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Noncollinear and noncoplanar spin textures in solids manifest themselves not only in their peculiar magnetism
but also in unusual electronic and transport properties. We here report our theoretical studies of a noncoplanar
order on a simple cubic lattice and its influence on the electronic structure. We show that a four-sublattice triple- Q
order induces three-dimensional massless Dirac electrons at commensurate electron fillings. The Dirac state is
doubly degenerate, while it splits into a pair of Weyl nodes by lifting the degeneracy by an external magnetic
field; the system is turned into a Weyl semimetal in an applied field. In addition, we point out the triple-Q
Hamiltonian in the strong coupling limit is equivalent to the 3D m-flux model relevant to an AIII topological
insulator. We examine the stability of such a triple-Q order in two fundamental models for correlated electron
systems: a Kondo lattice model with classical localized spins and a periodic Anderson model. For the Kondo
lattice model, performing a variational calculation and Monte Carlo simulation, we show that the triple- Q order
is widely stabilized around 1/4 filling. For the periodic Anderson model, we also show the stability of the same
triple-Q state by using the mean-field approximation. For both models, the triple-Q order is widely stabilized
via the couplings between conduction electrons and localized electrons even without any explicit competing
magnetic interactions and geometrical frustration. We also show that the Dirac electrons induce peculiar surface

states: Fermi “arcs” connecting the projected Dirac points, similar to Weyl semimetals.
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I. INTRODUCTION

Noncoplanar magnetic orders, in which spin directions
align neither in a line nor on a plane, often lead to new
low-energy excitations and topologically nontrivial states. In
particular, triple-Q magnetic orders, which are characterized
by three different ordering wave vectors, have drawn much
interest. A skyrmion lattice, found, e.g., in the A phase of
MnSi [1], is a typical example of such triple-Q orders. In
this case, the triple-Q order is stabilized by competition be-
tween ferromagnetic exchange interaction and Dzyaloshinskii-
Moriya interaction. Another example is found in geometrically
frustrated lattices, which gives rise to a topological (Chern)
insulator and associated quantum anomalous Hall effect: for
instance, on kagome [2], distorted face-centered-cubic (FCC)
[3], and triangular lattices [4—6].

In this paper, we investigate how a triple- 0 magnetic order
affects the single-particle spectrum of conduction electrons
on a simple cubic lattice. By deriving the low-energy effec-
tive Hamiltonian, we reveal that a triple-Q magnetic order
generally accommodates three-dimensional (3D) massless
Dirac electrons on the cubic lattice. Furthermore, we show
that the triple-Q magnetic order is widely stabilized in the
weak-to-intermediate coupling region in the Kondo lattice
model with classical localized spins. A similar triple-Q state
was obtained in the strong coupling limit as a consequence of
the competition between the double-exchange ferromagnetic
interaction and superexchange antiferromagnetic interaction
[7]. In contrast, the present study reveals that the triple- Q state
emerges even without such competition. We also show that
such a Dirac electronic state in a triple-Q magnetic order is
realized in the periodic Anderson model on the cubic lattice,
which is a more generic model relevant for describing real
materials such as heavy fermion systems.

We also unveil peculiar properties of the 3D massless
Dirac electrons associated with the triple-Q order [7]. One
is the emergence of Weyl electrons in an applied magnetic
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field. Our Dirac state is, at least, doubly degenerate. The
degeneracy is lifted by applying a magnetic field without a gap
opening, and the Dirac electronic state splits into a pair of Weyl
states. Weyl electrons were recently proposed for an iridium
pyrochlore oxide Y;Ir,O; [8]. Our result offers yet another
example of Weyl semimetals. Another interesting property
is the emergence of surface states. Even without lifting the
degeneracy of the Dirac electrons, our triple-Q state exhibits
peculiar gapless surface states with Fermi “arcs,” similarly to
Weyl semimetals [8].

Our finding influences the engineering of massless Dirac
electrons. Dirac electrons in a bulk material are classified
into several categories: e.g., symmetry-protected ones [9-12]
as anticipated in graphene, ones appearing only at the band-
inversion transition points between topologically trivial and
nontrivial phases [13,14], and ones coexisting with spon-
taneous symmetry breaking, such as charge order (CO) in
a-(BEDT-TTF),I; [15] and magnetic order in BaFe,As, [16].
Among them, the symmetry-protected Dirac electrons are in-
teresting from the viewpoint of potential applications for elec-
tronics and spintronics, as they are stable against perturbations
which preserve the symmetry of the system. They, however,
appear only in a limited number of crystalline lattice structures
because of severe constraints from the space group symmetry
[10,12]. Our result extends a member of symmetry-protected
massless Dirac electrons. This indicates that multiple-Q
orders exploit the possibility of engineering Dirac electrons
by relaxing the symmetry constraints [10,12]. Furthermore,
our results on the Weyl states in an applied magnetic field
demonstrate the controllability of Dirac electrons via spin
degree of freedom, which is potentially useful for spintronics.

The organization of this paper is as follows: In Sec. II,
we show how the triple-Q magnetic order induces the 3D
massless Dirac electrons. We present the detailed analysis of
the low-energy effective Hamiltonian. We also point out that
an external magnetic field splits the twofold degeneracy of the
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Dirac nodes and produces a pair of Weyl nodes. In Sec. III,
we examine the stability of the triple-Q magnetic order in
the Kondo lattice model and the periodic Anderson model.
For the Kondo lattice model with classical localized spins,
by performing the variational calculation at zero temperature
and Monte Carlo simulation for finite temperature, we clarify
that the triple- Q magnetic order is indeed realized around 1/4
filling in the weak-to-intermediate coupling region. For the
periodic Anderson model, by using the mean-field approxima-
tion, we show that the triple-Q magnetic order appears in a
wide range of phase diagram at zero temperature and at 3/4
filling. In Sec. IV, we examine the peculiar surface electronic
structures in the triple-Q state, by taking the results in the
periodic Anderson model. Section V is devoted to a summary
and concluding remarks.

II. 3D MASSLESS DIRAC ELECTRONS

Let us begin with explaining how a triple-Q magnetic
order induces 3D massless Dirac electrons. We consider
noninteracting electrons locally coupled to a triple- Q magnetic
order on the cubic lattice set by spins

S; o [cos(Q1 - 1), cos( Qs - 1;), cos(Q3 - ;)] (1

Here, r; is the position vector of the site i on the cubic lattice
with the lattice constanta = 1; @, = (7,0,7), Q> = (0,7,7),
03 = (7,m,0) represent the wave vectors characterizing the
triple-Q state. S; has a noncoplanar four-sublattice structure
in real space, as schematically shown in Fig. 1(a). The
Hamiltonian reads

H= ZEkC,TkaG + A Z CITWO—;;”/Ck+Qna’s (2

k,o k.o,0'.n

where c}:(,(cka) is the creation (annihilation) operator of
a conduction electron with spin o at the wave vector k.

Energy in unit of ¢
o

4 D <
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FIG. 1. (Color online) (a) Schematic picture of the noncoplanar
four-sublattice triple-Q order on a cubic lattice. Each spin points
along the local [111] directions. A global spin rotation does not
alter the consequences, as the system is SU(2) symmetric. A-D
denote the four sublattices, respectively. (b) Energy dispersion of the
Hamiltonian in Eq. (3) at A = 2¢, shown along the symmetric lines
in the magnetic Brillouin zone displayed in (c), by connecting I' =
0,0,0), N = (/2,7/2,0), P = (w/2,m/2,/2), and H = (,0,0).
3D massless Dirac points appear at the P point, corresponding to 1/4
and 3/4 fillings.
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The first term represents the kinetic energy of conduction
electrons, and ¢ is the energy dispersion for free electrons
with nearest-neighbor hopping on the cubic lattice, €; =
—2t(cos ky + cosk, + cos k). The second term describes the
coupling to triple-Q magnetic order, where A = J/(2+/3)
when we take |S;| = 1; J is the coupling constant between the
conduction electron spins and §;, and o, is the Pauli matrix
(n=1, 2, and 3) [see also Eq. (7)]. In the four-sublattice
representation, the Hamiltonian is divided into two irreducible
parts

H = c\He, + ¢, Hen, 3)
where
€k A —iA A
N A € —A iA
H=]. k0 : (4)
iA —A €k+Q, A

A —iA A €k+ Qs

Here, €1 = (k> Chrgip> Chroapr Chros) Ad € = (s
Chr o1 —cLQZT, —Ci10,,)- We note that this Hamiltonian
is formally the same as that for the four-sublattice triple-Q
order on the triangular lattice [4]. In the triangular lattice, the
triple- Q magnetic order induces the full gap while in the cubic
lattice the Dirac dispersions remain as we show below.

The energy dispersion of the Hamiltonian in Eq. (3) is
shown in Fig. 1(b) at A = 2¢. Here, all the bands are doubly
degenerate; the degeneracy comes from the fact that ¢; and
¢y are related by a combination of lattice translation and
spin rotation, which leaves H unchanged. In Fig. 1(b), a
peculiar form of dispersions is found near the P point,
ie., k>~ (r/2,7/2,m/2); the band dispersions are linearly
dependent on k and cross with each other at the P point,
resulting in 3D conelike structures. This is a signature of 3D
massless Dirac electrons appearing at 1/4 and 3/4 fillings of
electrons.

The Dirac-type dispersion indeed follows the Dirac equa-
tion as follows. This is explicitly shown by deriving a low-
energy Hamiltonian near the P point by the k - p perturbation
theory [9]. Expanding the reduced Hamiltonian in Eq. (4)
around the P point and performing the unitary transformations,
we obtain the low-energy effective Hamiltonian up to the first
order in f|k|/A as

Ay = £V/3A0) + %z(xm + 1,01 +k.02),  (5)
where oy is the 2 x 2 identity matrix and « is the transformed
wave vector measured from the P point (see Appendix A
for the derivation). This Hamiltonian constitutes a set of
four-component Dirac Hamiltonian HT = H. ® ., that
describes the 3D massless Dirac electrons with a linear
dispersion in all three directions of k.

The four-component Dirac electrons are not chiral, as there
is no unitary matrix which anticommutes with the low-energy
Hamiltonian. Such a nonchiral 3D massless Dirac state cannot
be turned into an AIII topological insulator [17] by opening
a gap, at least, when the magnetic order is restricted within a
four-sublattice unit cell. As clarified in Ref. [18], however, a
3D mr-flux model can change into the AIII topological insulator
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by an appropriate perturbation, which has an eight-sublattice
structure. As detailed in Appendix B, we notice that the triple-
O Hamiltonian in Eq. (2) in the strong coupling limit A /¢t —
oo is indeed equivalent to the 3D m-flux model studied in
Ref. [18]. Thus, our triple-Q state can also be switched into
the AIII topological insulator by an appropriate perturbation.

As we mentioned above, the Dirac states in Egs. (3) and
(5) are doubly degenerate. We, however, find that the twofold
degeneracy is lifted by an external magnetic field. By adding
the Zeeman term under magnetic field H applied in the z
direction

Hz=—-H Z(CIiTCkT - C}Lwcki)’ ©)
k

the degenerate Dirac point is split into two, and they are shifted
to the opposite directions along the k, axis. The resultant
nondegenerate nodes accommodate Weyl electrons, and the
Fermi level is pinned at the nodes. The system, therefore, is
turned into a Weyl semimetal by applied magnetic field. The
Weyl state is robust against any perturbations that preserve the
symmetry of the system. Thus, our model gives an example of
Weyl semimetals on an unfrustrated lattice, distinct from those
on a frustrated pyrochlore lattice [8].

III. STABILITY OF TRIPLE-Q PHASE

In the previous section, we simply assumed the noncoplanar
triple- Q magnetic order and discussed the resultant electronic
state. Now, we examine when and how the triple-Q state is
realized. We here consider two fundamental models for d- and
f-electron compounds, the Kondo lattice model (Sec. IITA)
and the periodic Anderson model (Sec. III B) on the cubic
lattice.

A. Kondo lattice model

The Kondo lattice Hamiltonian is written by

J . ,
H=—t Z (cjgcjg +H.c.) + ) Z ¢l 0% ¢ior - Si, (7)

(i.j).o i,0,0'

where S; is a localized moment. Here, we assume S; to
be a classical spin with |S;| = 1. The first term represents
the kinetic energy of conduction electrons and the second
term represents the onsite interaction between conduction
and localized spins. The sum of (i,j) is taken over the
nearest-neighbor sites on the cubic lattice. The sign of the
coupling constant J is irrelevant for the classical spins. For a
fixed triple-Q spin configuration given in Eq. (1), the model
is reduced to that in Eq. (2). Hereafter, we take = 1 as an
energy unit. We here examine the stability of the triple-Q state
with 3D Dirac electrons in the ground state in Sec. IIl A 1 and
at finite temperature in Sec. III A 2.

1. Variational study for the ground state

First, we examine the ground state of the model given
by Eq. (7) by changing J and the electron density n¢ =
(I/N)> ., (cjocm), where N is the total number of sites.
We perform a variational calculation: We compare the zero-
temperature grand potential 2 = E — un® (E = (H)/N isthe
internal energy per site and p is the chemical potential) for
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FIG. 2. (Color online) Ground-state phase diagram of the Kondo
lattice model [Eq. (7)] by the variational calculations. The vertical
dashed line denotes n¢ = 0.5. PS indicates a phase separated region.
Ordering patterns of localized spins are shown in the bottom of
the panel. Ferro, AF, and Ferri stand for ferromagnetic, antifer-
romagnetic, and ferrimagnetic, respectively. Single-Q corresponds
to Q = (,0,7), double-Q (0,7,7), (,0,7), and triple-Q (7,7,0),
0,m,m), (7,0,7).

different ordered states of the localized spins and determine
the most stable ordering. We assumed a collection of collinear
and coplanar spin states, and found that the eight of them give
the ground state in the range of parameters we studied (see
Fig. 2). In this calculation, we consider only uniform ¢ = 0
orders for all the spin patterns. Note that unbiased Monte Carlo
calculations do not show any signatures of longer-period orders
around the most interesting 1/4 filling, as we detail later in
Sec. IIT A 2.

Figure 2 shows the result of the phase diagram as a function
of n° and J. In the low-density region, the ferromagnetic
metallic phase appears and becomes wider as J increases.
This ferromagnetic phase is stabilized by the double-exchange
mechanism [19] (J is antiferromagnetic, but the sign is
irrelevant in the current study, as mentioned above). In
contrast to this, a Néel-type antiferromagnetic order emerges
at and near half filling (n¢ = 1). This is partly understood by
considering the second-order perturbation with respect to ¢/.J
at half filling, which leads to an effective antiferromagnetic
interaction between localized spins. In the weak-coupling
region apart from half filling, however, an incommensurate
order might take over when taking account of longer-period
orders.

For intermediate n¢, the phase diagram becomes more
complicated. Among various phases, we find that a four-
sublattice triple- Q order is realized near 1/4 filling (n“ = 0.5),
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as shown in Fig. 2. The band structure in this triple-Q phase
has the 3D Dirac nodes, equivalent to that in Fig. 1(c). In this
case, however, even at 1/4 filling, the Dirac nodes are located
slightly above the Fermi level, and an electron pocket appears
at the H point. The Fermi level comes at the Dirac nodes
for J > 6, where the triple-Q magnetic order is preempted
by the phase separation or ferromagnetic order, as shown
in Fig. 2.

The stable Dirac electrons at the Fermi level for n¢ = 0.5
are realized by introducing other interactions. In fact, the
triple-Q phase becomes much more stable by including the
small next-nearest-neighbor interaction between conduction
and localized spins and/or the nearest-neighbor interaction
between localized spins (not shown). In the latter connection, a
similar triple- Q state was obtained in the strong coupling limit
J/t — oo in the presence of an antiferromagnetic interaction
between neighboring localized spins [7]. It is worthy noting
that our triple- Q order is stabilized even without any explicit
competing interactions.

2. Monte Carlo study at finite temperature

Next, to examine whether the triple- Q order is stable against
spatial and thermal fluctuations, we perform a Monte Carlo
simulation for the Kondo lattice model, which is a numerically
exact method within statistical errors. In the Monte Carlo cal-
culations, we first obtain the eigenstates for conduction elec-
trons for given spin configurations by diagonalizing the Hamil-
tonian in Eq. (7). Then, by using the eigenvalues, we update
the local spins according to the standard Metropolis method.
Note that the simulation does not suffer from the negative-sign
problem. The calculations were typically done for 8000—-20000
Monte Carlo steps, and the statistical errors were estimated
by dividing the data into ten bins. The calculations were
conducted on the N (=L3)-site cubic lattice with L =4, 6,
and 8 under the periodic boundary conditions. For L = 4 and
L = 6, we introduce supercells consisting of N = 23 copies
of the N-site cube under periodic boundary conditions. The
introduction of the supercells reduces the finite size effects in
the simulations. We take the Boltzmann constant kg = 1.

We here calculate temperature dependence of two physical
quantities to identify the triple-Q state. One is the local spin
scalar chirality xo and the other is the spin structure factor S,.
The local spin scalar chirality is defined by

D i) DRCRIPCAS ®)

i {j.k}erl;

where z = 6 is the number of nearest-neighbor sites. The sum
of i is taken over all the sites, and I'; represents the set of sites
Jj.k defined as follows: jth site represents a site next to ith site
along the x (y,z) direction and kth site represents a site next to
ith site along the y (z,x) direction in the xy (yz,zx) plane, as
exemplified in the inset of Fig. 3(a). The spin structure factor
is defined by

1 ig-(rimr
S¢=+ Z(Si - 8;)e i), )
iJ

where ¢ is a wave vector. For the perfectly triple-Q ordered
state, the square of the local spin scalar chirality, Xg, is ~0.59,
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FIG. 3. (Color online) Temperature dependence of (a) the square
of local spin scalar chirality and (b) the spin structure factor averaged
over ¢ = Q,, Q,, and Q5 divided by the system size N at J = 4.
The arrows represent the values in the perfectly triple- Q ordered state.
The inset in (a) shows the relation among sites 7, j, and k in Eq. (8).

and the spin structure factor Sy takes the same value ~0.33N
at the triple-Q wave numbers, ¢ = Q,, Q,, and Q5.

Figure 3 shows the Monte Carlo results. We here display
x¢ in Fig. 3(a) and the averaged spin structure factor, Sg =
(Sg, + Sg, + Sg,)/3 divided by N in Fig. 3(b). As shown in
the figures, the transition from the paramagnetic state to the
triple- O state occurs at T 2~ 0.014 as decreasing temperature;
the chiral order and magnetic order occur simultaneously [20].
This is in contrast to the two-dimensional triangular lattice
case, where the chiral order occurs alone at a finite temperature
[21]. The concomitant transition in our model appears to be
of first order. With further decreasing temperature, the local
spin scalar chirality and spin structure factor approach their
saturated values for the triple-Q state in the ground state.
The results clearly show that the triple-Q state found in
the variational calculations remains stable against spatial and
thermal fluctuations.

B. Periodic Anderson model

Next, we examine the stability of noncoplanar triple-Q
ordering in the periodic Anderson model. The Hamiltonian
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is given by

H=—t Y (chejo+He)—1; > (fl fio +He)

(i,j).0 (i,j).0
~ VY (e, fio +He) + U nlin!, + B> nl,.
(10)

where fiL( fio) is the creation (annihilation) operator of
“localized” f electrons with spin o at site i, and nifg =

f;t; fioc- The first (second) term represents the kinetic energy
of conduction ¢ (“localized” f) electrons, the third term
the on-site c-f hybridization, the fourth term the on-site
Coulomb interaction for f electrons, and the fifth term the
atomic energy of f electrons. The periodic Anderson model
is reduced to the Kondo lattice model in Eq. (7) in the
large U limit with one f electron per site; f electrons give
localized moments, which couple with conduction electrons
via the Kondo coupling J o V2/U. We focus on the com-
mensurate filling, n' = (1/N)>_,, (cjgcig + f,L fio) = 1.5,
which corresponds to the 1/4-filling case in the Kondo lattice
model [22].

In order to determine the ground state of the model in
Eq. (10), we employ the standard Hartree-Fock approximation

for the Coulomb U term, which preserves the SU(2) symmetry

of the system: We decouple nlanlf ,as

iyl ~ nfy{ufy )+ (o, =

il N R AN AR VAN )

— (Y FOLL By + LR Fr).

In the calculations, we adopt the 23_site unit cell, as shown
in Fig. 1(a). We confirm that the overall phase diagram is not
altered in the calculations by the size of the unit cell by using
the 43-site unit cell.

Figure 4 shows the ground-state phase diagram obtained by
the mean-field calculations. Schematic pictures of magnetic
and charge states for f electrons are shown in the bottom
panel of Fig. 4. The result shows that various magnetic and
CO states emerge in between the Néel-type collinear AF state
in the U > V region and the nonmagnetic (NM) state in the
large V region. This indicates that the model in Eq. (10) has
many instabilities which preempt the quantum critical point
between AF and NM phases in the so-called Doniach phase
diagram [23].

One of the dominant instabilities is a triple-Q magnetic
order, in which the f spin configuration is equivalent to that
in Eq. (1) [Fig. 1(a)]. The result strongly suggests that the
triple-Q state is indeed stabilized in the periodic Anderson
model. We note that similar triple-Q states were observed in
intermetallic dysprosium compounds such as DyCu [24,25],
and their origin is attributed to strong magnetic anisotropy
along the local [111] directions. Our triple-Q state is further
stabilized by including such magnetic anisotropy.

As in the previous Kondo lattice case, the band structure in
this phase has the 3D Dirac nodes at the P point, as shown
in Fig. 5(a). In this case also, each band is doubly degenerate,
while there are 16 bands in total. From the similar arguments
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FIG. 4. (Color online) Ground-state phase diagram of the peri-
odic Anderson model [Eq. (10)] at 3/4 filling obtained by the mean-
field calculations. E, and ¢ are taken at —4 and 0.2, respectively.
Schematic pictures of the ordering patterns in f electrons are also
shown. The sizes of circles reflect local electron densities, and the
arrows represent local spin moments. CO stands for charge-ordered
states. C-double- Q and other MO represent the canted double-Q and
other magnetically ordered states, respectively.

in Sec. II, we confirmed the emergence of essentially the same
Dirac electrons as in Eq. (5).

Other dominant instabilities in the phase diagram in Fig. 4
are the CO insulators. It is noteworthy that a noncoplanar
magnetic ordering appears in a CO state with charge density
modulation at the wave vector (,,7). This is presumably
due to the emergent frustration under CO; the charge-poor
sites comprise a frustrated FCC lattice [26]. Note that, on
a two-dimensional square lattice, such frustration does not
appear, and the CO state is accompanied by a collinear AF
order [27].

IV. SURFACE ELECTRONIC STRUCTURE

Let us discuss the electronic state in the triple-Q phase
more closely, with an emphasis on the peculiar surface states
associated with the 3D massless Dirac states. For this purpose,
here we take the triple- Q magnetically-ordered phase (without
CO) in the periodic Anderson model in Sec. III B.

We here consider the system with the (110) surfaces, in
which both top and bottom surfaces consist of A and C
sublattice sites [see Fig. 1(a)] [28]; the geometry viewed from
the z direction is schematically shown in Fig. 5(b). Figures 5(c)
and 5(d) show the band dispersions of the system with the
(110) surfaces [29]. The Dirac nodes at the P point in the
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FIG. 5. (Color online) (a) Bulk electronic structure in the non-
coplanar triple-Q magnetically-ordered phase at U =7, V =2.2,
Ey = —4, and t; = 0.2. The Fermi level at n'** = 1.5 is set at zero.
(b) Schematic picture of a projection of the system with the (110)
surfaces onto the (001) plane. The sites in the dashed box represent
the unit cell used for the calculations of the surface states. The number
of sites in the unit cell is 260. (c) Energy dispersion for the system in
(b) at the same parameter used in (a). (d) Enlarged figure of (c) in the
vicinity of the Fermi level.
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bulk system are projected onto k' = (k/ \/E,k;) = (0,7/2),
as shown in Figs. 5(c) and 5(d) [see Fig. 5(b) for the relation
between k and k']. Between the bulk states, there appear four
bands crossing the Fermi level. These are the gapless surface
states emergent in the triple- Q state with 3D Dirac electrons.
The four bands meet at (77/2,77/2) (we set this energy E’),
whereas this point is not a Dirac node as the band dispersion
in the (7 /2,7 /2)-(0,7r/2) direction is not linear but quadratic
in k', as shown in Fig. 5(d).

The resultant surface electronic state exhibits peculiar
behavior: Fermi “arcs” connecting the projected Dirac points.
We note that the Fermi “arcs” are similar to those found in
the Weyl semimetal [8]. This is shown by calculating the
single-particle spectral function at one of the two surfaces.
The spectral function is defined as

Ag(k',w) = —%Trsf[lm(a) +18 — H(K') ™, 1n

where the trace Try is taken only for the surface states at one
of the surfaces and § is a broadening factor. The result at the
Fermi energy (w = 0) is shown in Fig. 6(b). As clearly shown
in the figure, the surface states do not have the ordinary closed
Fermi surfaces but have the Fermi “arcs;” although the surface
states at the Fermi level seemingly have closed forms as shown
by the thin curves in the figure, their spectral weights become
vanishingly small around the bulk Dirac cones at k' = (0,7/2)
and (r,m/2).

The topology of the Fermi “arcs” as well as Fermi surfaces,
however, changes drastically while shifting the Fermi level
in a rigid band picture, as demonstrated in Fig. 6. This
characteristic change of the surface states in the triple-Q or-
dered state is observable by the angle-resolved photoemission
spectroscopy, as was recently done for Tungsten, in which
Dirac-cone-like surface states also appear [30]. Furthermore,
the spin polarization due to the surface magnetic moments will
be detected in the current triple-Q state.

We note that the spectral weights of the surface states
decrease rapidly by going from the edge to the bulk. The wave
function at the energy E’ [Fig. 6(d)] is the most localized
at the surfaces. On the other hand, the wave function at the
Fermi level at (0,77/2) [Fig. 6(b)] is extended throughout the
system. Such situations are similar to the case in zigzag-edged
graphene nanoribbons [31,32].

V. SUMMARY AND CONCLUDING REMARKS

To summarize, we have studied the nature of 3D massless
Dirac electrons on a cubic lattice, which are induced by
a noncoplanar triple-Q magnetic order. By using the k- p
perturbation theory, we have shown that the low-energy
excitations at particular commensurate fillings obey the Dirac
equation. The Dirac state is doubly degenerate, resulting in
the realization of Weyl electrons when the degeneracy is
lifted in an applied magnetic field. Hence, our result provides
an example of Weyl semimetals on unfrustrated lattices. In
addition, we have shown the stability of the triple-Q ordered
state in two models on the cubic lattice. One is the Kondo
lattice model with classical localized spins. For this model,
from the complementary studies by a variational calculation
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FIG. 6. (Color online) (a)—(d) Intensity of the single-particle
spectral functions Ag(k',w) at w = 0.2, 0.0, —0.1, and E’, respec-
tively. See also Fig. 5(d). We take the broadening factor § = 0.03 in
Eq. (11). The thin lines show the constant energy contours at each w,
and the hatched regions show the bulk states.

for the ground state and Monte Carlo simulation at finite
temperature, we have shown that the triple-Q ordered state
appears as a stable phase in the weak-to-intermediate coupling
region. The other model is the periodic Anderson model, for

PHYSICAL REVIEW B 89, 085124 (2014)

which we have also shown that the triple-Q state is realized
by the mean-field approximation. We have investigated the
surface electronic state in the triple-Q phase, and found that
the surface states connecting the Dirac points exhibit peculiar
Fermi-“arc” behavior in their spectral weights.

One of the candidate materials which exhibits the triple-Q
magnetic order with 3D massless Dirac electrons could be
DyCu, which was suggested to have the triple-Q magnetic
order by using neutron scattering [24,25]. However, the
electronic structure including the shape of Fermi surfaces
is, to the best of our knowledge, not yet clarified. Fur-
ther experiments, such as the angle-resolved photoemis-
sion spectroscopy, are desirable to investigate the possi-
bility of the 3D Dirac electrons. The detailed ab initio
band calculation for this material is also an intriguing
future issue.

Lastly, we mention about the relationship between triple- Q
magnetic orders and AIII topological insulators [17]. The AIIL
topological insulators are the 3D topological insulators that
possess a chiral symmetry, while they do not possess time-
reversal and particle-hole symmetries. Hence, they are ex-
pected to be realized in 3D magnets in which the time-reversal
symmetry is broken. However, its experimental realization, to
our knowledge, has not yet been found. Although the 3D 7 -flux
model was theoretically proposed for the AIIl topological
insulator [18], its microscopic origin is not clear. We have
found that the triple-Q magnetic order in the Kondo lattice
model naturally leads to the 3D w-flux model without mass
term in the strong coupling limit. By introducing perturbations
giving mass term, an AIll topological insulator will be realized
in the triple-Q ordered phase. The exploration of such a
possibility is left for future study.

ACKNOWLEDGMENTS

S.H. and T.M. acknowledge Yutaka Akagi, Sho Nakosai,
and Masafumi Udagawa for fruitful discussions. S.H. is
supported by a Grant-in-Aid for JSPS Fellows. Numerical
calculation was partly carried out at the Supercomputer Center,
Institute for Solid State Physics, University of Tokyo. This
work was supported by Grants-in-Aid for Scientific Research
(Nos. 23102708 and 24340076), the Strategic Programs for
Innovative Research (SPIRE), MEXT, and the Computational
Materials Science Initiative (CMSI), Japan.

APPENDIX A: LOW-ENERGY HAMILTONIAN
IN THE TRIPLE- Q PHASE

In this Appendix, we derive the low-energy effective
Hamiltonian in the triple-Q phase. The Hamiltonian around
the P point is rewritten by

H ="Hy + Ha, (A1)

where
i = 2t(ky 1003 + kyT300 + K, T303), (A2)
Ha = A(to01 — 1202 + 1203). (A3)

085124-7



HAYAMI, MISAWA, YAMAJI, AND MOTOME

Here, o and t are the Pauli matrices, and «, = k, — /2 for
o = x,y,z. Let us introduce two unitary matrices U; and U,
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By using the relations such as

~ .1_ ~
to diagonalize H . U; and U, are defined as UiHaU) = A(too1 — 1302 + 1303), (A6)
11 10 ul (o1 — 0y + o3)u = /303, (A7)
U1 =1. . ]0o, U2 = 0 u, (A4)
L o1 we obtain
respectively, where the matrix u is defined as - 3A0 0
UIUIAAU U, = \/_0 3 Sine,) A9
U+ V31 (4D V3B 3
U= 2<13)1/4 2(31)1/4 _ (A5) Henge, by multiplying the unitary matrix.U = U,U; on the
A A | Hamiltonian H = Hy + Ha, we end up with
- —2tic,ulozu + /3A0 —2tut(xc,00 + ik.00)u
UtRU = TR (00 ko) (A9)
—2tuT(Ky00 — ik, 00)u 2tic,ulosu + \/§Aa3

For k,t/A = 0, the spectrum of H is given as E = :t\/gA, which are two doublets. Up to the first order of x,t/A, the
low-energy Hamiltonians lifting the degeneracy of these doublets are given by

V3A = 21(lal® — Py

7:(+ = (
=2tc[(a + a*)ky + (a — a*)k.]

A = —V3A = 2t(|b? — d*)k,
T\ =2ed[(b + by + (b — b))

Then, Eq. (5) is obtained by rescaling «,, in 7/, and 7{_ in the
form:

1
—(la]* — Ay > —=k, (A12)
V3
(a +a*) : (A13)
—cla +a“ )k, > —ky,
y ﬁ
cla —a“k, - ———ik,, (A14)
z \/g y
for 7:[+, and
—(b* — d*), — L (A15)
X )
V3
1
—d(b + bk, > ——kKy, (A16)
y \/§
1
dd — b )k, > —=ik,, (A17)

V3

for H_, respectively. Here, a, b, ¢, d are the matrix elements
of u:u = (*5).

APPENDIX B: RELATION BETWEEN THE TRIPLE- Q
HAMILTONIAN AND THE 3D =-FLUX HAMILTONIAN

Here, we consider the relation between the triple-Q
Hamiltonian and the 3D w-flux Hamiltonian [17]. We start
from the Hamiltonian with the nearest-neighbor hoppings
—t. By choosing the eight-site unit cell, the Hamiltonian is

=2tc[(a +a*)ky, — (a — a*)k.] , (A10)
V3A 4 21(Ja? = Dk,
=2td[(b + b*)k, — (b — b*
[+ D"y —( )iz . (A1D)
—V3A +2t(|b]? — d¥)k,
[
written by
7:[h0p = —2t(cos ky px 700, + COS kypoTo0, + COS k; 0, T, 0y ),
(BI)

where p, 7, and o are the Pauli matrices. The basis are
represented by

(CAk>CBI>CCk>CDI>CER-CFk-CGl>CHE) (B2)

where the capital subscript represents the sites, as shown in
Fig. 7. Now, we introduce the effect of the exchange coupling
to the triple-Q magnetic order in the strong coupling limit
(A /t — 00) as shown in the second term in Eq. (2). Then, the
hopping amplitude ¢ is modified as

0; 0; 6, . 0; _., .
r— tcosElcosE] + sinE sin E’e 6i=¢)) (B3)

A L F

-1+
E/-l*'i B/H'i

\/51 V2
\[ZI NGy BES
-1+ _H < C

-1+ /I:i

D — -

FIG. 7. (Color online) Schematic picture of the eight-site unit
cell. Hopping amplitudes in Eq. (B3) are also shown for each bond
in the figure in unit of 7/+/3.
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where i and j are the site index [33], and we have introduced the polar coordinates [S; o (sin6; cos ¢;, sin 6; sin ¢;, cos 6,)] for

the direction of the local triple- Q magnetic field. In that case, the triple-Q Hamiltonian in the strong coupling limit is represented
by

1PE 2 [cos k k V2cosk 4

Hhop = - gt[COS (= poxT00x + przUy) — COS )'(pOTOUx + pOrzay) + Cos szt)*a)']- (B4)

The energy spectrum of HpE is given by

2
_ 2 2 2
Er = iﬁt\/cos ky + cos? ky + cos? k. (B5)

There are four degeneracy for each band and the Hamiltonian in Eq. (B5) has Dirac dispersions around the (7 /2,7 /2,7 /2) point.
Furthermore, we found that the triple-Q Hamiltonian in the strong coupling limit is equivalent to the 3D w-flux Hamiltonian

in Ref. [17] by multiplying the unitary matrix Us:

Fatx = V3UTHEE Us

Us is defined by

oo

0,

where O and T are the 4 x 4 null matrix and identity matrix, respectively. U5 is represented by

iz _ - 2 2
eicy —elicy F \/Ecxcy
1 —\/zicxcy

c? ( -1+ e‘i%)cxcZ ( -1+ ei%)cycZ

i 2 —iZz 2 2
eicyte 4cy+cz

(B6)
= —2t(cos k, pxTo0, + COSkyp,T,0¢ — COSk;pxT,0y). (B7)
0
j) , (B8)
(1 — ei%)c,ccZ ( —1- e‘i%)cycz
1 — e %)eye 1 —el¥)e,c
( .F)” ( .)” : (BY)
eTircl et ci +c? V2ic,e,
V2e,c, el —elicd 42

(1 + ei%)cycZ ( -1+ e‘i%)cxcZ

. . . . 2 _ 2 2 2
where we describe cos k, — ¢y, cosk, — ¢y, cosk, — ¢, for simplicity, and ¢* = ¢y + cy +ct.
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