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Condensed matter realization of the axial magnetic effect
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The axial magneticeffect, i.e., the generation of an energy current parallel to an axial magnetic field coupling
with opposite signs to left- and right-handed fermions, is a nondissipative transport phenomenon intimately related
to the gravitational contribution to the axial anomaly. An axial magnetic field emerges naturally in condensed
matter in so-called Weyl semimetals. We present a measurable implementation of the axial magnetic effect. We
show that the edge states of a Weyl semimetal at finite temperature possess a temperature dependent angular
momentum in the direction of the vector potential intrinsic to the system. Such a realization provides a plausible
context for the experimental confirmation of the elusive gravitational anomaly.
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Anomalies have played an important role in the construction
of consistent quantum field theory (QFT) and string theory
models. Among them, the most intensively investigated case
is that of the axial anomaly, which is responsible for the decay
of a neutral pion into two photons [1]. Similarly, in a curved
space, gravitational anomalies [2] can occur and mixed axial-
gravitational anomalies give rise to very interesting predictions
as to the decay of the pion into two gravitons. While the former
phenomenon is by now well established, experimental settings
providing evidence of the gravitational anomaly are lacking.
More recently anomalies are starting to play an interesting
role as being responsible for exotic transport phenomena in
QFT in extreme conditions. In the context of the quark-gluon
plasma [3] it has become clear in recent years that, at finite
temperature and density, quantum anomalies give rise to new
nondissipative transport phenomena.

The recognition of the role of topology in the classification
of condensed matter systems started a long time ago with
the prototypical example set by liquid helium [4]. The low
energy excitations of He3 are described by Dirac fermions,
which made the system an interesting analog to study high
energy phenomena. In this century, the advent of new materials
(graphene, topological insulators and superconductors [5,6],
and Weyl semimetals) whose low energy electronic properties
are described by Dirac fermions in one, two, or three spatial
dimensions has enlarged and widened the analogy between
high energy and condensed matter. Simultaneously, new ex-
periments on the quark-gluon plasma and recent developments
in holography have opened an unexpected scenario where high
energy and condensed matter physics merge. In this Rapid
Communication we propose a condensed matter scenario for
the experimental realization of the gravitational anomaly.

The most commonly cited example of the new nondis-
sipative transport phenomena occurring in the quark-gluon
plasma is the chiral magnetic effect [7], which refers to the
generation of an electric current parallel to a magnetic field
whenever an imbalance between the number of right- and
left-handed fermions is present. Another interesting example is

the axial magnetic effect (AME), which is associated with the
generation of an energy current parallel to an axial magnetic
field, i.e., a magnetic field coupling with opposite signs to
the right- and left-handed fermions. As will be described
later, the AME conductivity has a contribution proportional
to the temperature which is directly related to the gravitational
anomaly. In this Rapid Communication we argue that although
an axial gauge field is absent in nature at a microscopic
and fundamental level, it can easily appear in an effective
low energy theory describing Weyl semimetals. We also
provide a possible setup to ascertain the temperature dependent
component of the AME conductivity, which directly probes the
gravitational anomaly.

Weyl semimetals. To set up the notation used throughout
this Rapid Communication and for completeness, here we
will explain the low energy description of Weyl semimetals
[8,9]. As a working definition, Weyl semimetals are materials
for which their low energy degrees of freedom are described
by (3+1)-dimensional [(3+1)D] Weyl fermions, i.e., two-
component spinor solutions of the Weyl Hamiltonian Hk =
±σ · k. In (3+1) dimensions, σ = (σx,σy,σz) and k is the
three-dimensional momentum. The ± signs correspond to the
two chiralities (left and right) of a Weyl spinor. In lattice
systems Weyl fermions must appear in pairs of opposite
chiralities due to the Nielsen-Ninomiya theorem [10]. They
will be, in general, separated in momentum space and also
shifted in energies. Since they can only annihilate in pairs,
the separation in momentum space endows the nodes with a
notion of topological stability [8,9].

Experimentally, magnetically doped Bi2Se3 and TlBiSe2

[11–13] can be a feasible route to realize the Weyl semimetal
phase [14]. Several band-structure calculations [15–18] have
predicted band touching to occur in Cd3As2 and A3Bi
(A = Na, K, Rb) compounds. Very recently there has been
remarkable experimental evidence [19–21] of such a 3D
Dirac semimetal state in this family of materials, which,
under magnetic doping, would potentially host the Weyl
semimetal phase. In addition, heterostructures that alternate
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between trivial and topological insulators have been realized
experimentally [22]. These could be coated with ferromagnetic
insulators, as was experimentally demonstrated for a single
layer [23], closer in spirit to the early proposal considered in
Ref. [9]. This latter case realizes the minimal number of nodes
(two), and so the characteristics of the Weyl semimetal phase
are taken into account by the following low energy action
[24–28]:

S =
∫

d4kψ̄k(γ μkμ − bμγ μγ5)ψk, (1)

where kμ = (k0,k) is the momentum four-momentum, bμ is
a constant four-vector, and ψk is a four-component spinor.
The vector bμ has a physical origin; the spatial part b breaks
time-reversal symmetry and preserves inversion, and can
be induced by doping the system with magnetic impurities
[9]. The timelike component b0, on the other hand, breaks
inversion and preserves time reversal, and can originate in a
particular spin-orbit coupling term [27]. As a consequence,
the energy spectrum for this case results in two Weyl nodes
separated by �k = 2b and �E = 2b0 in momentum and
energy, respectively (�kμ = 2bμ in a more compact notation).
Here we will take this action as a starting point to describe the
low energy physics of Weyl semimetals.

Before doing so, it is important to address the regime of
validity for this action. In real Weyl semimetal materials, the
two chiralities of the Weyl fermions will mix at higher energies
above some characteristic energy scale m2, when b2 ∼ m2 with
b2 = b2

0 − b2. Above this energy, a different band structure
takes over and one cannot model the system with isolated
Weyl nodes. In that case a simple extension of (1) can be used
to take into account the new energy scale, in particular [26],

S =
∫

d4kψ̄k(γ μkμ − m − bμγ μγ5)ψk, (2)

which can be directly derived from microscopic models
[26,29] and resembles a Lorentz breaking quantum electrody-
namics (QED) action [26]. Contrary to the naive expectation,
the spectrum of (2) needs not be gapped even when m �= 0, i.e.,
the gapless and massless attributes are no longer interchange-
able. In fact, whenever the condition −b2 < m2 is satisfied,
the spectrum is gapped and the system is an insulator.1 In
the opposite case when −b2 > m2, the spectrum is gapless
and contains two nodes separated both in momentum and
energy (see Fig. 1). Therefore, in the latter case, the material
realizes the Weyl semimetal phase. The separation between
nodes in the latter case is proportional to the four-vector

�kμ ∼ bμ

√
1 − m2

b2 .
Both (1) and (2) lead to interesting predictions, such as the

presence of surface states in the form of Fermi arcs [8,9], a
Hall response [9], as well as a current response parallel to
an external magnetic field [25–28], an analog of the chiral
magnetic effect [7], although the realization of the latter is still
under active debate [26–32].

1Note the important point that when bμ is purely timelike, the
spectrum is gapped for any value of b0. This rules out the possibility
of the chiral magnetic effect for a purely timelike bμ [26].

(a) (b)

(c) (d)

FIG. 1. (Color online) Dispersion relation from (2) with m �= 0
and (a) −b2 < m2, including bμ = 0, (b) bi �= 0 and b0 = 0 with
−b2 > m2, and (c) m �= 0, bi = 0, and b0 �= 0. This case always
satisfies −b2 < m2 for any value of b0. (d) bμ �= 0 with −b2 > m2.

The exact magnitude of m will depend on the particular
realization of the Weyl semimetal phase. A way to estimate its
magnitude is by realizing the Weyl semimetal phase by closing
the gap of a topological insulator simply by adding magnetic
impurities which break time-reversal symmetry [14]. In the
process, the single particle gap of the topological insulator
m closes while interpolating from a situation with −b2 < m2

to the Weyl semimetal phase with −b2 > m2. In this simple
picture the value of m is as large as the gap of the original
topological insulator, which for Bi2Se3 is close to ∼0.3 eV
[33–35]. This gives an upper bound for m, although in general
one can expect it to be smaller.

We now address the question of how the low energy
description (1) generates a finite AME in a Weyl semimetal.
The axial magnetic effect describes the generation of an energy
current parallel to an axial magnetic field B5 (i.e., a magnetic
field coupling with opposite signs to the left and right fermions)
in a system of massless Dirac fermions in (3+1) dimensions
at finite temperature and chemical potential,

T 0i = J i
ε = σAMEBi

5. (3)

A Landau level picture of this effect can be obtained by
adapting the derivation of the chiral magnetic effect in terms of
the Landau levels that was done in Ref. [36]. Figure 2 shows a
schematic view of the effect. The spectrum of massless Dirac
fermions in an axial magnetic field is organized into Landau
levels. In the lowest Landau level the spins and momenta
are aligned according to chirality. The chiral magnetic field
acts with a relative sign on the right- and left-handed fields
�R;L. The particle quanta of the right-handed field have their
spin aligned with the magnetic field, whereas the antiparticle
quanta of �R have their spin antialigned. For the quanta of the
left-handed field these relations are reversed, as is the sign of
the magnetic field. Therefore, in the absence of any imbalance
of either charge or chirality, all quanta have their momenta
aligned in the background of an axial magnetic field and create
an energy flux in the direction of the chiral magnetic field.
The energy flow is higher the more quanta are on the shell,
i.e., the higher the temperature. The higher Landau levels are
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FIG. 2. (Color online) The lowest Landau level picture of the
axial magnetic effect. Here, L and R represent the two different
chiralities, and ± indicates the charge of the particle (antiparticle)
with momentum p. The vector s shows the direction of spin for each
type of particle.

degenerate in spin and therefore their overall momenta average
out to zero.

From Refs. [37,38] it follows that for a single (massless)
Dirac fermion, i.e., one pair of Weyl cones, the axial magnetic
conductivity is

σAME = μ2 + μ2
5

4π2
+ T 2

12
, (4)

where T , μ, and μ5 are the temperature, chemical potential,
and axial chemical potential, respectively. Of particular inter-
est is the fact that this conductivity has a purely temperature
dependent contribution, i.e., even at zero density and in
the absence of a chiral imbalance, the AME is not zero.
The coefficient of the T 2 term can be inferred from purely
hydrodynamic arguments [39–41], and has been computed
recently in lattice simulations of quantum chromodynamics
(QCD) [42,43]. This temperature dependence is a direct
consequence of the presence of the (mixed) axial-gravitational
anomaly [37,41]

∂μJ
μ

5 = 1

384π2
εμνρλRα

βμνR
β

αρλ, (5)

where J
μ

5 is the axial current and Rα
βμν is curvature tensor.

Next we show the generation of a net angular momentum
carried by the surface states (the Fermi arcs) of a Weyl
semimetal due to the AME. The simplest action capturing
the features of a neutral (μ = μ5 = 0) Weyl semimetal is (1),

S =
∫

d4kψ̄k(γ μkμ − bμγ μγ5)ψk, (6)

where bμ acts as a chiral gauge potential. For a Weyl semimetal
bi is constant in the bulk and goes to zero sharply at the
edge so there will be a strong effective axial magnetic field
B5 = ∇ × b induced there. This in turn implies that through
the AME, T 0i can generate a finite angular momentum for the
states at the boundary. Consider a cylinder of Weyl semimetal
of height L and basal radius a with the simplest configuration
b = ẑbz�(a − |r|). The axial magnetic field will point in the
azimuthal direction and be proportional to Bθ ∼ bzδ(|r| − a).
The corresponding energy current (3) will induce an angular
momentum Lk = ∫

V εijkxiT0j along the axis of the cylinder

(of volume V):

Lz =
∫
V

εzrθ rT0θ = 2πσAMEa2Lbz. (7)

Plugging in expression (4) for σAME it follows that, at zero
density and in the absence of a chiral imbalance, the states
at the edge of the cylinder possess an angular momentum of
magnitude

Lz = Nf

6
T 2bzV, (8)

where Nf is the number of pairs of Weyl cones, and bz is the
effective axial potential proportional to the separation of the
Weyl cones in momentum space [9].

Notice that, although we have assumed a constant bz to
simplify the formulas, any spatial variation of bi in the bulk
would give rise to an effective axial magnetic field and to
an energy current supported in the bulk. This is an important
difference from previous models [24,44] where the current
is intrinsically an edge current. In a physical realization of
the type discussed in Ref. [9], the axial field originates in the
magnetization of the induced dopants and can be easily chosen
to be inhomogeneous.

A direct observation of the rotation is hindered by the fact
that only the edge states carry the angular momentum and the
dissipationless rotation will not drag the ions of the lattice with
it. As explained below, the distinctive characteristic that might
allow its detection is the explicit T 2 coefficient coming from
the axial magnetic effect.

To be specific, we will focus on the physical realization of
a Weyl semimetal proposed in Refs. [9,25] discussed above.
It has two Weyl modes, although our proposal is extensible to
other possible realizations of this phase with a larger number
of Weyl nodes. In Ref. [26] it was shown that the low energy
action of the model in real space is the action (2), which
reduces to (1).

Consider the cylinder in isolation and suspended as
sketched in Fig. 3. If the system, initially at a given temperature
Ti , is heated to Tf = Ti + �T , the angular momentum due to
the AME will increase. Since the total angular momentum is
conserved, the cylinder has to rotate in the opposite direction

TI
NI

(a)

TI
NI

ω
(b)

FIG. 3. (Color online) Sketch of the proposed setup to measure
the rotation described in the text. A Weyl semimetal will rotate under
heating or cooling through the axial magnetic effect.
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to compensate. The change in angular velocity is given by the
change in angular momentum �Lz = I�ωz through

�ωz = −Nf bz

3ρa2
(2T �T + �T 2), (9)

where we used that the moment of inertia of the cylinder of
mass M is I = 1

2Ma2.
The magnitude of b is determined by the expectation value

of the magnetization of the induced dopants and can be
estimated to be of order 0.01–0.1 eV. Restoring the appropriate
constants � and vF ∼ 10−3c and for conservative values of
the magnitudes a = 1 mm, T = 10 K, ρ = 10 g/cm3, we get
an estimate of the angular velocity of ω ∼ 10−13–10−11 s−1.
Although small, this rotation can in principle be detected
by standard optical devices [45] or torque experiments. The
angular velocity can increase considerably by increasing the
temperature interval, but this is bound by the magnetic struc-
ture of the Weyl semimetal. Insulating ferromagnets such as
the rare earth oxide EuO have Curie temperatures of 60–70 K,
however, a recent a recent publication [46] showed that
antiferromagnetic or ferrimagnetic materials can also be used
to obtain the Weyl semimetal that would allow one to increase
the values up to room temperature. It is also to be noticed that
the Fermi velocity will play the role of the speed of light in
the conversion factors. A lower value of vF greatly enlarges
the angular velocity. This is expected since the present effect
is of thermal origin. Thus, for small values of vF , it is easier to
thermally populate states with a higher momentum p. Since p

determines the energy current and thus the angular momentum,
it is reasonable to expect that the effect gets enhanced as
vF becomes smaller simply because it costs less energy to
populate states with higher p.

The spontaneous generation of angular momentum and an
edge current are typical phenomena in parity-violating physics,
as occurs, for instance, in the A phase of helium-3 [4] (see also
Ref. [47]). Our model adds great versatility to these cases since
in the Weyl semimetal case one can construct a lattice model
with a spatially dependent bi vector in real space, without any
need to invoke the distance between the Fermi points [9]. The
space variation of the axial field is linked to the distribution
of the magnetic impurities and can be easily manipulated to
design an experiment.

A similar energy current with temperature scaling T 2 as
the one described in this work was obtained in Ref. [44] in
a two-dimensional model, but this is intrinsically formulated

as an edge current while ours is a bulk effect. Although for
simplicity we have chosen an example where the effective
axial magnetic field only exists at the edge of the sample, in
our case any spatial variation of bi will give rise to an energy
current with support in the region where the axial magnetic
field is nonzero. On a more formal level, it is worth noticing
that the existence of an energy current in Ref. [44] is traced
back to the presence of a two-dimensional pure gravitational
anomaly whereas in our work the current is due to the four-
dimensional mixed gauge-gravitational anomaly, which is the
deeper reason why the axial magnetic effect is essentially a
bulk phenomenon.

The anomaly related responses discussed in this work are
very hard to measure in the context of the quark-gluon plasma.
Although there are indirect indications of the observation of
the chiral magnetic effect, for instance, in the ALICE detector
of the Large Hadron Collider (LHC) [48], at the moment there
are no proposals for experiments that can directly observe
the axial magnetic effect [49]. This is due to the absence
of axial magnetic fields in the high energy experiments.
In this sense it is interesting to note that these are quite
common in the effective low energy models of condensed
matter systems. An axial magnetic field arises from lattice
deformations in graphene in (2+1) dimensions, from which
a mixed gravitational-deformation anomaly effect has been
recently proposed [50].

A nonzero angular momentum density has been described
recently in a three-dimensional conformal field theory [51]
within a holographic model. A dimensional reduction of the
system proposed here will probably give the same result,
providing a backup for the somewhat obscure holographic
ideas.

To conclude, we have shown that the AME gives rise to
rotation in Weyl semimetals upon heating or cooling due to
an intrinsic axial magnetic field present in these systems. This
effect is determined by the thermal component of the AME,
a direct consequence of the elusive gravitational anomaly,
impossible to probe in high energy contexts.
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