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Refrigerator based on the Coulomb barrier for single-electron tunneling
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We propose a remarkably simple electronic refrigerator based on the Coulomb barrier for single-electron
tunneling. A fully normal single-electron transistor is voltage V biased at a gate position such that tunneling
through one of the junctions costs an energy of about kBT � eV,EC , where T is the temperature and EC is the
transistor charging energy. The tunneling in the junction with positive energy cost cools both leads attached to it.
Immediate practical realizations of such a refrigerator make use of Andreev mirrors which suppress heat current
while maintaining full electric contact.
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Thermal transport properties of nanocircuits are receiving
increased attention [1,2]. Overheating due to dissipative
currents is a concern for applications with either dense
architecture or when operating in a regime where thermal
relaxation becomes weak, for instance at low temperatures.
Active cooling below the bath temperature is one of the
available strategies against overheating and can be achieved
directly by electric means on a chip. The practical realizations
employ energy-selective transport either with the help of
a superconducting gap [1,3–5] or via a discrete level in
a quantum dot [6–8]. Here we present a basic, till now
overlooked alternative method based on the Coulomb gap
in a single-electron transistor with metallic electrodes. The
overall dissipation of a biased normal single-electron transistor
is naturally positive, but one can find regimes where one of the
junctions cools the lead and the island while the other one is
dissipative. This provides an interesting possibility for realiz-
ing a Coulomb blockade enabled refrigerator (“SET cooler”),
if the charge and energy can be controlled independently, e.g.,
if the transistor island can be split thermally in two halves
by a superconducting inclusion while maintaining its electric
unity. Operation of such a cooler is based on the Coulomb
gap for electron transport similarly to the superconducting
gap and quantum dot coolers, which also use the energy gaps.
However, the nature of this gap makes the SET cooler different
from them in one important respect. While those coolers can
be viewed in some respects as Peltier-effect refrigerators (see,
e.g., [9]) in which only one electrode of the tunnel junction
is cooling down while the other one is heating, the removed
heat in the SET cooler is split equally between the two sides
of the cooling junction. Another attractive feature of the SET
cooler is the possibility to adjust the gap by gate voltage to
optimize the operation at a given temperature. We discuss
the performance of the refrigerator in detail and potential
ways to realize it in practice. It turns out that the SET
cooler is most suitable for very low temperatures, where the
standard superconducting gap based electronic coolers become
inefficient [1,2].

Figure 1 shows the basic scheme, where a standard
single-electron transistor [10,11] is biased at voltage V ,
and its gate position is ng ≡ −CgVg/e, where Cg and
Vg are the gate capacitance and voltage, respectively. We
analyze the energetics of the single-electron transistor, in
particular in the low-temperature regime kBT � EC , where

only two charge states n = 0 and n = 1 are possible. For
optimal operation in this regime, the gate voltage is adjusted to
a value where the in-tunneling electron experiences a barrier
∼kBT � eV , T is the temperature of the electrodes, and
only the out-tunneling electron gains energy ∼eV. Under
these conditions, the electrodes of the in-tunneling junction
are cooled down and those of the other junction heat up.
Due to simple symmetries, the roles of the two junctions
are interchanged when operating at the gate-voltage position
1 − ng instead of ng within the range 0 < ng < 1.

We write first the equations governing the charge and
energy dynamics of the single-electron transistor, but here
limiting to equal temperatures in all electrodes. The rates of
single-electron tunneling into (+) or out (−) of the island
through junction k = 1,2 in the charge state n are given by
�±

k (n) = (e2RT )−1�E±
k (n)/(eβ�E±

k (n) − 1), where RT is the
tunnel resistance of the junctions that is for the moment
assumed to be the same for the two junctions, and �E±

k (n) =
±(−1)keV/2 ± 2EC(n − ng ± 1/2) are the energy costs for
various processes. EC = e2/2C� is the charging energy,
and the common temperature is T = (kBβ)−1. Here, C� =
2C + Cg is the total capacitance of the island, and C is
the capacitance of one junction (again assuming a symmet-
ric structure). The occupation probabilities p(n) obey the
steady-state equation [�+

1 (n − 1) + �+
2 (n − 1)]p(n − 1) =

[�−
1 (n) + �−

2 (n)]p(n), and are normalized by
∑∞

−∞ p(n) = 1.
The heat currents in tunneling processes are

Q̇±
k (n) = ∓ 1

e2RT

∫
dE E fL,k(±E + �E±

k (n))

× [1 − fI (±E)] (1)

for the partial cooling power of the island by the tunneling
into (+) and out of (−) it. Here, fI/L,k(E) are the energy
distributions (typically Fermi functions) of the island I and the
leads L,k, respectively. The total heat current out of the island
(= cooling power) at each junction is then given by Q̇k =∑∞

n=−∞ p(n)[Q̇−
k (n) + Q̇+

k (n)]. This is also the cooling power
for the corresponding lead of the junction k: the heat extracted
or released is the same for both sides of the junction, provided
fI (E) = fL,k(E), in particular for Fermi distributions with the
same temperature T . Equation (1) gives then

Q̇±
k (n) = 1

2e2RT

[�E±
k (n)]2

eβ�E±
k (n) − 1

. (2)
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FIG. 1. The single-electron transistor as a cooler. In (a) the
basic structure is shown with bias voltage V , tunnel junctions with
capacitances Ci and resistances RT i , and gate at voltage Vg and
capacitance Cg . In the text we mostly assume the structure to
be symmetric with RT i = RT and Ci = C for both junctions. In
(b) we demonstrate the biasing for optimum cooler operation in the
two-state approximation, where the energy cost to tunnel through
the first (cooling) junction is 2kBT , and −(eV + 2kBT ) through the
second one.

Next we focus on the two-state regime realized at kBT �
EC in the gate interval 0 < ng < 1, also assuming that the bias
voltage is large enough, eV � kBT , for the tunneling to occur
only in the “forward” direction. Then we need to consider only
two processes, + for the n = 0 → 1 and − for the n = 1 →
0 transition, respectively, with energy costs �E± = − eV

2 ±
2EC( 1

2 − ng) and occupations p(1) = 1 − p(0) = �+/(�+ +
�−). We do not write the redundant indices when discussing
the two-state approximation. Based on Eq. (2), the cooling
power of the first junction reaches maximum when the barrier
is �E+ 	 2kBT as drawn in Fig. 1(b). The cooling power of
one side of the optimally biased junction is then

Q̇opt 	 0.31
(kBT )2

e2RT

, (3)

and the gate position for this maximum cooling is

nopt
g − 1/2 = ∓

(
kBT

EC

+ 1

4

eV

EC

)
. (4)

Also, in the two-state approximation, the total dissipation
in the transistor, P ≡ −2Q̇ = −2[p(0)Q̇+ + p(1)Q̇−], equals
IV , independent of the gate position. At an arbitrary position
within the given gate interval, the cooling power of each side
of junction 1 can be expressed directly in terms of the current
I = e�+�−/[�+ + �−] through the transistor:

Q̇1 = p(0)Q̇+ = 1

2

I

e
�E+. (5)

The efficiency of the cooler obtains then a natural value

η = Q̇1

IV
= 1

2

�E+

eV
(6)

for one side of the cooling junction, and twice this value for
the entire junction. At the optimum working point of Eq. (4),
we have ηopt = kBT /eV .

Pure numerical evaluation of the equations above in the
general situation, not limited to two charge states only, is
straightforward. The resulting cooling powers, still assuming
equal temperature of all the electrodes, are given in Fig. 2
for a realistic set of parameters. The optimum cooling power
in the two-state model, Eq. (3), is shown by the dashed line,
and it compares favorably with the numerically obtained peak
cooling power.

The higher order tunneling processes in principle can have
a detrimental effect on the cooling discussed above. Inelastic
cotunneling through the transistor [12] creates excitations with
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FIG. 2. (Color online) The normalized cooling power of each
side of junction 1, Q̇1/[(kBT )2/(e2RT )] (black), and the normalized
total cooling power on the island by the two junctions (red),
Q̇/[(kBT )2/(e2RT )]. The latter quantity is naturally always negative
with the value Q̇ = −IV/2. The parameters of the system are
kBT /EC = 0.025, eV/EC = 0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5,1.7 for
curves with cooling maxima in the black curves shifting from
right to left. Above this value of voltage, the achievable cooling
power diminishes quickly. The dashed horizontal line is the analytic
prediction of the optimum cooling power, Eq. (3).

energies ∼eV in all junction electrodes, heating them up.
We analyze the most relevant regime close to the optimum
cooling bias for junction 1, when βE1 ∼ 2, while E2 ∼
EC � β−1,E1, and eV � β−1,E1, where E1 ≡ �E+

1 (0) and
E2 ≡ �E−

2 (0). Quantitative description of this regime is
complicated by the fact that for such a small energy barrier
E1, sequential “first-order” classical tunneling over the barrier
cannot be clearly separated from the cotunneling, which is
the “second-order” tunneling through the barrier (cf. Fig. 1).
In general, coexistence of the tunneling events of different
order requires taking into account the nonperturbative effect
of broadening of the charge states by tunneling [13]. In the
situation of the optimum cooling bias, eV � β−1,E1, the
broadening of the relevant charge state E1 is dominated by
tunneling in the second junction. On the other hand, for
small E1, the cotunneling goes predominantly through this
intermediate charge state, making it possible to neglect the
processes through the other charge state with energy E2.

Quantitatively, employing the usual tunnel Hamiltonian
HT , we express the average of the cooling power Q̇1 as

〈Q̇1〉 = 〈U †(t)Q̇1(t)U (t)〉,
(7)

U (t) = T exp

{−i

�

∫ t

dt ′HT (t ′)
}
.

Here the time dependence of all operators is due to the
charging energy of the transistor and internal energy of
the electrodes, the average 〈...〉 is taken over the assumed
equilibrium state of the electrodes, T denotes time ordering,
and, in the standard notations,

Q̇1 = i

2�

∑
k,p

(εk − εp)
[
t

(1)
kp c

†
kcp − H.c.

]
, HT = H1 + H2,

where H2 = ∑
q,l[t

(2)
q,l c

†
qcl + H.c.], and a similar expression

for the tunneling Hamiltonian H1 of the first junction.
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In the regime described qualitatively above, Eq. (7) can be
evaluated expanding the evolution operator U (t) to the lowest
power in H1, but summing the main terms that correspond to
broadening of E1 to all powers in H2. (In this calculation, we
allow the two junction conductances G1,2 = 1/RT 1,2 to be in
general different.) This gives, dropping 〈...〉 out for simplicity
in notation,

Q̇1 = G1

2πe2

∫
dε

ε2

1 − e−βε
Im

[
�∞

n=0
ξn

(ε + E1 + i0)n+1

]
,

where

ξ = �G2

2πe2

∫
dε′ ε′

1 − e−βε′
1

ε + ε′ − eV + i0
.

The real part of ξ contributes to the tunneling-induced shift
of the energy of the intermediate charge state. Incorporating it
into the actual energy of this state, E1 → E, one is left with
the imaginary part of ξ ,

Im ξ = �G2

2e2

eV − ε

1 − e−β(eV −ε)
≡ γ (ε); (8)

i.e., the level is broadened to the width γ which coincides to
only half of the tunneling rate in the second junction at bias
eV − ε. Taking into account that βeV � 1, one obtains then
the following final expression for the cooling power:

Q̇1 = �G1G2

4πe4

∫ eV

−∞
dε

ε2

1 − e−βε

ε − eV

(ε + E)2 + γ 2(ε)
. (9)

In the limit of interest, eV � γ,β−1,E, the energy depen-
dence of γ can be neglected, γ = γ (ε = 0) = �G2V/2e, and
the integral in Eq. (9) can be evaluated in terms of the digamma
function ψ(z) as

Q̇1 = �G1G2

2πe4

[
eV E

(
ln

βeV

2π
− 1

)
− (eV )2

4

]

+ G1

4e2

{
2

π
Im

[
(E − iγ )2ψ

(
β(E + iγ )

2π

)]

−E2 − 2β−1E + γ 2

}
. (10)

This result is plotted in Fig. 3. For γ → 0, Eq. (10) reproduces
the classical result of Eq. (2), Q̇1 = (G1E

2/2e2)/(eβE − 1),
which also closely approximates the top numerical curve in
Fig. 3. We see, both from Eq. (10) and Fig. 3, that the effect of
the higher order tunneling processes on cooling includes direct
cotunneling-induced heating [the first line in Eq. (10)] and
broadening and suppression of the classical cooling peak by
the level width γ (the second line). Direct cotunneling heating
is small as long as γ � (eVβ2)−1, while the broadening
is almost negligible for βγ < 0.1. Elsewhere in this Rapid
Communication we assume that these conditions are satisfied
and we can use the classical description of cooling.

Next we turn to the practical realization of the cooler. In
general, the cooling effect is unnoticeable in a standard single-
electron transistor, because the lead electrodes are reservoirs
thermalized by large volume and by effective heat conduction
near the junction, and, on the other hand, the total power on
the island is positive. However, it is quite straightforward to
realize a configuration, where the charge and heat currents

0 2 4 6 8
-0.4

-0.2

0.0

0.2

0.4

2 Q
1e2 /G

1

E

.

FIG. 3. (Color online) The total power Q̇1 as a function of the
charging energy barrier E for tunneling in this junction, for several
values of γ , the energy width of the intermediate charge state created
by tunneling in the second junction. From top to bottom, βγ =
0.03,0.1,0.3,0.6,1.0. For all curves, the bias voltage is βeV = 20.
The dashed red line is the ideal classical cooling power. The plot
illustrates increasing cotunneling contribution to heating in junction
1 and the simultaneous broadening of the classical cooling peak with
increased width γ .

separate effectively. The most obvious way to do this is to
replace parts of the normal electrodes by superconductors
(forming Andreev mirrors with direct metal-to-metal contacts)
that efficiently isolate the cooled areas without influencing
the relevant charge transport [14–16]. This can be done by
splitting the island into two halves, and by interrupting one
or both the leads this way; see the lower inset in Fig. 4. In
this configuration it is more practical to cool and monitor
the normal section of the lead outside the transistor island.
This makes the thermometry, e.g., by tunnel spectroscopy, and
other measurements straightforward, because the potential of
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FIG. 4. (Color online) Cooling under the conditions of unequal
temperatures. The lower inset shows the sketch of a SET cooler
with superconducting (S) mirrors separating normal (N) conductors.
The temperatures around junctions 1 and 2 are given by T1 and T2,
respectively, and they are assumed to be the same on both sides of each
junction (I). The upper inset shows the gate voltage dependence of
the cooling power for eV = 0.3EC , kBT2/EC = 0.1, and kBT1/EC =
0.1,0.075,0.05,0.025 from top to bottom. The main frame shows the
temperature drop (T1/T2)min for zero cooling power for eV = 0.3EC

as a function of T2.
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the cooled area does not vary then in response to individual
tunneling events.

The fundamental limitation of the performance of the SET
cooler in terms of the minimum temperature is given by the
temperature T2 of the “hot” junction. The cooling of junction 1
(at temperature T1) diminishes, as more charge states become
available due to tunneling in the higher temperature junction,
and eventually there will be power IV/4 deposited to all the
four electrodes when the Coulomb effects become negligible.
Naturally this is not the only limitation on cooling; other
mechanisms include heat load from the phonon bath and
through the superconducting lead to the cooled area, but the
latter contributions can be made small by operating at low
temperatures and by proper choice of the geometries of the
device. The second inset in Fig. 4 shows as an example a set
of cooling powers of junction 1 at various values of T1 � T2,
plotted again as a function of ng at a fixed value of V . Naturally
the power gets smaller on reducing T1 because of the backflow
of heat from the hot bath, and since the (cooling) current of
the device decreases on decreasing T1. The main frame of
Fig. 4 shows the ultimate achievable temperature reduction
(T1/T2)min as a function of T2, given by the minimum value
of T1 where the cooling power gets positive values at the
optimum point. We see that temperature reductions by an order
of magnitude seem feasible from this point of view.

Finally we give a few practical remarks. It is favorable
to increase EC as high as is practical in order to keep the
device in the SET regime with just two charge states. With
the conventional metallic realization of the circuit, values of
EC/kB ∼ 1 − 3 K can be achieved in a single-electron transis-
tor whose island is several μm long. This, in turn, allows for the
insertion of the superconducting mirror and sufficient volume
near junction 2 on the island to avoid excessive overheating.
To make these arguments more concrete, we consider the
various heat currents briefly. When a superconducting Al wire

is longer than ∼1 μm, the adjacent island is better coupled
to the phonon bath than through the wire electronically at
operating temperatures ∼100 mK, as was demonstrated in
Ref. [16]. Thus the cooling properties are not much affected by
the heat leak through the Al wire. We equate the ideal cooling
power (3) and the standard heat load �V(T 5

p − T 5) from the
phonons, where TP is the temperature of the phonon bath, � =
2 × 109 W K−5 m−3 for copper as the normal metal [1], and
V = 10−21 m3 is the volume of the cooled electrode. With these
parameters, it should be possible to reach T1 as low as 10 mK
with RT = 1 M� at the bath temperature of Tp = 50 mK.
On the other hand, the island near junction 2 would warm
up to a temperature T2 	 [P/(�V2)]1/5, where P 	 IV/2 is
the Joule power due to dissipative tunneling in junction 2
and V2 is the volume of the normal island near this junction.
We obtain T2 ∼ 100 mK, still compatible with T1 = 10 mK
based on Fig. 4. The cotunneling heating is low when eV is
chosen properly (at such low temperatures the V dependence
of cooling is weak even below eV = 0.1EC). Finally, based on
the data of Ref. [17] we estimate that the Joule heating in the
cooler does not cause substantial overheating of the phonons
at the site of the cooled junction. The phonon temperature
remains at its equilibrium value within better than 0.1 mK at
Tp = 50 mK.

In summary, we have proposed and analyzed an electronic
cooler based on the Coulomb gap in a single-electron transistor.
The adjustable (by gate voltage) gap makes the presented
cooler attractive for very low temperature operation and
possibly as a low-temperature stage in a cascade cooler in com-
bination with a fixed-gap superconducting refrigerator [18].

The work has been supported partially by the Academy
of Finland through its LTQ CoE grant (Project No. 250280)
and the European Union FP7 project INFERNOS (Grant
Agreement No. 308850).
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