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Universal scaling of the quantum anomalous Hall plateau transition
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We study the critical properties of the quantum anomalous Hall (QAH) plateau transition in magnetic
topological insulators. We introduce a microscopic model for the plateau transition in the QAH effect at the
coercive field and then map it to the network model of quantum percolation in the integer quantum Hall effect
plateau transition. Generally, an intermediate plateau with zero Hall conductance could occur at the coercive
field. σxx would have double peaks at the coercivity while ρxx only has single peak. Remarkably, this theoretical
prediction is already borne out in experiment. Universal scaling of the transport coefficients ρxy and ρxx are
predicted.
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I. INTRODUCTION

The recent discovery of the quantum anomalous Hall
(QAH) effect in a magnetic insulator has attracted considerable
interest in this new state of quantum matter [1–12]. In a
QAH insulator, theoretically predicted in magnetic topological
insulators (TIs) [1–6], the strong spin-orbit coupling and
ferromagnetic (FM) ordering combine to give rise to an
insulating state with a topologically nontrivial band structure
characterized by a finite Chern number [13,14]. In a beautiful
experiment, the QAH effect has been discovered in Cr-doped
(Bi,Sb)2Te3 magnetic TI [10], where at zero magnetic field,
the gate-tuned Hall resistance ρxy exhibits quantized plateau at
values ±h/e2 while the longitudinal resistance ρxx → 0. The
plateau transition is of particular interest, in which ρxy changes
from one quantized value to another over a narrow interval
of external magnetic field at the coercivity and ρxx exhibits
peaks [10]. In this paper, we address the critical properties of
the quantum phase transition between adjacent QAH phases,
and some of the theoretical predictions are already confirmed
in the QAH experiment [10].

This issue is closely related to the integer QHE plateau
transition [15]. In a strong magnetic field B, a two-dimensional
(2D) electron gas exhibits the QHE over a wide range of
sample disorders. The plateau transition between different
quantized values for ρxy reflects delocalization transition in
each Landau level (LL). This delocalization has shown to be
a critical phenomenon [16–19], where the localization length
ξ diverges as a power law ξ ∼ (B − Bc)−ν with a universal
critical exponent ν [20–22]. Scaling behavior in transport
coefficients has been observed as the zero-temperature critical
point is approached, as a function of temperature T , sample
size, and frequency, which yields the value ν ≈ 2.38 [23–25].
Chalker and Coddington proposed a network model to describe
the quantum percolation of 2D electrons in a strong magnetic
field and a smooth random potential [26]. The semiclassical
cyclotron orbits propagate along the equipotential lines of the
disorder potential, and the tunneling processes occur whenever
two orbits approach each other on a distance less than the cy-
clotron radius. Extensive numerical simulations [26–28] show
that the network model has a plateau transition with ν = 2.4 ±
0.2, in excellent agreement with the experimental results.

The magnetic TI studied in the QAH experiment [10]
develops robust ferromagnetism at low temperature, possibly

mediated by a van Vleck mechanism [6]. In the magnetized
states, the magnetic domains of the material can be viewed
as a single domain with up or down magnetization, and the
system is in a QAH state with quantized ρxy being +h/e2

or −h/e2. The magnetization reversal in this system leads to
a quantum phase transition between two QAH states. At the
coercive field, the magnetic domains are being switched from
up to down randomly, so many upward and downward domains
coexist [marked as + and − in Fig. 1]. At the boundary of each
domain, there exists a chiral edge state [2] with spatial decay
length λ. Each edge state is characterized by a random phase
change along the domain boundary. Tunneling between two
edge states will occur whenever they are separated less than
λ. Therefore, the QAH plateau transition at the coercivity in
a magnetic TI is very much like the network model of the
integer QHE plateau transition in the lowest LL. Although
these two cases belong to quite different limits, the symmetries
of the systems are common, i.e., the unitary class with neither
time-reversal nor spin-rotational symmetry [19]. One purpose
of the present work is to propose a microscopic model for
the QAH plateau transition, and establish its relation to the
network model, so the critical exponent obtained for the latter
can be used for the former.

The organization of this paper is as follows. Section II de-
scribes the microscopic model for the QAH plateau transition.
Section III describes the mapping from the model for QAH
plateau transition to the network model for the integer QHE
transition. Section IV presents the results and discussion on the
coercivity transition and experimental proposal in a magnetic
TI. Section V concludes this paper. Some auxiliary materials
are relegated to appendixes.

II. MODEL

Now, we turn to the QAH state in a two-dimensional (2D)
thin film of a magnetic TI with spontaneous FM order. The
low-energy bands of this system consist of Dirac-type surface
states only [2,6,11], for the bulk states are always gapped. The
generic form of the effective Hamiltonian is

H̃0(kx,ky) = vF kyσ̃1 ⊗ τ̃3 − vF kxσ̃2 ⊗ τ̃3 + �σ̃3 ⊗ 1

+m(k)1 ⊗ τ̃2, (1)
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FIG. 1. Chiral edge states along domain walls at the coercivity in
a magnetic TI. The symbols + (gray region) and − (white region)
denote the upward and downward magnetic domains with |�| > |m0|,
respectively. The shadow region denotes |�| < |m0|. The arrowed
lines are chiral states and correspond to the links in network model.
The circles enclose the tunneling point between chiral states which
correspond to the saddle points (nodes).

with the basis of |t ↑〉, |t ↓〉, |b ↑〉, and |b ↓〉, where t and b

denote the top and bottom surface states and ↑ and ↓ represent
the spin up and down states, respectively. σ̃i and τ̃i (i = 1,2,3)
are Pauli matrices acting on spin and layer, respectively. vF

is the Fermi velocity and we set vF ≡ 1. � is the exchange
field along the z axis introduced by the FM ordering. Here
� ∝ 〈S〉 with 〈S〉 being the mean field expectation value of
the local spin [6]. The magnetization M ∝ 〈S〉ave, where 〈S〉ave

is the spatial average of 〈S〉. m(k) describes the tunneling effect
between the top and bottom surface states. To the lowest order
in k, m(k) = m0 + m1(k2

x + k2
y), and |m0| < |�| guarantees

the system is in the QAH state. For simplicity, the spatial
inversion symmetry is assumed, which requires that vF , �,
and the effective g factor take the same values for the top and
bottom surfaces.

In terms of the new basis |+ ↑〉, |− ↓〉, |+ ↓〉, |− ↑〉,
with |± ↑〉 = (|t ↑〉 ± |b ↑〉)/√2, and |± ↓〉 = (|t ↓〉 ±
|b ↓〉)/√2, the system is decoupled into two models with
opposite chirality [11],

H0(kx,ky) =
(
H+(k) 0

0 H−(k)

)
, (2)

H±(k) = kyτ1 ∓ kxτ2 + (m(k) ± �)τ3, (3)

where τi are Pauli matrices. At half filling, H±(k) have Chern
number ∓1 or 0 depending on whether the Dirac mass is
inverted [m(k) ± � < 0] or not [m(k) ± � > 0] at the 	 point.
Thus the total Chern number of the system is

C =
{

�/|�|, for |�| > |m0|
0, for |�| < |m0|

. (4)

The Chern number changes by 1 at � = ±m0. In the QAH
state, the Hall conductance σxy = Ce2/h is in a quantized
plateau and depends only on the sign of �.

Magnetization reversal will change the sign of M , leading
to the QAH plateau transition at � = ±m0. Here we consider
how the random magnetic domains at the coercivity will effect
the QAH phase transition at �∗

1 = m0 and �∗
2 = −m0. In gen-

eral, the disorder will generate spatially random perturbations
to the pure Hamiltonian H0 in Eq. (2). Specifically, at the
coercivity, the system mainly has three types of randomness,

HA = Ax(x,y)τ2 ⊗ σ3 − Ay(x,y)τ1 ⊗ 1,

H� = �(x,y)τ3 ⊗ σ3, (5)

HV = V (x,y),

where σ3 is a Pauli matrix. �A ≡ (Ax,Ay), �, and V are
nonuniform and random in space but constant in time. Thus
they mix up the momenta but not the frequencies. HA

corresponds to a random vector potential, which comes from
the gauge coupling (�k → �k − �A) with the random magnetic
field in the system. H� is the random exchange field along the
z axis induced by the local spin in magnetic domains.HV is the
random scalar potential induced by impurities in the materials.
Here the random exchange field within the x-y plane is
ignored, for effectively it only contributes to a negligible small
random exchange field along the z axis at the transition point
(see Appendix B). Obviously, HA and H� break time-reversal
symmetry, while HV preserves time-reversal symmetry. To be
concrete, at � = ±m0, we will assume that all three random
potentials are symmetrically distributed about a zero mean.
We also assume the interaction between the electrons can be
neglected.

Here we mention that the model introduced above is very
similar to the random Dirac model for the description of
the integer QHE transition [29,30]. The fixed point of the
random Dirac model with all three different kinds of disorder
is in a strong coupling regime and is conjectured to be a
generic integer QHE fixed point [30]. This suggests that the
QAH plateau transition should have a similar critical behavior.
However, the critical properties of the random Dirac model
have not yet been accessible analytically. In order to get the
critical exponents for QAH plateau transition, we construct a
general mapping from the model for QAH transition to the
network model.

III. MAPPING TO NETWORK MODEL

Now, we consider H+(k) in the presence of disorders HA,
H�, and HV , which describes the phase transition from C =
+1 to C = 0 at � = −m0. In real space, the Hamiltonian has
the form

H+ = (−i∂y − Ay)τ1 − (−i∂x − Ax)τ2 + δτ3 + V, (6)

where δ(x,y) ≡ m0 + �(x,y) is the Dirac mass. The m1 term
has been neglected, for it does not affect the plateau transition.
For convenience, we make a unitary transformation H̃+ ≡
GH+G† and obtain

H̃+ = (−i∂x − Ax)τ3 − (−i∂y − Ay)τ1 − δτ2 + V, (7)
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FIG. 2. The network model. (a) The coordinate system for
plaquettes and the labeling of the four links. (b) Amplitudes associated
with possible scattering paths at nodes.

with G = (τ2 − τ3)/
√

2. In the low-energy limit, the unitary
evolution operator in a unit time for H̃+ is

U = e−iH̃+ ≈ 1 − iH̃+ − H̃2
+

2
≈ e−iV

(
γ α

−α∗ γ ∗

)
, (8)

where

γ (x,y) = cos δ cos(−i∂y − Ay)e−i(−i∂x−Ax ),

α(x,y) = ei(−i∂y−Ay )[sin δ + i sin(−i∂y − Ay)].

Here γ ∗ and α∗ are the corresponding complex conjugates.
Then we turn to the network model as shown in Fig. 2. Such

a model is defined using the language of scattering theory [26].
It consists of a square lattice of plaquettes. At the boundary
of each plaquette, there is an edge state at the Fermi energy
representing equipotentials, in which an electron drifts along
the direction indicated by the arrow. Plaquettes are labeled
by integer coordinates (x,y), and we denote the four links i

making up a plaquette by i = 1,2,3,4, so a link is specified
by the combination (x,y,i), where x + y is even. The wave
function for the electron on the link (x,y,i) is represented by
the current amplitude Zi(x,y), which is characterized by the
phase change φi along the link (0 � φi � 2π ). The tunneling
process at the nodes [denoted as S and S′ in Fig. 2(b)] may be
related by a scattering matrix with a parameter ϑ (0 � ϑ �
π/2) as (

Z2

Z4

)
=

(
cos ϑ sin ϑ

− sin ϑ cos ϑ

)(
Z1

Z3

)
. (9)

Now, we associate a unitary scattering matrix with the
model [31], which is roughly a time evolution operator. In
the basis of (Z1(x,y),Z3(x,y); Z2(x,y),Z4(x,y)), the one-step
scattering matrix between the nearest-neighbor links is

S =
(

0 N1

N2 0

)
, (10)

where

N1 =
(

sin ϑeiφ1τ x
−τ

y
+ cos ϑeiφ1

cos ϑeiφ3 − sin ϑeiφ3 tx+t
y
−

)

and

N2 =
(

cos ϑeiφ2 sin ϑeiφ2τ x
+τ

y
+

sin ϑeiφ4τ x
−τ

y
− − cos ϑeiφ4

)
.

Here τ x
± and τ

y
± are the translation operators defined as

τ x
±Zi(x,y) = Zi(x ± 1,y) and τ

y
±Zi(x,y) = Zi(x,y ± 1). The

two-step scattering matrix then decouples as

S2 =
(
N1N2 0

0 N2N1

)
. (11)

To extract the localization length, it is sufficient to just deal
with the upper-left block N1N2 [31]. If the phases φi are
uniformly distributed between 0 and 2π , the network model
is critical at ϑ = ϑc = π/4, where ξ diverges, and in the
localized phase otherwise [26].

In the continuum limit, the translation operators can be
written as τ x

± = e±∂x and τ
y
± = e±∂y . By identifying Ax =

(φ1 − φ3)/2, Ay = (φ4 − φ2)/2, V = −∑4
i=1 φi/2, and ϑ =

ϑc + δ/2, we find that the unitary matrix N1N2 is exactly
the same as the evolution operator U defined in Eq. (8).
Specifically, the randomness in the individual link phases
arise from fluctuation in the vector potential �A and variations in
the total Aharonov-Bohm phase associated with each plaquette
come from fluctuations in the scalar potential V , and the
random tunneling parameter is not constant everywhere if the
fluctuations in the mass � are present. A similar procedure
can be done for H−(k) for the transition from C = −1 to
C = 0. Therefore, by using the time evolution operator, we
have established in detail a mapping from the QAH plateau
transition to the network model.

IV. RESULTS AND DISCUSSION

A. Coercivity transition

The QAH plateau transition at the coercivity should have the
same critical behavior as the network model. More specifically,
the localization length ξ of the levels near the Fermi energy
diverges like a universal power law in � as ξ = ξ�|� − �∗|−ν .
For � ∝ M , and at the coercivity M ∝ H , therefore,

ξ (H ) = ξ0|H − H ∗|−ν, (12)

with the critical exponent ν ≈ 2.4 and H ∗ is the critical
external field of the plateau transition. As there exist two
critical points at �∗

1 and �∗
2, we predict there should be four

critical magnetic field ±H ∗
1 and ±H ∗

2 at which ξ diverges as
shown in Fig. 3.

In the finite-size scaling theory, the conductance tensor
depends on the parameter H only through a single variable
with the ansatz [20]

σαβ(H ) = fαβ

[
L

1/ν

eff (H − H ∗)
]
, (13)

where α,β = x,y. σxx is the longitudinal conductance. Leff

is the effective system size. fαβ is a regular function (power
series) of its argument except near the QAH plateaus. Such
power-law behavior of the transport coefficients reflects the
two-parameter scaling of the conductance tensor [17,20].
When Leff � ξ , one expects fxx ∝ exp(−Leff/ξ ).
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FIG. 3. (Color online) Magnetic field dependence of σxy and σxx .
(a) Sketch of σxy and σxx as a function of applied magnetic field H .
An intermediate plateau with σxy = 0 appears at the hysteresis loop,
while σxx shows two peaks around the coercive field. (b) σxy vs H

at three different T with T1 < T2 < T3. (c) The corresponding σxx

vs H .

At T = 0 K, Leff is equal to the system size L. At finite
T , Leff is given by the phase coherence length Lin [32], which
behaves as Lin(T ) ∝ T −p/2 as T → 0 [33]. Then L

1/ν

eff ∝ T −κ

with κ = p/2ν. The nth derivative of the conductance tensor
at the critical point is

∂nσαβ(H ∗)

∂Hn
∝ L

n/ν

eff ∝ T −nκ . (14)

This is the T -dependent scaling of the QAH plateau transition.
More specifically, as shown in Fig. 3(a), the maximum slope
in the σxy curve diverges as a power law in temperature T as

(∂σxy/∂H )max ∝ T −κ . (15)

In addition, the half-width of σxx peak vanishes like

�1/2H ∝ T κ. (16)

The statement of Eq. (14) can be directly translated into
resistance (see Appendix C).

The exponent ν can be measured directly by studying same
Hall-bar geometries but different sizes. For sufficiently small
samples, (∂σxy/∂H )max and �1/2H should saturate at low T ,
and the saturation temperature would decrease with increasing
system size. This is because that as the temperature when
Lin ∼ L, the T -dependent scaling at higher T crosses over to
size-dependent scaling. The saturation value of �1/2H at low
T is then given by the condition L/ξ ≈ 1, i.e.,

�1/2H ∝ L−1/ν . (17)

The universal power-law behavior in temperature shows
the characteristics of a second-order phase transition. The
magnetization M is used as a continuous parameter for the
phase transition between adjacent QAH phases. One may be
concerned with this assumption, since in a FM material, M

is usually thought to reverse abruptly (known as the “infinite
avalanche”) at the coercivity, marking the occurrence of a
first-order transition [34]. Such discontinuity will completely
conceal the above second-order phase transition. However, as
studied extensively by materials scientists, the hysteresis curve

of FM materials are often smooth. This is due to inevitable
dissipations (such as the presence of disorders) in the process
of magnetization [35]. The existence of dissipations make the
magnetization process no longer a first-order transition but a
smooth crossover. Therefore, one could observe the critical
behavior of QAH plateau transition on the hysteresis loop in a
magnetic TI.

B. Experimental proposal

For the recent QAH experiment in a Crx(Bi,Sb)2−xTe3 thin
film, at low-enough T , one would observe the zero Hall plateau
with ρxy = 0 and σxy = 0. The corresponding σxx would have
two peaks at the coercivity as shown in Fig. 3(a), while ρxx

only has one peak. This remarkable theoretical prediction is
already borne out in experiment as follows [10]: By inverting
the experimental data of ρxx into σxx , σxx shows double peaks
at the coercivity while ρxx only has single peak [36]. However,
the ρxy = 0 and σxy = 0 plateau are not yet observed, possibly
because T is still not low enough or the transitions in H+(k)
and H−(k) are nearly degenerate [37]. As shown in Fig. 3(b),
the σxy = 0 plateau disappears as T increases.

Even without the signature of zero Hall plateau in ρxy ,
one can still measure the critical behavior by studying the T -
dependent and size-dependent scaling predicted above. For a
definite system size, the maximum slope in ρxy should diverge
in T as

(∂ρxy/∂H )max ∝ T −κ . (18)

However, the temperature dependence of the Fermi-Dirac
distribution leads to a temperature dependence of the resis-
tance, ραβ(T ) = ∫

dE(−∂f (T )/∂E)ραβ(T = 0). In order to
observe the universal scaling behavior, the temperature must
be low enough that the influences of the finite width of
Fermi-Dirac distribution can be neglected. While for a definite
low temperature, the maximum slope in ρxy scales in L as

(∂ρxy/∂H )max ∝ L−1/ν . (19)

Moreover, ρxx ∝ exp(−Leff|H − H ∗|ν/ξ0) when ρxy is close
to the quantized value with Leff � ξ . The critical exponent ν ≈
2.4, independent of the transition is degenerate or not [23–28].

V. CONCLUSION

In summary, starting from the microscopic model for QAH
plateau transition, we construct a mapping to the network
model for integer QHE transition. We predict that σxx would
show two peaks at the coercivity while ρxx only has single
peak. Remarkably, this theoretical prediction is already borne
out in experiment [10]. The scaling theory of the Hall plateau
transition in the QAH effect is proposed. To observe the
universal scaling behavior, T must be low enough. However,
the absolute scale in T is very much dependent on the
microscopic details of the randomness in magnetic domains.
Only the value of the exponent ν is universal [38]. Moreover,
without LLs, QAH plateau transition at the coercivity in a
magnetic TI provides an experimental platform to test the
random Dirac model [30], which was originally proposed
for the description of integer QHE plateau transition. A
field theory description of the QAH transition including the
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renormalization group flow of σxx and σxy will be studied in
future work.
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APPENDIX A: PLATEAU TRANSITION POINT

An external magnetic field is required to induce the
coercivity transition, and in experiment the coercive field is
small (Bc < 0.1 T) [10]. There are no Landau levels (LLs) in
this system as the cyclotron energy at the coercivity is much
smaller than the potential fluctuation. Such small coercivity
will shift the plateau transition point from � = ±m0 to � =
±(m0 + m1/�

2
c), where �c = √

�/eBc is the magnetic length.
With Bc < 0.1 T, m1/�

2
c < 0.1 meV. Since for the magnetic TI

thin film studied in experiment m0 � 1 meV [10,12], the shift
of plateau transition point due to the coercivity is negligible.
This can be obtained by including the magnetic field in the
Hamiltonian H0, and study the Chern number change as �

varies.
At the coercivity, the external magnetic field enters into

Eq. (2) via minimal coupling, �k → �k + e �A, where in the
symmetric gauge the vector potential

�A = B

2
(−y,x). (A1)

We define the new operators

π+ = �

(
k+ + ieB

2�
z

)
, (A2)

π− = �

(
k− + ieB

2�
z∗

)
, (A3)

where k± = kx ± iky and z = x ± iy. These operators obey
the commutation relations

[π+,π−] = −2�
2

�2
c

, (A4)

with the magnetic length �c = √
�/eB. Using these commu-

tation relation we define rasing and lowering operators

a = �c√
2
π−, a† = �c√

2
π+, (A5)

[a,a†] = 1. (A6)

The Hamiltonian can be rewritten as

H0 =
(
H+(a,a†) 0

0 H−(a,a†)

)
, (A7)

H±(a,a†) =
[
m0 ± � + 2m1

�2
c

(
a†a + 1

2

)]
τ3

+
√

2vF

�c

(iaτ± − ia†τ∓), (A8)

where τj (j = 1,2,3) are Pauli matrices, τ± = (τ1 ± iτ2)/2.
The spectrum of this Hamiltonian can be solved since only a

finite number of harmonic oscillator Landau levels are coupled.
The energy spectrum is

Es = −s
m1

�2
c

±
√

2v2
F

�2
c

N +
(

m0 + s� + 2m1

�2
c

N
)2

(A9)

with s = ± and N = 0,1,2,3, . . . . This spectrum has “zero
mode” given by

E0
+ = −m0 − � − m1

�2
c

, (A10)

E0
− = m0 − � + m1

�2
c

. (A11)

At the coercivity Bc, E0
± = 0 gives the transition point. Thus

at half filling, the total Chern number of the system with the
magnetic field becomes

C =
{

�/|�|, for |�| > |m0 + m1/�
2|

0, for |�| < |m0 + m1/�
2| . (A12)

Now the plateau transition point becomes � = ±(m0 +
m1/�

2
c) with B = Bc.

The bulk LL and edge state spectrum for five-quintuple
layers (QLs) of Crx(Bi,Sb)2−xTe3 magnetic TI with different
� are shown in Fig. 4. The parameters are taken from Ref. [12],
where m0 < 0 and m1 > 0. Figure 4(a) shows bulk LLs with
m0 + m1/�

2
c < � < −m0 − m1/�

2
c , and Fig. 4(f) shows the

corresponding edge states; there should be counterpropagating
edge states that carry opposite Hall current. In Figs. 4(c) and
4(h) with � > −m0 − m1/�

2
c , the LL spectrum changes where

the Fermi energy is slightly above the two zero modes, and
only one of them will provide the edge state, which gives
C = 1.

APPENDIX B: RANDOM PERTURBATIONS

Now we consider the random perturbations to the pure
Hamiltonian of Eq. (1). First, at the coercivity, the magnetic
domains are being switched from up to down randomly. The
exchange field induced by local spin 〈S〉 in such random
magnetic domains will give rise to

H̃� = �zσ̃3 ⊗ 1 + �xσ̃1 ⊗ 1 + �yσ̃2 ⊗ 1, (B1)

where �z is the exchange field along the z axis and �x,y are
the exchange field in the x-y plane.

Second, the top and bottom surface states will feel different
random scalar potentials V1 and V2, respectively,

H̃V = V 1 ⊗ 1 + δV 1 ⊗ τ̃3, (B2)

with V = (V1 + V2)/2 and δV = (V1 − V2)/2.
Third, a small external magnetizing field H is required

to induce the coercivity transition. At the coercivity, the
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FIG. 4. (Color online) The bulk and edge state spectrum of the QAH model described by Eq. (1) in the presence of external magnetic
field. Panels (a), (b), and (c) show the bulk LLs, where in (a) m0 + m1/�

2
c < � < −m0 − m1/�

2
c , in (b) � = −m0 − m1/�

2
c , and in (c)

� > −m0 − m1/�
2
c . The Chern number (a) C = 0, (b) transition point, and (c) C = +1. The coercivity Bc ≈ 0.097 T; in (a)–(c) it clearly

shows |m1/�
2
c | � |m0|. Panels (d)–(h) show the low-lying bulk and edge state energies as a function of the centers of the Landau orbitals

when varying �. � and corrosponding Chern number as follows: (d) � < m0 + m1/�
2
c and C = −1, (e) transition point � = m0 + m1/�

2
c ,

(f) m0 + m1�
2
c < � < −m0 − m1/�

2
c and C = 0, (g) transition point � = −m0 − m1/�

2
c , and (h) � > −m0 − m1/�

2
c and C = +1. In (f), the

Fermi energy lies between the two bulk inverted LLs. The Fermi energy crosses the LLs, giving rise to the pair of counterpropagating edge
states. It is the case for (a). Panel (g) corresponds to (b). Panel (h) corresponds to (c), where the Fermi energy only cross one LL, give rise to
C = 1.

magnetization of the system M is spatially random. So the
magnetic field B = μ0(H + M) in this system is also random
in space, which couples to the system through a random
vector potential �A = (Ax,Ay), with the minimal coupling
�k → �k − �A, we have

H̃A = −Ayσ̃1 ⊗ τ̃3 + Axσ̃2 ⊗ τ̃3. (B3)

All three types of randomness have been taken into account.
Then we make a unitary transformation to the basis of |+↑〉,

|− ↓〉, |+ ↓〉, |− ↑〉 with |± ↑〉 = (|t ↑〉 ± |b ↑〉)/√2 and
|± ↓〉 = (|t ↓〉 ± |b ↓〉)/√2. The pure Hamiltonian decouples
as

H0(kx,ky) =
(
H+(k) 0

0 H−(k)

)
, (B4)

H±(k) = kyτ1 ∓ kxτ2 + (m(k) ± �)τ3, (B5)

τi are Pauli matrices. The random perturbations in the new
basis are

H� =
(

�zτ3 �x12×2 − i�yτ3

�x12×2 + i�yτ3 −�zτ3

)
, (B6)

HV =
(

V δV τ1

δV τ1 V

)
, (B7)

HA =
(

−Ayτ1 + Axτ2 0

0 −Ayτ1 − Axτ2

)
. (B8)

The �x,y will, in general, mix H+(k) and H−(k). However,
we only consider the plateau transition, and the transition
points of H+(k) and H−(k) differ, � = −m0 for H+(k)
and � = m0 for H−(k). For the plateau transition at � =
−m0, H−(k) is gapped, and the low-energy physics is only
determined by H+(k). The �x,y term can be perturbatively
added into H+(k) as

Hx,y

� ≈ �2
x + �2

y

2�
τ3, (B9)

which gives a random exchange field along the z axis.
In general, in the system the fluctuation �x,y � �, thus
(�2

x + �2
y)/2� � �z. Therefore, to the first order, this term

can be neglected. The case is similar for the transition at
� = m0.

The δV term will also mix H+(k) and H−(k). The
same discussion above for �x,y follows. At � = −m0, δV

contributes a random exchange field term along the z axis in
H+(k) as

HδV ≈ (δV )2

2m0
τ3, (B10)

where δV � |m0|, so this term is negligibly small compared to
�z. In addition, the 2D film of magnetic topological insulator
is very thin (less than 5 nm), the random scalar potential of
the top and bottom surface states is almost the same, V1 ≈ V2.
Therefore, δV can be ignored. The case is similar for the
transition at � = m0.

Finally, we build up the model for the QAH plateau
transition,

H = H0 + H� + HV + HA, (B11)
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where

H� =
(

�zτ3 0

0 −�zτ3

)
, (B12)

HV =
(

V 0

0 V

)
, (B13)

HA =
(

−Ayτ1 + Axτ2 0

0 −Ayτ1 − Axτ2

)
. (B14)

Redefining �z(x,y) = �(x,y) and V (x,y) = V (x,y) gives
Eq. (5) in this paper.

APPENDIX C: RESISTIVITY AND CONDUCTIVITY
TENSOR

The resistivity tensor is

ρ =
(

ρxx ρxy

−ρxy ρyy

)
, (C1)

and the conductivity tensor is

σ =
(

σxx σxy

−σxy σyy

)
, (C2)

and with σ = ρ−1, we have

ρxx = σxx

σxxσyy + σ 2
xy

= σxx

σ 2
xx + σ 2

xy

(C3)

and

ρxy = −σxy

σxxσyy + σ 2
xy

= −σxy

σ 2
xx + σ 2

xy

. (C4)

This transforms σxx and σxy into ρxx and ρxy .

When � < −|m0|, the system is insulating with Chern
number C = −1, and thus we have

σ = e2

h

(
0 −1

1 0

)
, (C5)

and the corresponding resistivity tensor is

ρ = h

e2

(
0 1

−1 0

)
. (C6)

The case is similar for � > |m0|. When −|m0| < � < |m0|,
the system is insulating with Chern number C = 0, thus we
expect the conductivity tensor

σ =
(

η 0

0 η

)
, (C7)

where in a large sample at zero temperature (T = 0), η → 0+;
for a finite sample with finite T , η is very small (possibly due
to variable range hopping). Thus the corresponding resistivity
tensor is

ρ =
(

1/η 0

0 1/η

)
. (C8)

For the QAH effect in magnetic TI, at low T , there should
exist zero Hall plateau with σxy = 0 and ρxy = 0. From the
scaling theory, we predict that σxx generally become nonzero
between the plateau transition from σxy = −e2/h to σxy = 0
and σxy = 0 to σxy = e2/h. At the σxy = 0 plateau, σxx → 0.
Therefore, σxx shows two peaks at the coercivity. However, ρxx

only shows one peak at the coercivity because at the ρxy = 0
plateau, ρxx = 1/η → ∞. In fact, this remarkable theoretical
prediction is already borne out in experiment by inverting the
experimental data of ρxx into σxx ; at the coercivity, σxx shows
double peaks with two critical fields while ρxx only has a single
peak [10].

The critical fields H ∗
1 and H ∗

2 are not universal. For
example, a slightly macroscopic inhomogeneity in the electron
density across the sample will, in general, result slightly
different H ∗

1 and H ∗
2 . Such inhomogeneities do not affect the

power-law behaviors in ρxx and ρxy .
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