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Optical in-plane anisotropy of ZnO/(Zn,Mg)O quantum wells grown on a-plane sapphire:
Implications for optical spin control
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Utilizing the anisotropic thermal expansion of a-plane sapphire, we study the role of anisotropic in-plane
strain on ZnO quantum well structures. X-ray data reveal a deformation of the hexagonal unit cell. The symmetry
reduction shows up in the optical spectra by distinct linear-polarization features, both for the neutral and charged
exciton transition. We elaborate the excitonic fine structure behind this observation, accounting for spin-orbit
coupling and electron-hole exchange in the presence of anisotropic strain. The consequences for optical spin
control are discussed.
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The present interest in ZnO and its nanostructures is not
only motivated by possible applications in transparent elec-
tronics and optoelectronics [1], but also by the expectation that
these systems represent well-suited candidates for spintronics
or even quantum computing. In particular, the prediction
of room-temperature ferromagnetism for ZnO when doped
with magnetic transition metal ions [2] has triggered ongoing
research in this field. A further advantage related to the intrinsic
ZnO band structure is the weak spin-orbit (SO) interaction
that principally favors long spin life and coherence times of
the charge carriers. For example, only the D’yakonov-Perel’
mechanism is expected to contribute significantly to the spin
relaxation of the electrons in n-type ZnO [3,4], since the Elliot-
Yafet mechanism is strongly weakened by the combination of
large band-gap energy and small SO coupling. In many studies,
the spin polarization is created by optical pumping with
polarized light utilizing the characteristic selection rules of
the semiconductor’s band-to-band transitions. These selection
rules directly mirror the symmetry of the crystal lattice. In
heterostructures, the symmetry is often lower than in the bulk
crystal as a result of strain inherent to the growth process.
As a consequence, selection rules are softened and the spin
imprint becomes less perfect. In what follows, we demonstrate
this effect for a ZnO/ZnMgO quantum well (QW) as the
most frequently studied ZnO-based heterostructure. Generally,
when the wave vector �k of the light is along the hexagonal
axis of the wurtzite crystal, only hole states with a definite
orbital momentum couple to the radiation field, resulting in
completely circularly polarized transitions [5]. However, a
remarkable linear polarization of the photoluminescence (PL)
is surprisingly found if the QW structure is grown on an a-
plane sapphire substrate. This approach, also called uniaxially
locked epitaxy [6], allows for avoiding orientational domains
often found for growth on c-plane sapphire and reduces the
lattice mismatch. The resultant geometry [see Fig. 1(a)] is such
that the hexagonal axes of the substrate (�cS ) and heterostructure
(�c) are perpendicular to each other [7]. The characteristic
anisotropy of this growth configuration is revealed by probing
it with both the neutral (X) and negatively charged (X−) ex-
citon transition of integer and half-integer spins, respectively,
and conclusions with respect to the optical spin control are
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drawn. The case of X− is of particular interest since that
optical transition is widely used to pump and control the spin of
resident electrons as well as nuclear spins in low-dimensional
heterostructures such as QWs and quantum dots [8,9].

The samples are grown on a-plane sapphire substrates by
radical-source molecular beam epitaxy [10]. First, a 30-nm
(Zn,Mg)O nucleation layer is grown at 300 ◦C, followed by
an annealing step at 580 ◦C. The subsequent 600-nm ZnMgO
buffer layer is grown at 350 ◦C. The exemplary multiple QW
(MQW) structure studied below is deposited on this composite
buffer and consists of seven well-barrier periods. Well and
barrier widths are dw = 3.7 and db = 11 nm, respectively,
and the Mg content in the buffer and the barriers amounts
to xMg = 0.11. Finally, an annealing step at 570 ◦C is applied
to the complete sample. From the occurrence of a blue-green
deep level emission around 2.5 eV, it can be concluded that
the specimen is n type, probably through oxygen vacancies
[11] formed under metal-rich growth conditions. The growth
procedure and structural design are critical for obtaining
smooth well/barrier interfaces and practically field-free QWs
exhibiting well-resolved X and X− transitions with an inho-
mogeneous broadening of clearly less than 10 meV.

The lattice properties of the (Zn,Mg)O buffer and thus
of the pseudomorphically grown MQW are studied by x-ray
measurements using the Fewster method [12] with a four-
crystal, four-reflection Ge monochromator and a two-crystal,
three-reflection Ge analyzer. The sample’s optical transmission
is studied by means of a halogen tungsten lamp with a UG11
color filter to block the intense visible range. Excitation
of the PL with tunable photon energy is performed by the
frequency-doubled output of a mode-locked pyridine 2 dye
laser synchronously pumped by the second harmonic of a
mode-locked Nd:YVO4 laser. PL and transmission spectra are
recorded by a spectrometer with 0.5 nm/mm linear dispersion
in combination with a liquid-nitrogen-cooled CCD detector.

The room-temperature x-ray analysis shows that the lattice
constants a and b of the hexagonal (Zn,Mg)O unit cell possess
practically identical values of a = (0.325 480 ± 0.000 007)
nm and b = 0.325 475 ± 0.000 007 nm and that the angles
to the c axis remain at α = β = 90◦. However, a significant
deviation from the hexagonal structure is found for the angle
γ = (120.017 ± 0.0013) �= 120◦, as sketched in Fig. 1(b). The
long axis of the stretched hexagon is along �cS . Therefore, the
symmetry of the epitaxial structure is lowered to monoclinic.
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J. PULS, S. SADOFEV, P. SCHÄFER, AND F. HENNEBERGER PHYSICAL REVIEW B 89, 081301(R) (2014)
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FIG. 1. (Color online) (a) Scheme of (Zn,Mg)O epitaxy on a-
plane sapphire. Open circles: Positions of O atoms of the top
sapphire layer. Solid (red) and dashed gray balls: Zn(Mg) atoms
and O atoms, respectively, of (Zn,Mg)O. The hexagonal axis of
(Zn,Mg)O �c points into the plane of drawing. (b) Dashed (black)
and solid (red) hexagons: Scheme of the undisturbed and strained,
respectively, hexagonal (Zn,Mg)O cell. The same deformation applies
for the pseudomorphically grown ZnO QWs. For using the Bir-Pikus
Hamiltonian [17] in its standard version, the QW in-plane axes x and
y are introduced parallel and perpendicular to �cS , respectively.

This symmetry reduction is confirmed on a set of differently
designed single QW and MQW structures, all grown by the
same procedure and all exhibiting the same angles γ and orien-
tations of the deformed hexagon. The explanation is as follows:
The 600-nm-thick (Zn,Mg)O buffer relaxes during growth, but
becomes differently strained in the plane perpendicular to �c
when cooling the samples down to room temperature due to
the different thermal expansion of the substrate parallel (x) and
perpendicular (y) to its hexagonal axis �cS . The difference in the
thermal expansion coefficients of sapphire �αS = αy − αx =
−0.8 × 10−6 K−1 [13] yields, for the temperature change
necessary to squeeze the hexagon as observed experimentally,
�T ≈ [tan(γ /2)/

√
3 − 1]/�αS = −400 K, in good accord

with the range covered by the cooling process.
In Fig. 2, the absorption and PL spectra of the MQW are

depicted. As shown previously [14], the two features XA and
X−

A relevant in the present context are due to neutral and
negatively charged excitons, respectively, involving a hole
from the A subvalence band. Characteristic of the weak-doping
regime, the absorption through X− is markedly smaller than
that of the neutral exciton, whereas it dominates the PL because
of the effective fusion of free excitons and resident electrons
prior to recombination. The prominent difference compared
to c-plane samples is that the spectra now depend on the
orientation of the (linear) light polarization with respect to
the substrate axis �cS , clearly manifesting in-plane optical
anisotropy. Again, the polarization properties are confirmed
on two further samples with slightly different designs (xMg =
0.14, dw = 2.9 nm). Also, the onset of the barrier absorption
varies in the same way with the linear light polarization (not

FIG. 2. (Color online) PL (scaled on the left-hand side axis)
and absorption (scaled on the right-hand side axis) spectra of a
ZnO/(Zn,Mg)O MQW for linear light polarization along �cS [solid
(blue) lines] and perpendicular to �cS [dashed (red) lines]. The
spectral position of the lowest neutral exciton state (XA) and charged
exciton state (X−

A ) are marked in the PL and absorption spectra. The
absorbance is derived from the measured transmission and reflectivity.
To avoid optical alignment in the PL, the MQW is excited by
unpolarized light energetically above the band gap of the (Zn,Mg)O
barrier (�ωexc = 3.62 eV). The sample temperature is T = 5 K. Inset:
Normalized PL intensity of charged (squares) and neutral exciton
(circles), respectively, vs the angle between the light polarization
vector �E and �cS . The lines are used to guide the eyes.

shown in Fig. 2). The plot of the normalized PL signal of X−
A

and XA versus the angle between the electric field vector �E and
�cS in the inset of Fig. 2 exposes a twofold axis of symmetry.
Although all experimental data presented so far are fully
consistent with the above invoked strain scenario, alternative
mechanisms have to be excluded. One possibility is the
quantum confined Pockels effect associated with the presence
of piezofields in a QW grown along a polar axis. However,
the linear polarization of the barrier absorption as well as the
absence of a threefold or even sixfold axis of symmetry [15]
rules out a remarkable contribution of this effect. Further, the
long-range electron-hole exchange interaction as a frequent
source of linear polarization in nanostructures [16] cannot play
a leading role as it acts only in the neutral exciton with integer
spin, whereas we observe the anisotropy also for the charged
exciton of half integer spin.

In the remaining part, we explain the experimental findings
in terms of the band states involved in the optical transitions.
Our goal is not the calculation of absolute energies of
neutral and charged excitons, but to capture the characteristic
modifications induced by the anisotropic strain in the QW
plane. Thus, the Hamiltonian used for describing the charged
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exciton is HX− = H0 − Eb
X− + HSO + Hstrain, where Eb

X− is
the energy required to dissociate the complex in the exciton
and electron. For the neutral exciton, the electron-hole ex-
change (EHX) interaction has to be additionally accounted
for, yielding HX = H0 + HEHX + HSO + Hstrain. H0 contains
all contributions acting in the same way on both states,
such as hydrostatic strain, QW confinement, and Coulomb
interaction. Here, we ignore minor deviations for the different
subvalence states. The SO and strain terms are identical in
both Hamiltonians as these interactions affect only the hole
state. Explicitly, they can be expressed by HSO = δSO/3 �L�σh

and Hstrain = δstr(L2
x − L2

y), and the exchange interaction reads

as HEHX = δEHX/2 �σ e �σh [5,17]. �L = (Lx,Ly,Lz) is the hole
angular momentum operator and �σ e and �σh are the electron and
hole spin operators, respectively. δstr = Ch

5 (εxx − εyy), where
εxx and εyy are the components of the strain tensor and Ch

5
is the deformation potential, determines the strain difference
between the x and y directions. All signs in the above expres-
sions are chosen such that they describe the energy shift of the
hole (and not the opposite shift of the valence band states).

Now, we represent the Hamiltonians in terms of the
appropriate basis states. For ZnO, it is sufficient to consider
only A and B subvalence bands, since the crystal field

splitting is much larger than the SO splitting δSO and the
mutual admixture of the A and C bands is only a few
percent [5]. In this approximation, the standard biaxial strain
present in the QW as a result of the pseudomorphic growth
mode shifts the A and B valence bands by the same amount
and can be hence included in H0. We note that such a
simplification is likely inadequate for treating similar effects
in GaN QWs. Denoting by p± = (px ± ipy)/

√
2 the p-type

hole orbital wave functions with magnetic quantum number
m = ±1 and by αe(h) and βe(h) the spin-up and spin-down
wave functions of the electron (hole), respectively, the eight
relevant neutral exciton states are |αe,p

+αh〉, |αe,p
+βh〉,

(|αe,p
−αh〉 + |βe,p

+βh〉)/
√

2, |αe,p
−βh〉, |βe,p

+αh〉,
(|αe,p

−αh〉 − |βe,p
+βh〉)/

√
2, |βe,p

−αh〉, and |βe,p
−βh〉.

The irreducible representation of these exciton states (with
the included hole state) are 
6(
9), 
5(
7), 
2(
7), 
5(
9),

5(
9), 
1(
7), 
5(
7), and 
6(
9). For the charged exciton,
only the four hole states |p+αh〉, |p+βh〉, |p−αh〉, and |p−βh〉
with the symmetry 
9, 
7, 
7, and 
9 have to be taken into
account. It is noteworthy that Hstrain does not couple the
px,y states of the A and B valence bands to the pz orbitals
constituting dominantly the C band. Finally, the exciton
Hamiltonian with all terms determining the exciton fine
structure reads as

HX =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E0 0 δstr/
√

2 0 0 δstr/
√

2 0 0
0 E0 + δSO + δEHX 0 δstr δEHX 0 0 0

δstr/
√

2 0 E0 + δSO 0 0 0 0 δstr/
√

2
0 δstr 0 E0 + δEHX 0 0 δEHX 0
0 δEHX 0 0 E0 + δEHX 0 δstr 0

δstr/
√

2 0 0 0 0 E0 + δSO 0 −δstr/
√

2
0 0 0 δEHX δstr 0 E0 + δSO + δEHX 0
0 0 δstr/

√
2 0 0 −δstr/

√
2 0 E0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(1)

while for the charged exciton it holds:

HX− =

⎛
⎜⎜⎝

E0 − Eb
X− 0 δstr 0

0 E0 − Eb
X− + δSO 0 δstr

δstr 0 E0 − Eb
X− + δSO 0

0 δstr 0 E0 − Eb
X−

⎞
⎟⎟⎠ .

E0 is chosen as the energy of the undisturbed 
6(
9) exci-
ton. δstr couples hole states with opposite m and identical spin
orientation. Its value can be estimated from the deformation
potential constant Ch

5 = −1.2 . . . − 1.5 eV [18,19] and the
difference εxx − εyy ≈ �αS�T ≈ 3 . . . 6 × 10−4 to be about
δstr = −1 meV. From magneto-optical studies [14], it is known
that the sequence of the 
7 and 
9 valence bands is inverted
in these MQW structures and that the AB splitting is −6 meV,
practically not modified with respect to bulk ZnO [5,20]. In
the chosen basis set without the C valence band, the splitting
has to be identified with δSO. The exchange splitting between

5(
9) and 
6(
9) exciton states in bulk ZnO is ≈1 meV [5].
To account for a confinement-induced increase, we use here
δEHX = 2 meV.

The results of the diagonalization of HX− and HX are
summarized in Fig. 3. The position and length of the bars
characterize the energy and normalized oscillator strength,
respectively, of the resultant eigenstates. In the upper panels (i),
the spectra without anisotropic in-plane strain are drawn, while
the two lower panels (ii) and (iii) represent the symmetry-
reduced situation for the light polarization �E ‖ �cS and �E ⊥
�cS , respectively. For the charged exciton in Fig. 3(a), the
photon energy is measured relative to the X−

B state, i.e.,
E(X−

B ) = E0 − Eb
X− . It is seen that the anisotropic strain

leads only to a weak repulsion of X−
A and X−

B , but a strong
redistribution of oscillator strength. Whereas the energetically
lower X−

A becomes stronger polarized along �cS , the opposite
holds for X−

B . The Kramers degeneracy of the half-integer
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(a)

(i)

(ii)

(iii)

(b)

FIG. 3. (Color online) Calculated energy spectrum for the
(a) charged and (b) neutral exciton states. The length of the bars
represents the normalized oscillator strength for linearly polarized
light. (i) Unpolarized spectrum in the case of vanishing anisotropic
in-plane strain (δstr = 0). (ii) and (iii) Spectrum for finite strain (δstr =
−1 meV) for light polarization �E ‖ �cS and �E ⊥ �cS , respectively.

states cannot be lifted by strain, and instead the hole spin-up
and spin-down states are now coupled to orbital states with
elliptical symmetry. For example, X−

A contains the following
degenerate, pure spin states: (0.811px − 0.585ipy)|αh〉 and
(0.811px + 0.585ipy)|βh〉. The resultant polarization ellipses
of opposite rotational sense have identical major axes aligned
parallel to �cS . As generally expected for Kramers-degenerate
spin states, there is thus no spin selectivity for linear excitation
polarization. For circular polarization, we find a spin exci-
tation degree of ±94% instead of ±100% for δstr = 0. This
demonstrates a measurable loss of spin selectivity already at
modest anisotropic strain (δstr/δSO = 0.17). To achieve full
selectivity, elliptic polarization with a major-to-minor axis
ratio of about 2:1 has to be used. Larger strain will quickly
deteriorate the spin control by circularly polarized photons.
The calculated ratio between along and perpendicular to �cS

polarized X−
A absorption of ≈2:1 agrees fairly well with the

experimental data in Fig. 2, proving the correct estimation of
the strain difference εxx − εyy [21]. It is emphasized that the
data again confirm the inverted valence band ordering in ZnO
QWs since a positive δSO would imply a linear polarization of
the X− transition, just opposite to the experimental findings.
The charged exciton PL shows the same preferential linear
polarization but with a distinctly smaller intensity ratio.
This is expected because the PL intensity only reflects the
oscillator strengths if a sufficiently fast relaxation ensures
equally populated states. The strain-induced coupling of A

and B valence band states in the present QW structures is

reminiscent of the heavy-light hole mixing by shape anisotropy
in charged quantum dots [22]. In both cases, elliptically
polarized transitions occur. However, whereas the orientation
of the main axis is fixed for the complete sample in our case,
it scatters for the quantum dots.

The EHX interaction present in the exciton results in the
slightly more complicated picture shown Fig. 3(b). Since
Hstrain is diagonal with respect to the spin, there is only a
coupling between the optical inactive 
6 and 
1,2 states [23]
on the one side and between the 
5 states with holes from both
subvalence bands on the other side. The latter yields a splitting
of both 
5 states and polarization-dependent absorption. In
contrast to the charged exciton, the degeneracy of these states
is lifted and spin superpositions are formed. Although the fine
structure of the neutral exciton transition is not completely
resolved, a closer inspection of the convoluted band in the
absorption spectra of Fig. 2 shows that the experimental
data are indeed consistent with the calculated fine structure:
The absorption line shapes indicate the contribution of more
than the two components (as only found in the case without
anisotropic in-plane strain [14]) and the band’s center of
gravity is located at a lower photon energy for �E ‖ �cS . The
dependence of the PL intensity on the polarization (Fig. 2 inset)
cannot directly correspond to the theoretical oscillator-strength
variation as the occupation of the states due to thermalization
including the 
1,2 states and/or charged-exciton formation is
also involved.

In conclusion, the situation of anisotropic in-plane strain
in combination with weak SO coupling is studied using the
example of a ZnO QW grown on a-plane sapphire. The optical
in-plane anisotropy observed for the charged and neutral
exciton transitions is qualitatively explained in the frame of
the Bir-Pikus Hamiltonian. From the findings, conclusions
about the optical spin control can be drawn. For the charged
exciton with half-integer spin, the spectrum consist of two
spin-degenerate, energetically separated doublets. Pure spin
states can be addressed by monochromatic light with properly
constructed elliptical polarization. For the neutral exciton
states with integer spin, the degeneracy of the optically active

5 states is completely lifted and all of the states no longer
represent any pure spin state. GaN QWs are expected to behave
similarly, but an adequate description requires here the account
of all three subvalence bands. Here, the prerequisite of a crystal
field splitting much larger than the SO splitting is not fulfilled
[24]. Our results suggest that anisotropic in-plane strain can be
utilized for semiconductors with weak SO to tailor the optical
spin control in a similar way as biaxial strain allows for the
engineering of band masses.

This work was supported by the Deutsche Forschungsge-
meinschaft within the Priority program SPP 1285.

[1] C. Klingshirn, Phys. Status Solidi B 244, 3019 (2007).
[2] T. Dietl, H. Ohno, and F. Matsukura, Phys. Rev. B 63, 195205

(2001).
[3] Spin Physics in Semiconductors, edited by M. I. Dyakonov

(Springer, Berlin, 2008).
[4] S. Ghosh, V. Sih, W. H. Lau, and D. D. Awschalom, Appl. Phys.

Lett. 86, 232507 (2005).

[5] J. J. Hopfield, J. Phys. Chem. Solids 15, 97 (1960); D. G.
Thomas, ibid. 15, 86 (1960).

[6] P. Fons, K. Iwata, K. Matsubara, S. Niki, K. Nakahara, T. Tanabe,
and H. Takasu, Appl. Phys. Lett. 77, 1801 (2000).

[7] S. Sadofev, S. Blumstengel, J. Cui, J. Puls, F. Henneberger,
R. Schneider, D. Litvinov, and D. Gerthsen, Jpn. J. Appl. Phys.
45, L1250 (2006).

081301-4

http://dx.doi.org/10.1002/pssb.200790012
http://dx.doi.org/10.1002/pssb.200790012
http://dx.doi.org/10.1002/pssb.200790012
http://dx.doi.org/10.1002/pssb.200790012
http://dx.doi.org/10.1103/PhysRevB.63.195205
http://dx.doi.org/10.1103/PhysRevB.63.195205
http://dx.doi.org/10.1103/PhysRevB.63.195205
http://dx.doi.org/10.1103/PhysRevB.63.195205
http://dx.doi.org/10.1063/1.1946204
http://dx.doi.org/10.1063/1.1946204
http://dx.doi.org/10.1063/1.1946204
http://dx.doi.org/10.1063/1.1946204
http://dx.doi.org/10.1016/0022-3697(60)90105-0
http://dx.doi.org/10.1016/0022-3697(60)90105-0
http://dx.doi.org/10.1016/0022-3697(60)90105-0
http://dx.doi.org/10.1016/0022-3697(60)90105-0
http://dx.doi.org/10.1016/0022-3697(60)90104-9
http://dx.doi.org/10.1016/0022-3697(60)90104-9
http://dx.doi.org/10.1016/0022-3697(60)90104-9
http://dx.doi.org/10.1016/0022-3697(60)90104-9
http://dx.doi.org/10.1063/1.1311603
http://dx.doi.org/10.1063/1.1311603
http://dx.doi.org/10.1063/1.1311603
http://dx.doi.org/10.1063/1.1311603
http://dx.doi.org/10.1143/JJAP.45.L1250
http://dx.doi.org/10.1143/JJAP.45.L1250
http://dx.doi.org/10.1143/JJAP.45.L1250
http://dx.doi.org/10.1143/JJAP.45.L1250


RAPID COMMUNICATIONS

OPTICAL IN-PLANE ANISOTROPY OF ZnO/(Zn,Mg)O . . . PHYSICAL REVIEW B 89, 081301(R) (2014)

[8] A. Imamoglu, E. Knill, L. Tian, and P. Zoller, Phys. Rev. Lett.
91, 017402 (2003).

[9] See, e.g., Semiconductor Quantum Bits, edited by F. Hen-
neberger and O. Benson (World Scientific, Singapore, 2008).

[10] S. Sadofev, S. Blumstengel, J. Cui, J. Puls, S. Rogaschewski,
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