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Towards a model of a dynamical Jahn-Teller coupling at very low temperatures in Tb2Ti2O7
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We present an interpretation of zero-field energy integrated (“diffuse”) neutron scattering and of high-field
magnetization data at very low temperature in the frustrated pyrochlore system Tb2Ti2O7. This material has
antiferromagnetic exchange interactions, and it is expected to have an Ising character at low temperature. Contrary
to expectations, it shows no magnetic ordering down to 0.05 K, being thus labeled a “spin liquid.” However,
the ground state in Tb2Ti2O7 is not a mere fluctuating moment paramagnet but, as demonstrated by very recent
experiments, a state where the electronic degrees of freedom are hybridized with the phononic variables in an
unconventional way. We show here that, by approximating this complex and still unraveled electron-phonon
interaction by a dynamic Jahn-Teller coupling, one can account rather well for the diffuse neutron scattering and
the low-temperature isothermal magnetization.
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I. INTRODUCTION

The pyrochlore titanates, with formula R2Ti2O7, where R

is a rare earth, have been the subject of experimental and
theoretical studies for more than a decade [1]. The pyrochlore
lattice where the R3+ (and the Ti4+) ions are located is formed
by corner-sharing tetrahedra and leads, indeed, to a frustration
of the exchange/dipolar interaction in some specific situations.
The best known consequence thereof is the existence of “spin
ice” materials, like Ho2Ti2O7 and Dy2Ti2O7 [2,3], where
the rare-earth moments have a strong Ising character along
the tetrahedron ternary axis. The spin ices remain in the
paramagnetic phase down to the lowest attainable temperature,
but the spin correlations are very strong and of the special
“two in/two out” type, i.e., where two rare-earth moments
point “outwards” a given tetrahedron and two “inwards.” The
excitations in spin ices have been shown to be magnetic
monopole quasiparticles [4,5]. Another pyrochlore material,
which remains paramagnetic down to at least 0.05 K, is
Tb2Ti2O7 [6]. The Tb3+ ion is a non-Kramers ion with
J = 6 and a Landé factor gJ = 3/2. It is submitted to a
trigonal symmetry crystal electric field (CEF) that lifts the
13-fold degeneracy of the J = 6 multiplet. The peculiarity
of the crystal field splitting in Tb2Ti2O7 has been early
recognised [7], as consisting of two ground magnetic doublets
separated by an energy of the order of 15 K. For a non-Kramers
ion, each such doublet {ψ1,ψ2} has an Ising character, with
a vanishing transverse matrix element of the total angular
momentum: 〈ψ1|J|ψ2〉 = 0. The exact wave functions of these
doublets were determined [8,9] together with the exchange
contribution to the paramagnetic Curie temperature θp, which
is negative and of the order of −10 K [8,9], indicating
dominant antiferromagnetic superexchange interactions. The
lack of magnetic order in Tb2Ti2O7 is therefore surprising
since the Ising antiferromagnet in the pyrochlore lattice is not
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frustrated, its ground state being the so-called “all in/all out”
configuration.

Early neutron scattering studies [10,11] have shown that
the Tb moments are very short-range correlated and fluctuate
down to the 0.1-K range. Calculations of the diffuse scattering
at 9 K [12,13] were successful in reproducing experimental
data by taking into account the two ground doublets, which
are both appreciably populated at this temperature. At very low
temperature, when the ground doublet alone is populated, it
was recognized that Ising-like wave functions cannot describe
the physics in Tb2Ti2O7 [14,15] and that a nonzero transverse
matrix element of J is needed. In order to restore transverse
spin fluctuations, a model was proposed, which renormalizes
the low-energy spin Hamiltonian through quantum fluctuations
between the two ground doublets via virtual excitation of a
third ion [16,17]. It will be referred to in the following as the
“virtual crystal field” (VCF) model. It results in an effective
Hamiltonian containing non-Ising terms and thus increasing
frustration. As shown in Fig. 15 of Ref. [17], considering only
a single tetrahedron, the ground state is an ordered spin ice
with propagation vector either k = 0 or (001), depending on
the value of the exchange coupling. As to the general ground
state of the VCF model, it is not known.

In zero magnetic field, the spin liquid state seems to
be fragile: magnetic ordering appears under pressure [18],
showing the great sensitivity of the spin liquid state to external
stresses. It is also sensitive to the exact Tb stoichometry and
may be destroyed by a slight excess in Tb content [19]: small
Bragg peaks are observed at ( 1

2 , 1
2 , 1

2 ) positions and equivalents
in nonstoichiometric powder samples, whereas diffuse maxima
are seen at the same positions in single crystals [20–22].
Long-range magnetic order develops in the presence of
a magnetic field. For a field along [11̄0], a magnetically
ordered phase with spin wave excitations is induced at 0.4 K
for fields of 2 T and above [23,24], and the evolution of
the magnetic structure was more quantitatively explored in
Ref. [25]. For a field along [111], a similar behavior is
observed [26].
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Of particular significance for the understanding of the
spin liquid ground state are the numerous experimental
evidences of either a dynamic symmetry lowering, by low
temperature x-ray diffraction [27], optical measurements [28],
and inelastic neutron scattering [29], or of a strong spin-
phonon coupling: the giant magnetostriction [7,30], the low-
temperature divergence of the bulk modulus [31,32] and of the
elastic constants [33,34]. Very recent high-resolution neutron
scattering experiments [35,36] have revealed the presence
of nonstandard hybridization between an acoustic phonon
branch and the first CEF transition, above an energy around
1.5 meV, but with a vanishing low-energy branch. They have
also confirmed the presence of dispersive inelastic excitations
around an energy of 0.2 meV, but only in the so-called “spin
ice channel.” Finally, an anomalously strong phonon scattering
at 0.3 K has been reported [37], very likely linked with the
4f -electron–phonon hybridization. Hence the ground state in
Tb2Ti2O7 appears to be of a quite complex and unusual kind
and a full microscopic Hamiltonian describing this state is still
to be discovered. This Hamiltonian should include a coupling
between the electronic and phononic degrees of freedom, so
that the ground state be of mixed vibronic type.

Previously, we proposed a model to account for the spin
liquid behavior in Tb2Ti2O7, assuming the presence of a
static tetragonal distortion at the Tb site [21,38,39], i.e., of
an off-diagonal crystal field term that lifts the degeneracy of
the ground doublet into two CEF singlets, coupled by the
exchange/dipole interaction. This model, akin to the Bleaney
model for CEF singlets [40,41], yields a strong transverse
matrix element of J and leads to a mean-field paramagnetic
phase, or spin liquid phase, down to the lowest temperature
in a certain range of exchange integrals. This picture has been
questioned in Ref. [42], where it is claimed that no inelastic line
corresponding to the splitting between singlets is observed, but
the recent neutron data [36] do show the presence of some kind
of low-energy inelastic excitation. On the one hand, this two-
singlet mean-field model satisfactorily reproduces the q maps
of inelastic [21] and diffuse spin-flip and non-spin-flip [20]
neutron scattering at very low temperature. On the other hand,
it predicts a dominant inelastic scattering and does not account
for the strong quasielastic contribution [20,21]. It also cannot
explain the nuclear anomaly in the specific heat [43] showing
the presence of a hyperfine field of 142 T at the Tb site.
Seemingly, the vibronic ground state in Tb2Ti2O7 has some
magnetic character.

In this work, we are interested in the interpretation of the
zero-field diffuse scattering and of the isothermal magnetiza-
tion for fields applied along [111], [110], and [001] at very low
temperature in Tb2Ti2O7. We present zero-field and in-field
3D maps of the total diffuse neutron scattering at 0.16 K and
we use previously published magnetization data [44,45]. We
apply a generalization of the two-singlet model to a dynamic
Jahn-Teller (JT) coupling, which seems better adapted, in the
first approximation, to describe the low-temperature state of
Tb2Ti2O7 since no static distortion has been evidenced. In a
recent work [26], we have shown that the magnetic structure
induced by a field along [111] can be explained in terms of
such a dynamic Jahn-Teller coupling. Here, we show that
the model also satisfactorily reproduces: (i) the q structure
of zero-field diffuse neutron scattering maps at 0.16 K and

(ii) the magnetization curves at 0.05 K along the three cubic
symmetry axes.

II. THE DYNAMIC JAHN-TELLER COUPLING MODEL
AND THE SELF-CONSISTENT MEAN-FIELD AND RPA

CALCULATIONS

The trigonal crystal field acting on a Tb3+ ion is taken as in
Ref. [46]. We emphasize that, contrary to theories describing
the ground non-Kramers doublet by a pseudo-spin 1/2 and
using effective exchange parameters [47], we consider the
whole CEF level scheme and the actual momentum J, and
we use the bare anisotropic exchange integrals Jij . We feel it
important to recall that a non-Kramers doublet |ψ1,2〉 presents
the two properties, in the local frame where Oz is the trigonal
axis:

〈ψ1|Jz|ψ1〉 = −〈ψ2|Jz|ψ2〉, (1)

〈ψ2|J|ψ1〉 = 0. (2)

Then, considering the projection of the CEF Hamiltonian onto
the subspace spanned by |ψ1,2〉 can lead to some confusion
since the z components alone of the pseudospin behave
as those of a true spin 1/2, but its transverse components
must be chosen as quadrupolar moments [47]. An important
consequence of (2) is that transitions between |ψ1〉 and |ψ2〉
induced by the operator J are forbidden: there can be neither
exchange/dipole induced fluctuations nor neutron quasielastic
scattering within the doublet. The magnetoelastic interaction
describing the coupling of the electronic variables with the
local strain variables [48] has been shown to play an important
role in Tb2Ti2O7 [7,49]. It can be written, in the local frame,
up to second order in Ji :

Hm-el =
∑
m

Bm em Qm, (3)

where the e variables are normalised strains, the Q vari-
ables are 4f quadrupole operators and the Bm are coupling
coefficients, m is spanning the relevant symmetry allowed
representations. In zero magnetic field, zero external strain,
and in the absence of any symmetry lowering transition,
the mean equilibrium values 〈em〉 vanish. In the presence
of a field, the 〈em(H )〉 become nonzero and describe the
parastriction. The magnetoelastic coupling (3) is included in
the calculation of the magnetization curves [7,49] described in
Sec. IV.

As mentioned in the introduction, there is experimental
evidence for hybridization of a phonon branch with a CEF
transition in Tb2Ti2O7 at very low temperature [35,36]. The
whole vibronic problem, with mixed phonon-electron wave
functions, should thus be treated by expanding in (3) the
strain variables in terms of phonon operators. However, in
this work, we approximate the vibronic problem by a dynamic
Jahn-Teller (JT) effect, i.e., we introduce a dynamic distortion
〈e〉t along the equiprobable cubic axes [100], [010], or [001],
hence conserving overall cubic symmetry. A Hamiltonian
of type (3) is added to the CEF interaction, defined by
Hα

JT = B〈e〉tQαα = DQ Qαα , where Qij = 1
2 (JiJj + JjJi)

and α = X,Y,Z is one of the three cubic {100} directions. The

085115-2



TOWARDS A MODEL OF A DYNAMICAL JAHN-TELLER . . . PHYSICAL REVIEW B 89, 085115 (2014)

associated Hamiltonians Hα
JT are written in the local frame:

HX
JT = DQ

3

(
1

2
Qxx + 3

2
Qyy + Qzz −

√
3 Qxy

−
√

2 Qxz +
√

6 Qyz

)
,

HY
JT = DQ

3

(
1

2
Qxx + 3

2
Qyy + Qzz +

√
3 Qxy

−
√

2 Qxz −
√

6 Qyz

)
,

HZ
JT = DQ

3
(2 Qxx + Qzz + 2

√
2 Qxz).

It is crucial to note that, contrary to the magnetic moment
operators Ji , the quadrupole moment operators Qij generally
couple the two states of the ground non-Kramers doublet:
〈ψ1|Qij |ψ2〉 �= 0, so that the dynamics of the system is deeply
modified. For a given direction of the JT axis, the degeneracy
of the ground doublet is lifted, and the new eigenfunctions
are close to the symmetric |ψs〉 and antisymmetric |ψa〉
combinations of the trigonal wave functions |ψ1〉 and |ψ2〉. The
ground state depends on the sign of the DQ parameter, whose
value DQ = 0.25 K was derived in our previous work [39]
from the energy of the lowest inelastic excitation. Then,
the ground singlet is |ψa〉 = 1√

2
(|ψ1〉 − |ψ2〉). We note that

the single ion vibronic (or Jahn-Teller) coupling can lead
to intersite quadrupole interactions, which could also play a
role in defining the low-temperature state of Tb2Ti2O7 and
in explaining the fast thermal variation of the (C11 − C12)/2
elastic constant [33,34,49], still not undestood up to now. Work
on this subject is currently under way.

The nearest-neighbor exchange interaction is written in J -J
coupling, with the convention that a negative exchange integral
corresponds to an AF coupling:

Hex = −
∑
〈ij〉

Ji J̃ Jj , (4)

where
∑

〈ij〉 means a summation over the first neighbor pairs.
The exchange tensor J̃ is chosen to be anisotropic, with
its symmetric part diagonal in a frame linked to a R-R
bond [50,51]. For instance, the frame associated with the bond
between site 1 (a/2,a/2,a/2) and site 2 (a/4,a/4,a/2) has
unit vectors: a12 = [001], b12 = 1√

2
[11̄0], and c12 = 1√

2
[110].

The exchange tensor is identical in all these frames and is
written

J =
⎛
⎝ Ja 0

√
2 JDM

0 Jb 0
−√

2 JDM 0 Jc

⎞
⎠ . (5)

The Ja , Jb, and Jc components represent the symmetric part
and JDM the antisymmetric Dzyaloshinski-Moriya part of the
exchange. We use the anisotropic exchange tensor derived
previously for Tb2Ti2O7 [39], slightly modified to better match
the diffuse scattering maps (see Sec. III).

For computing the magnetization curves for each field
direction, we introduce the Zeeman Hamiltonian HZ and
we perform, for each site i of a tetrahedron and for each
direction α of the JT axis, the diagonalization of the following

Hamiltonian:

Hi = HCEF + Hm-el + Hα
JT + HZ + [Hex + Hdip]i , (6)

where [Hex + Hdip]i is the part of the first-neighbor exchange
and infinite-range dipole-dipole couplings relative to site i,
which is treated in a mean-field self-consistent way within the
four sites of a tetrahedron. The dipole sums are evaluated
using the Ewald summation method [52]. Hence we limit
our calculation to the case where the Tb moments in each
of the four fcc sublattices forming the pyrochlore lattice are
parallel. One thus obtains the magnetic structure (and the
magnetization) for a k = 0 propagation vector only.

The energy integrated neutron scattering cross section
(called “diffuse scattering” in the following) is computed in
the paramagnetic phase in zero field using the four-site RPA
outlined in Ref. [12]. The starting points are the HCEF + Hα

JT
Hamiltonians and the Fourier transforms of the exchange and
of the dipole-dipole interactions, the latter being obtained
following Ref. [53]. The components of the complex dynamic
susceptibility χ (Q,ω) are the solutions of a set of linear
equations solved using LAPACK routines. For a given Q = q+G,
where G is a vector of the reciprocal space of the fcc lattice
and q belongs to the first Brillouin zone, the diffuse scattering
intensity is obtained from the real part of the susceptibility as

Sel(Q,ω) ∝ |F (Q)|2
kBT

∑
α,β,a,b

(δα,β − QαQβ)

× exp[−i(ra − rb).G] Re χ
α,β

a,b (q,ω), (7)

where F (Q) is the magnetic form factor of the Tb3+ ion, α

and β label spatial coordinates and a and b label the four
sites on a tetrahedron. Since application of a magnetic field
induces long-range order in Tb2Ti2O7 [23–26,54], our RPA
calculation of the diffuse scattering holds only in zero field,
i.e., in the paramagnetic phase.

In our simulations of the present single-crystal data, since
an external axis is defined (the magnetic field or a particular
plane of the reciprocal space), our assumption of a dynamic
Jahn-Teller effect implies that an equal weight average over
the three {100} directions of the JT axis must be performed.

III. THE DIFFUSE NEUTRON SCATTERING AT 0.16 K

Diffuse scattering maps were measured at 0.16 K on
the Super-6T2 diffractometer at the Orphée reactor of the
Laboratoire Léon Brillouin, Saclay (France) [55], in zero
magnetic field and with fields of 1 and 4 T applied along
[11̄0]. Data were collected using an area neutron detector
(λ = 2.35 Å) covering a 26◦ x 26◦ angular region, by rotating
the sample about the [11̄0] axis with 0.1◦ step and recording
a scattering pattern for two detector positions at 2θ = 17◦
and 40◦. In contrast to earlier diffuse scattering studies in
Tb2Ti2O7 [20,21], the use of the area detector allows one
to explore a large three-dimensional (3D) segment of the
reciprocal space by transforming a complete set of area
detector images in reciprocal space. The reconstructed volume
was completed with its symmetrically equivalent orientations
employing the Laue symmetry of the structure. In order to
strengthen the contrast of the diffuse scattering images, the
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FIG. 1. (Color online) Zero-field neutron diffuse scattering maps in reciprocal space at 0.16 K in Tb2Ti2O7: 3D equal intensity surface
(left), experimental (upper central) and calculated (lower central) scattering in the (hhl) plane, experimental (right upper) and calculated (right
lower) scattering in the (h + 1,h − 1,l) plane. The simulations were made in the presence of dynamic Jahn-Teller effect, with the anisotropic
exchange tensor Ja = −0.068 K, Jb = −0.196 K, Jc = −0.091 K, and JDM=0.

regions of the nuclear and field induced magnetic Bragg
reflections were excluded after the reconstruction. A constant
background signal was subtracted. A 3D representation of an
equal scattering intensity surface in zero field is shown in the
left panel of Fig. 1. From this pattern, the conventional 2D cuts
(h,h,l) and (h + 1,h − 1,l), perpendicular to the [11̄0] axis,
were obtained (upper central and right panels of Fig. 1). The
(hhl) cut is in reasonable agreement with the diffuse scattering
data using polarised neutrons of Ref. [20]. It shows asymmetric
“butterflylike” structures at (002) and (002̄) and triangular
spots near (220) and (2̄2̄0), with strong intensity, and small
pinch points at (111), etc. The intensity at the zone center is
weak. The (h + 1,h − 1,l) cut shows strong intensity spots at
(200) and weak intensity “butterflylike” structures at (11̄3).

The maps were simulated in the presence of dynamic Jahn-
Teller effect using the diagonal exchange tensor elements (in
degrees of Kelvin):

Ja = −0.068, Jb = −0.196, and Jc = −0.091, (8)

as previously determined in Ref. [39] (the absolute value of
Jc is 8% smaller that in Ref. [39]). The Dzyaloshinski-Moriya
exchange JDM, which has been shown to be nonzero in the
pyrochlore lattice [56], is neglected here since it should be
an order of magnitude smaller than symmetric exchange. The
simulated maps, shown in the lower panels of Fig. 1, are seen to

capture the main features of the experimental data, especially
the strong intensity butterfly-like structures at (002), etc., in
the (hhl) plane, and the very low scattering “corridor” along
(1,1̄,l) and high intensity spots at (200) and (02̄0) in the (h +
1,h − 1,l) plane.

Application of magnetic field in the [11̄0] direction at
0.16 K induces magnetic order with two propagation vectors
k = 0 and [001], which leads to a strong decrease of diffuse
scattering. Since a detailed description of the in-field AF
structure has been given in Ref. [25], we concentrate here
exclusively on the diffuse scattering results. Figure 2 shows
in-field diffuse scattering maps with 1 and 4 T applied along
[11̄0], the 3D equal intensity surfaces in the top panels and
the (hhl) cuts in the lower panels. For these field values, our
RPA approximation scheme, holding only in the paramagnetic
phase, cannot be applied, so we shall limit ourselves to a
qualitative description of the phenomena. We recall that the
field-induced structure involves the so-called α and β chains
along two perpendicular directions. The α chains running
along H ‖ [11̄0] have their local anisotropy axis at 36◦ from
the field whereas the β ones along [110] have their easy axis
perpendicular to the field. In first approximation, the k = 0
structure is related to the ordering of the α chains and the
k = [001] structure to the ordering of the β ones. In a field of
1 T, only the long-range ordered k = 0 structure is stabilized;
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FIG. 2. (Color online) Neutron diffuse scattering maps in reciprocal space at 0.16 K in Tb2Ti2O7 with a field applied along [11̄0]. (Top) 3D
equal intensity surfaces for a magnetic field of 1 (left) and 4 T (right). (Bottom) Cuts in the (hhl) plane of the maps at 1 (left) and 4 T (right).

the Tb moments in the α chains are easily aligned along their
local axes, which leads to a strong increase of the intensities
of the structurally allowed Bragg reflections, accompanied by
a decrease of diffuse scattering. The “butterflylike” patterns
are replaced by a disk shaped diffuse scattering concentrated
at the forbidden reflections corresponding to the k = [001]
structure, like (110), (112), and (001). This remaining diffuse
scattering is due to the 1D short-range order of the β chains.
When the field is further increased to 4 T, a 3D ordering
of the β chains occurs giving rise to the appearance of the
forbidden reflections, which violate the extinction rules of
the fcc lattice [25], and to the almost complete disappearance
of the disk shape scattering. Diffuse scattering is, however,
observed around the (111) reflection positions, possibly due
to a small misorientation of the sample induced by the high
applied field. This misorientation is evaluated to be 1.3◦ with
respect to the [11̄0] direction.

IV. VERY LOW-TEMPERATURE ISOTHERMAL
MAGNETIZATION IN Tb2Ti2O7

In the spin liquid Tb2Ti2O7, application of a magnetic field
induces magnetic order with k = 0 for H ‖ [110] [25] and
H ‖ [111] [26], and probably also for H ‖ [001] although no
neutron diffraction data are available for this field direction.
Actually, for H ‖ [110], an AF structure with k = [100] coexists
with the k = 0 structure above 2 T and below 1 K [25], but it
is not expected to contribute to the magnetization. Therefore

the calculation sketched in Sec. II can be applied to Tb2Ti2O7

with a magnetic field applied along [110], [111], and probably
[001]. Isothermal magnetization curves in Tb2Ti2O7 were
measured in the 0.05-K range in Refs. [44] and [57]; they show
a monotonic increase as the field increases (solid symbols in
Fig. 3). For H ‖ [111], no magnetization “plateau” predicted
from the VCF model [58] and akin to that observed in spin
ices for this same field direction [59] is observed down to 0.05
K, and we see no precursor effect of it. We recall however
that, according to Ref. [58], a plateau is expected to be clearly
visible at a temperature (0.02 K) lower than that of these
experiments (∼0.050 K).

For the calculation of the magnetization curves, we use
the values of the anisotropic exchange tensor as in the
previous section. We have also taken into account the stan-
dard magnetoelastic (ME) interaction (3), which yields giant
magnetostriction effects [7,49]. We limited ourselves to ME
terms quadratic in the total angular momentum, following
the formalism of Ref. [49] and using the ME parameters
values derived therein. We have computed the 0.08 and 4 K
magnetization curves for fields along [100] and [110], and the
0.057 and 4 K curves for H ‖ [111] up to 6 T. At 4 K, we
set DQ = 0, since at this temperature the off-diagonal crystal
field probably has a quite small effect, if any.

The comparison between experimental data and our calcu-
lation is shown in Fig. 3. The overall agreement is reasonably
good both at very low temperature and at 4 K. In order
to assess the importance of the ME interactions, we have
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FIG. 3. (Color online) Isothermal magnetization curves in
Tb2Ti2O7: a for H ‖ [111] at 0.057 and 4 K; b for H ‖ [100] and
[110] at 0.08 and 4 K. The experimental data for H ‖ [111] and [110]
are taken from Ref. [44], those for H ‖ [100] from Ref. [45]. The
calculated curves were obtained using the model described in the text
with two assumptions: no magnetoelastic effects (dashed lines) and
including the magnetoelastic interaction (solid lines), except for the
solid blue line in a which reproduces the prediction of the VCF model
at 0.05 K [58], up to the highest field of the calculation (0.5 T).

represented the calculated curves obtained without (dashed
lines) and with (solid lines) ME effects. Inclusion of the ME
interaction slightly modifies the magnetization, especially at
high fields. It yields a small enhancement, which results in
a better agreement with experiment for H ‖ [100] and [110]
[Fig. 3(b)], but not for H ‖ [111] [Fig. 3(a)]. For this latter field
direction, we have also reproduced the curve calculated using
the VCF model at 0.05 K (blue line), taken from Ref. [58].
Despite the limited field range, it is clear that it does not
reproduce the data, which casts a doubt about the validity the
VCF model for Tb2Ti2O7, at least as far as the magnetization is
concerned. Furthermore, this model predicts a sizable variation
of the shape of the low-field magnetization curve between
0.02 and 0.1 K, with the appearance of a clear plateau at the
lowest temperatures (0.02 K). By contrast, the experimental
data [44,57] (in agreement with our calculations) show that the
shape of the magnetization curve does not appreciably change
between 0.05 and 0.3 K. We believe the absence in Tb2Ti2O7 of
the magnetization plateau expected for Ising spins is due to the
vibronic nature of the ground state, which likely destroys the
Ising character at the rare earth site linked with the bare trigonal
crystal field eigenfunctions. We note that these measurements
of the isothermal magnetization curves provide a direct test
of the relevance of the VCF prediction. In contrast, the recent
experimental data at very low temperature [22,60] presented
in favor of the VCF model are only an indirect evidence. They
do not check the existence of the magnetization plateau in
Tb2Ti2O7 but probe low-temperature anomalies, which could
have another origin.

Although our model correctly reproduces the overall
magnetization behavior and its anisotropy, some deviation
occurs at the lowest temperature at low field, around 1 T
and below, mainly for H ‖ [111] and [100]. The curvature
of the magnetization as the field increases is not exactly
reproduced. At higher fields, above 3–4 T, the calculated points
lie somewhat above the data points, especially for H ‖ [111]

both at 0.08 and 4 K. Keeping in mind that the uncertainty for
such magnetic measurements is usually estimated to amount
to a few percent, we can envisage various causes for these
deviations. First, our model would not capture all the details
of the field-induced magnetic structure, especially at low fields.
Second, the effect of a slight field misalignment with respect
to the crystal axes can also play a role, mainly for H ‖ [110].
Indeed, for this field direction, there occurs a “spin melting”
near 1 T where the two moments lying on sites with their
ternary axis perpendicular to the field (β sites) vanish [25]. The
“spin melting” and the configuration of the β moments are then
very sensitive to the alignment of the field with respect to the
crystal axis. As to the other field directions, our calculations
show that a partial spin melting occurs at 0.2 T for H ‖ [111]
and that it is absent for H ‖ [001]. Finally, we note that the
anisotropy of the magnetization curves is mainly a trigonal
crystal field effect; for fields above ∼2 T, the Jahn-Teller
interaction and its associated dynamic distortion play only a
minor role. So, at low fields, calculation of the magnetization
curves can suffer from the fact that the dynamic Jahn-Teller
model is only a first approximation to describe the ground state
of Tb2Ti2O7.

V. DISCUSSION

The virtual crystal field approach of Ref. [16], which is
a first-order perturbation theory, does not seem to explain the
ground state of Tb2Ti2O7 as observed experimentally. It seems
that a more profound change of the ground-state wave function
(zeroth-order perturbation) is necessary, and the dynamic JT
interaction developed here is a first attempt to introduce such a
quantum mixing. Should then Tb2Ti2O7 be dubbed a “quantum
spin ice,” as suggested by several authors? Although this term
was initially proposed for Tb2Ti2O7 in the context of the VCF
approach [16], it is now more widely used when quantum
fluctuations occur within a set of spin ice states [61–63].
Indeed, Tb2Ti2O7, where Tb3+ is a non-Kramers ion, which
shows dispersive excitations in a disordered ground state [36]
and where the likely presence of a vibronic coupling can
induce an interaction between quadrupolar moments [48], is
a good candidate. However, the small energy gap to the first
excited CEF level renders the situation more complicated to
treat theoretically than for the generic quantum spin ices with
effective spin 1

2 considered up to now.
The simple distortion or Jahn-Teller model for Tb2Ti2O7

implies that, for a certain range of exchange parameters,
the mean-field single ion ground state is a singlet, i.e., it is
nonmagnetic and thus could explain the absence of magnetic
ordering down to the lowest temperature. However, energy-
resolved neutron scattering shows that elastic or quasielastic
scattering is dominant at very low temperature [19–22,64],
meaning that the ground state has a nonzero magnetic moment,
which is static at the time scale of the experiment.

The fact that our model can reasonably well reproduce the
q maps in reciprocal space of the inelastic [21] and diffuse
(i.e., energy-integrated) scattering (Ref. [21] for the spin-flip
(SF) and non-spin-flip scattering and present work for the
total scattering) probably shows that it correctly represents
the spin correlations. However, it situates their characteristic
energy in the inelastic channel rather than in the elastic one,
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Ja(K)

Jc(K)

-0.053,-0.045 -0.030,-0.045 -0.007,-0.045 -0.015,-0.030

-0.060,-0.060 -0.030,-0.060 -0.007,-0.060

-0.060,-0.075 -0.038,-0.075 -0.015,-0.075-0.026,-0.075

-0.068,-0.090 -0.045,-0.090 -0.033,-0.090

-0.075,-0.106 -0.060,-0.106

AF

SL

exp.

FIG. 4. (Color online) Calculated diffuse scattering maps in the (hhl) plane of the reciprocal space for the spin-flip channel at 0.05 K,
according to the geometrical setup of Ref. [20]. The q maps are represented in the spin liquid (SL) phase of our model (see Ref. [39]), which
stands as a wedge between the antiferromagnetic (AF) phase and the ordered spin ice (OSI) phase. The figure is a sketch of a cut in the exchange
parameter phase space for Jb = −0.196 K [65]; the numbers above each map are the values (in K) of Ja and Jc. The map on the left labeled
“exp.” is the experimental spin-flip diffuse scattering in Tb2Ti2O7 at 0.05 K from Ref. [20]; it has been placed close to the bottom left corner of
the phase space for sake of comparison with the simulated maps. The maps with blue background placed in the AF and OSI phases represent
the Bragg spots in the (hhl) plane for respectively the “all in / all out” and the “two in/two out” spin structures.

since a nonmagnetic ground state does not give rise to elastic
scattering. In terms of the mixed eigenstates |ψa〉 and |ψs〉
introduced in Sec. II, one can define a “transition vector”
T = 〈ψa|J|ψs〉, whose square modulus is the intensity of the
low-energy inelastic mode. The T vector is directed along
the local trigonal axis since its only nonzero component is
Tz = 〈ψa|Jz|ψs〉 = 〈ψ1|Jz|ψ1〉, and it is solely defined by the
CEF wave functions. So the intensity of the calculated diffuse
scattering involves the pure “inelastic” CEF quantity ‖T‖2,
the subsequent energy integration yielding expression (7), pro-
portional to Re χ according to the Kramers-Kronig theorem,
and its q dependence is mainly due to the anisotropy of the
exchange tensor.

To emphasize the difference of the diffuse scattering in
Tb2Ti2O7 with respect to those in pyrochlore systems with
dominant spin ice or antiferromagnetic spin correlations, we
have computed the spin-flip scattering maps in the (hhl)
plane within the spin liquid phase of our model [39] (see
Fig. 4). Near the upper border of the SL phase with the
ordered spin ice (OSI) phase (Jc = −0.030, − 0.045 K),
the SF maps are very close to those of a spin ice [66], where
the spin correlations are of the type “two in/two out.” The
corresponding Bragg spots (map with blue background in the
OSI phase) are located at the pinch points of the SF map.
Near the border with the antiferromagnetic (AF) phase, the SF
scattering consists only in broadened peaks at positions (220),

(113), etc. These positions are those of the Bragg peaks of the
“all in/all out” spin structure, as shown in the map with blue
background in the AF phase. The sketch of the SL phase in
Fig. 4 allows one to follow the progressive transformation of
the SF maps as one scans the {Ja,Jc} plane. It shows that the
SF map is very specific to a given set of exchange integrals.
The map closest to the experimental data (Ja = −0.068 K,
Jc = −0.090 K), near the bottom left corner, is different from
the two above described limiting cases and must therefore
represent a special type of spin correlations occurring in
Tb2Ti2O7, probably consisting in a mixture of spin ice and
AF correlations. Within our model, Tb2Ti2O7 lies very close
to the border with the long-range ordered OSI phase. This
could explain the presence of spin-ice-like features in the AF
spin correlations [20–22,35,36] and the stabilization of the OSI
phase in the sibling material Tb2Sn2O7 below 0.87 K [67].

In this latter compound, a nuclear Schottky anomaly is
present at low temperature and the hyperfine field derived from
it is 180 T, corresponding to an effective magnetic moment of
4.5 μB/Tb3+ [68], using the 159Tb3+ hyperfine constant of
40(4) T/μB [69]. This effective moment of 4.5 μB is reduced
with respect to the spontaneous moment 5.9(1) μB measured
by neutron diffraction, which is attributed in Ref. [67] to
persisting spin fluctuations in the OSI phase. More precisely,
the hyperfine Schottky anomaly is depleted in case the
electronic spin fluctuation frequency ν4f is not much slower
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than the nuclear relaxation frequency 1/T1 [70], i.e., if ν4f ∼
1/T1. The presence of a similar nuclear Schottky anomaly
in the very low-temperature specific heat of Tb2Ti2O7, with a
hyperfine field of 142 T [43], is rather unexpected in a material
with no magnetic ordering. It shows that there is a hyperfine
field at the nucleus site, linked in this case with the short-range
dynamically correlated Tb3+ magnetic moments. The moment
value derived from the 142 T hyperfine field is 3.6(4) μB . Thus,
from the point of view of the nuclear specific heat, Tb2Sn2O7

and Tb2Ti2O7 behave very similarly, although the former
orders magnetically, while the latter does not. As a further
analogy, in order to account for the inelastic neutron scattering
maps in the OSI phase of Tb2Sn2O7 [71], it is necessary to
introduce an off-diagonal crystal-field term, which was taken
as a tetragonal distortion. The μSR data in Tb2Ti2O7 [6]
are also very similar to those in Tb2Sn2O7 [72,73], revealing
sizable fluctuating moments in both compounds down to the
lowest temperature.

VI. CONCLUSION

We have shown that it is possible to account for some quite
different properties of the pyrochlore spin liquid candidate
Tb2Ti2O7 at very low temperature, i.e., the neutron diffuse
scattering and the isothermal magnetization, by a model that
approximates the probably complex vibronic ground state
of this material by a dynamic Jahn-Teller coupling within

the ground electronic doublet. The success of the model in
reproducing the magnetization curves is linked with the mixed
character of the “tunnel-like” antisymmetric ground wave
function. Absence of this zero-order mixing automatically
leads to a kagome-ice state for intermediate field values along
[111] and thus to a magnetization plateau around 2 μB . As
to the diffuse scattering, its calculated intensity reflects that
of the transition between the mixed Jahn-Teller states, and
the q dependence of the maps reflects the anisotropy of the
exchange tensor. However, this approach does not provide a
fully correct picture for Tb2Ti2O7 since it predicts a ground
state with a dominant inelastic scattering, due to transitions
between the singlets, and it cannot account for the observed
strong quasielastic contribution nor for the presence of the
magnetic hyperfine Schottky anomaly in the specific heat. We
believe it could anyway be a starting point while awaiting for
a more elaborate treatment of the peculiar coupling between
the phononic and electronic degrees of freedom, which seems
to be at play in Tb2Ti2O7 at very low temperature.
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providing the Tb2Ti2O7 single crystals. We thank E. Lhotel
and C. Paulsen for communicating unpublished results.

[1] J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod.
Phys. 82, 53 (2010).

[2] M. J. Harris, S. T. Bramwell, P. C. W. Holdsworth, and J. D. M.
Champion, Phys. Rev. Lett. 81, 4496 (1998).

[3] A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddhartan, and B. S.
Shastry, Nature (London) 399, 333 (1999).

[4] I. A. Ryzhkin, JETP 101, 481 (2005).
[5] C. Castelnovo, R. Moessner, and S. L. Sondhi, Nature (London)

451, 42 (2008).
[6] J. S. Gardner, S. R. Dunsiger, B. D. Gaulin, M. J. P. Gingras,

J. E. Greedan, R. F. Kiefl, M. D. Lumsden, W. A. MacFarlane,
N. P. Raju, J. E. Sonier, I. Swainson, and Z. Tun, Phys. Rev.
Lett. 82, 1012 (1999).

[7] I. V. Aleksandrov, B. V. Lidskiı̆, L. G. Mamsurova, M. G.
Neygauz, K. S. Pigal’skiı̆, K. K. Pukhov, N. G. Trusevich, and
L. G. Shcherbakova, JETP 62, 1287 (1985).

[8] M. J. P. Gingras, B. C. den Hertog, M. Faucher, J. S. Gardner,
S. R. Dunsiger, L. J. Chang, B. D. Gaulin, N. P. Raju, and J. E.
Greedan, Phys. Rev. B 62, 6496 (2000).

[9] I. Mirebeau, P. Bonville, and M. Hennion, Phys. Rev. B 76,
184436 (2007).

[10] J. S. Gardner, B. D. Gaulin, A. J. Berlinsky, P. Waldron, S. R.
Dunsiger, N. P. Raju, and J. E. Greedan, Phys. Rev. B 64, 224416
(2001).

[11] Y. Yasui, M. Kanada, M. Ito, H. Harashina, M. Sato,
H. Okumura, K. Kakurai, and H. Kadowaki, J. Phys. Soc. Jpn.
71, 599 (2002).

[12] Y. J. Kao, M. Enjalran, A. Del Maestro, H. R.
Molavian, and M. J. P. Gingras, Phys. Rev. B 68, 172407
(2003).

[13] M. Enjalran and M. J. P. Gingras, Phys. Rev. B 70, 174426
(2004).

[14] S. H. Curnoe, Phys. Rev. B 75, 212404 (2007).
[15] S. H. Curnoe, Phys. Rev. B 88, 014429 (2013).
[16] H. R. Molavian, M. J. P. Gingras, and B. Canals, Phys. Rev. Lett.

98, 157204 (2007).
[17] H. R. Molavian, P. A. Mc Clarty, and M. J. P. Gingras,

arXiv:0912.2957.
[18] I. Mirebeau, I. N. Goncharenko, P. Cadavez-Peres, S. T.

Bramwell, M. J. P. Gingras, and J. S. Gardner, Nature
(London) 420, 54 (2002); I. Mirebeau, I. N. Goncharenko,
G. Dhalenne, and A. Revcolevschi, Phys. Rev. Lett. 93, 187204
(2004).

[19] T. Taniguchi, H. Kadowaki, H. Takatsu, B. Fåk, J. Ollivier,
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