimetals, the chiral shift b should
receive dynamical corrections proportional to the magnetic
field. It would be very interesting to observe such corrections
experimentally. This is not easy when Landau levels are
partially filled and an ordinary Hall effect, associated with
a nonzero density of charge carriers, is superimposed over the
anomalous Hall conductivity. However, as was demonstrated
in Ref. [16] in the case of Na3Bi, such a problem can be
circumvented by tuning the chemical potential to the Dirac
or Weyl points and, thus, eliminating the contribution due to
the ordinary Hall effect. This can be done by using surface K

doping [16]. If this works, it may also allow us to observe the
dependence of the chiral shift b on the magnetic field through
the measurements of the off-diagonal transverse conductivity.

It is also interesting to mention that an experimental
observation of a transition from a Dirac to Weyl semimetal
driven by a magnetic field has been recently reported in
Ref. [32]. By applying moderately strong magnetic fields to
the Bi1−xSbx alloy with the antimony concentration of about
x ≈ 0.03 (i.e., the regime of a massless Dirac semimetal), the
authors observed negative longitudinal magnetoresistivity and
interpreted it as an unambiguous signature of the anomaly
contribution [see Eq. (24)]. As our current study indicates,
such an observation is indeed the consequence of the anomaly,
but not necessarily of a Weyl semimetal. In fact, the only direct
indication of the Weyl nature of a semimetal is present in the
off-diagonal component of the transverse conductivity σ12 [see
Eq. (29)]. Extracting such a contribution from the experimental
data may be quite challenging, however, because the value of
the chiral shift b itself is expected to depend on the magnetic
field and the density of charge carriers [25].
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APPENDIX A: CALCULATION OF TRACES

In this Appendix, we calculate the traces that appear in the definition of the diagonal and off-diagonal components of the
conductivity [see Eqs. (20) and (22), respectively]. By taking into account that the Dirac structure of the fermion propagator in
Eq. (10) and the spectral function (14) are the same, we see that all traces have the following general structure:

Tij (a,a′) = tr
{
γ i
[
(a0γ

0 − a3γ
3)(P−Ln − P+Ln−1) + c(k⊥ · γ ⊥)L1

n−1

]
γ j
[
(a′

0γ
0 − a′

3γ
3)(P−Ln′ − P+Ln′−1)

+ c′(k⊥ · γ ⊥)L1
n′−1

]
P (χ)

5

}
, (A1)

where the explicit forms of the coefficients in front of the independent Dirac structures are a0 = E
(χ)
n , a′

0 = E
(χ)
n′ , a3 = λvF (k3 −

χb), a′
3 = λ′vF (k3 − χb), c = 4λvF , and c′ = 4λ′vF .

The traces are straightforward to calculate. The results read as

T11 = −(a0a
′
0 − a3a

′
3)(Ln−1Ln′ + LnLn′−1) − s⊥χ (a0a

′
3 − a′

0a3)(Ln−1Ln′ − LnLn′−1) + 2cc′(k2
1 − k2

2

)
L1

n−1L
1
n′−1, (A2)

T22 = −(a0a
′
0 − a3a

′
3)(Ln−1Ln′ + LnLn′−1) − s⊥χ (a0a

′
3 − a′

0a3)(Ln−1Ln′ − LnLn′−1) − 2cc′(k2
1 − k2

2

)
L1

n−1L
1
n′−1, (A3)

T12 = is⊥(a0a
′
0 − a3a

′
3)(Ln−1Ln′ − LnLn′−1) + iχ (a0a

′
3 − a′

0a3)(Ln−1Ln′ + LnLn′−1) + 4cc′k1k2L
1
n−1L

1
n′−1, (A4)

T21 = −is⊥(a0a
′
0 − a3a

′
3)(Ln−1Ln′ − LnLn′−1) − iχ (a0a

′
3 − a′

0a3)(Ln−1Ln′ + LnLn′−1) + 4cc′k1k2L
1
n−1L

1
n′−1, (A5)

T33 = (a0a
′
0 + a3a

′
3)(LnLn′ + Ln−1Ln′−1) + s⊥χ (a′

0a3 + a0a
′
3)(LnLn′ − Ln−1Ln′−1) − 2cc′k2

⊥L1
n−1L

1
n′−1, (A6)

T13 = −k1
[
a3c

′(Ln − Ln−1)L1
n′−1 + a′

3c(Ln′ − Ln′−1)L1
n−1 + s⊥χa0c

′(Ln + Ln−1)L1
n′−1 + s⊥χa′

0c(Ln′ + Ln′−1)L1
n−1

]
− ik2

[
s⊥a3c

′(Ln + Ln−1)L1
n′−1 − s⊥a′

3c(Ln′ + Ln′−1)L1
n−1 + χa0c

′(Ln − Ln−1)L1
n′−1 − χa′

0c(Ln′ − Ln′−1)L1
n−1

]
, (A7)

T31 = −k1
[
a3c

′(Ln − Ln−1)L1
n′−1 + a′

3c(Ln′ − Ln′−1)L1
n−1 + s⊥χa0c

′(Ln + Ln−1)L1
n′−1 + s⊥χa′

0c(Ln′ + Ln′−1)L1
n−1

]
+ ik2

[
s⊥a3c

′(Ln + Ln−1)L1
n′−1 − s⊥a′

3c(Ln′ + Ln′−1)L1
n−1 + χa0c

′(Ln − Ln−1)L1
n′−1 − χa′

0c(Ln′ − Ln′−1)L1
n−1

]
, (A8)

T23 = ik1
[
s⊥a3c

′(Ln + Ln−1)L1
n′−1 − s⊥a′

3c(Ln′ + Ln′−1)L1
n−1 + χa0c

′(Ln − Ln−1)L1
n′−1 − χa′

0c(Ln′ − Ln′−1)L1
n−1

]
− k2

[
a3c

′(Ln − Ln−1)L1
n′−1 + a′

3c(Ln′ − Ln′−1)L1
n−1 + s⊥χa0c

′(Ln + Ln−1)L1
n′−1 + s⊥χa′

0c(Ln′ + Ln′−1)L1
n−1

]
, (A9)

T32 = −ik1
[
s⊥a3c

′(Ln + Ln−1)L1
n′−1 − s⊥a′

3c(Ln′ + Ln′−1)L1
n−1 + χa0c

′(Ln − Ln−1)L1
n′−1 − χa′

0c(Ln′ − Ln′−1)L1
n−1

]
− k2

[
a3c

′(Ln − Ln−1)L1
n′−1 + a′

3c(Ln′ − Ln′−1)L1
n−1 + s⊥χa0c

′(Ln + Ln−1)L1
n′−1 + s⊥χa′

0c(Ln′ + Ln′−1)L1
n−1

]
. (A10)

After the integration over the transverse momenta in the expression for the conductivity, the terms linear in k1 and k2, as well
as the terms proportional to k2

1 − k2
2, will vanish. This is equivalent to replacing the traces with expressions averaged over the

transverse directions, i.e., Tij → T̃ij , where

T̃11 = −(a0a
′
0 − a3a

′
3)(Ln−1Ln′ + LnLn′−1) − s⊥χ (a0a

′
3 − a′

0a3)(Ln−1Ln′ − LnLn′−1), (A11)

T̃12 = is⊥(a0a
′
0 − a3a

′
3)(Ln−1Ln′ − LnLn′−1) + iχ (a0a

′
3 − a′

0a3)(Ln−1Ln′ + LnLn′−1), (A12)

T̃33 = (a0a
′
0 + a3a

′
3)(LnLn′ + Ln−1Ln′−1) + s⊥χ (a′

0a3 + a0a
′
3)(LnLn′ − Ln−1Ln′−1) − 2cc′k2

⊥L1
n−1L

1
n′−1, (A13)

as well as T̃22 ≡ T̃11 and T̃21 ≡ −T̃12. The other off-diagonal components vanish, i.e., T̃13 = T̃31 = T̃23 = T̃32 = 0.
The dependence on the transverse momenta in the resulting traces T̃ij enters only via the Laguerre polynomials. Therefore,

after these results are substituted into the expressions for the conductivity in Eqs. (20) and (22), the subsequent integration over
k⊥ can be easily performed. Indeed, by making use of the orthogonality of the Laguerre polynomials,

∫ ∞

0
xαe−xL(α)

n (x)L(α)
m (x)dx = �(m + 1 + α)

n!
δn,m, (A14)
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we derive the following integration results:

X11 =
∫

d2k⊥
(2π )2

e−2k2
⊥l2

T̃11 = −a0a
′
0 − a3a

′
3

8πl2
(δn−1,n′ + δn,n′−1) − s⊥χ

a0a
′
3 − a′

0a3

8πl2
(δn−1,n′ − δn,n′−1), (A15)

X12 =
∫

d2k⊥
(2π )2

e−2k2
⊥l2

T̃12 = is⊥
a0a

′
0 − a3a

′
3

8πl2
(δn−1,n′ − δn,n′−1) + iχ

a0a
′
3 − a′

0a3

8πl2
(δn−1,n′ + δn,n′−1), (A16)

X33 =
∫

d2k⊥
(2π )2

e−2k2
⊥l2

T̃33 = a0a
′
0 + a3a

′
3

8πl2
(δn,n′ + δn−1,n′−1) + s⊥χ

a′
0a3 + a0a

′
3

8πl2
(δn,n′ − δn−1,n′−1) − ncc′

8πl4
δn−1,n′−1. (A17)

We use these results in the main text when calculating the transverse and longitudinal components of the conductivity tensor, i.e.,
σ11 = σ22, σ12 = −σ12, and σ33.

APPENDIX B: KEY DETAILS IN DERIVATION OF CONDUCTIVITY

1. Longitudinal conductivity

By making use of the definition in Eq. (20) as well as the result for the trace in Eq. (A17), we derive the following expression
for the longitudinal component of the conductivity:

σ33 = e2v2
F

26π3l2T

∑
χ

∑
λ,λ′

∞∑
n=0

∫
dω dk3

cosh2 ω−μ

2T

�2
n[(

ω − λE
(χ)
n

)2 + �2
n

][(
ω − λ′E(χ)

n

)2 + �2
n

]
(

1 + λs⊥χvF

k3 − χb

E
(χ)
n

)

×
(

1 + λ′s⊥χvF

k3 − χb

E
(χ)
n

)
+ e2v2

F

26π3l2T

∑
χ

∑
λ,λ′

∞∑
n=1

∫
dω dk3

cosh2 ω−μ

2T

�2
n[(

ω − λE
(χ)
n

)2 + �2
n

][(
ω − λ′E(χ)

n

)2 + �2
n

]

×
[(

1 − λs⊥χvF

k3 − χb

E
(χ)
n

)(
1 − λ′s⊥χvF

k3 − χb

E
(χ)
n

)
− 4v2

F λλ′n

E
(χ)
n E

(χ)
n′ l2

]
. (B1)

After performing the sum over λ and λ′, we can rewrite this result in a more convenient form given by Eq. (23) in the main text.
Because of a qualitatively different role that the lowest and higher Landau levels play in the magnetoresistance, we find it

convenient to separate the two contributions. The corresponding expressions for σ
(LLL)
33 and σ

(HLL)
33 are given in Eqs. (24) and (26)

in the main text. While the former takes a very simple analytical form, the latter is much more complicated. Some details of
its analysis are presented here. As stated in the main text, the integration over k3 in the expression for σ

(HLL)
33 can be performed

analytically. The corresponding result reads as

σ
(HLL)
33 = e2vF

4
√

2π2l2T

∞∑
n=1

∫
dω

cosh2 ω−μ

2T

�2
n√√(

2nε2
L + �2

n − ω2
)2 + 4ω2�2

n + 2nε2
L + �2

n − ω2

1√(
2nε2

L + �2
n − ω2

)2 + 4ω2�2
n

×
⎡
⎣1 + ω2√(

2nε2
L + �2

n − ω2
)2 + 4ω2�2

n + 2nε2
L + �2

n − ω2

×
⎛
⎝1 +

nε2
L

[
3
√(

2nε2
L + �2

n − ω2
)2 + 4ω2�2

n + 2
(
2nε2

L + �2
n − ω2

)]
(
2nε2

L + �2
n − ω2

)2 + 4ω2�2
n

⎞
⎠
⎤
⎦. (B2)

In the zero-temperature limit, additionally the remaining integration over ω can be performed as well. The corresponding result
is given by

σ
(HLL)
33,T →0 = e2vF√

2π2l2

∞∑
n=1

�2√√(
2nε2

L + �2 − μ2
)2 + 4μ2�2 + 2nε2

L + �2 − μ2

1√(
2nε2

L + �2 − μ2
)2 + 4μ2�2

×
⎡
⎣1 + μ2√(

2nε2
L + �2 − μ2

)2 + 4μ2�2 + 2nε2
L + �2 − μ2

×
⎛
⎝1 +

nε2
L

[
3
√(

2nε2
L + �2 − μ2

)2 + 4μ2�2 + 2
(
2nε2

L + �2 − μ2
)]

(
2nε2

L + �2 − μ2
)2 + 4μ2�2

⎞
⎠
⎤
⎦, (B3)
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where, for simplicity, we took �n ≡ � in all higher Landau levels.

2. Transverse conductivity

By making use of the definition in Eq. (20) as well as the result for the trace in Eq. (A15), we derive the following expression
for the diagonal component of the transverse conductivity:

σ11 = e2v2
F

25π3l2T

∑
χ

∑
λ,λ′

∞∑
n=0

∫
dω dk3

cosh2 ω−μ

2T

�n+1�n[(
ω − λE

(χ)
n+1

)2 + �2
n+1

][(
ω − λ′E(χ)

n

)2 + �2
n

]

×
(

1 − λs⊥χvF

k3 − χb

E
(χ)
n+1

)(
1 + λ′s⊥χvF

k3 − χb

E
(χ)
n

)
. (B4)

By taking into account that the momentum integral is convergent, we can make the shift of the integration variable k3 → k3
new ≡

k3 − χb. Then, the integrand does not depend on b and we find

σ11 = e2v2
F

24π3l2T

∑
λ,λ′

∞∑
n=0

∫
dω dk3

cosh2 ω−μ

2T

�n+1�n[
(ω − λEn+1)2 + �2

n+1

][
(ω − λ′En)2 + �2

n

]
(

1 − λλ′ (vF k3)2

En+1En

)
. (B5)

After calculating the sum over λ and λ′, we will obtain the result presented in Eq. (27) in the main text.
In the limit of zero temperature, both integrations over ω and k3 in the expression for the diagonal component of the transverse

conductivity can be performed analytically. The corresponding result reads as

σ11 = e2ε2
L�2

2
√

2π2vF

∞∑
n=0

⎧⎪⎪⎨
⎪⎪⎩

1√(
2nε2

L + �2 − μ2
)2 + 4μ2�2

√
2nε2

L + �2 − μ2 +
√(

2nε2
L + �2 − μ2

)2 + 4μ2�2

+ 1√(
2(n + 1)ε2

L + �2 − μ2
)2 + 4μ2�2

√
2(n + 1)ε2

L + �2 − μ2 +
√(

2(n + 1)ε2
L + �2 − μ2

)2 + 4μ2�2

+ 2(2n + 1)μ2 − ε2
L

ε4
L + 4μ2�2

⎡
⎢⎢⎣− 1√

2nε2
L + �2 − μ2 +

√(
2nε2

L + �2 − μ2
)2 + 4μ2�2

− (2n − 1)ε2
L + �2 − μ2

√(
2nε2

L + �2 − μ2
)2 + 4μ2�2

√
2nε2

L + �2 − μ2 +
√(

2nε2
L + �2 − μ2

)2 + 4μ2�2

+ 1√
2(n + 1)ε2

L + �2 − μ2 +
√(

2(n + 1)ε2
L + �2 − μ2

)2 + 4μ2�2

+ (2n + 3)ε2
L + �2 − μ2

√(
2(n + 1)ε2

L + �2 − μ2
)2 + 4μ2�2

√
2(n + 1)ε2

L + �2 − μ2 +
√(

2(n + 1)ε2
L + �2 − μ2

)2 + 4μ2�2

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

, (B6)

where, for simplicity, we took �n ≡ � in all Landau levels. Note that the function in the sum over Landau levels is ∝ n−3/2 when
n → ∞ and, therefore, the sum converges quite fast and is easily calculated by numerical methods.
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