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We present first-principles calculations for quasiparticle excitations in sodium and lithium, including the effects
of charge and spin fluctuations. We employ the Overhauser-Kukkonen form for the electron self-energy arising
from spin fluctuations and demonstrate that the coupling of electrons to spin fluctuations gives an important
contribution to the quasiparticle lifetime but does not significantly reduce the occupied bandwidth. Including
correlation effects beyond the random-phase approximation in the screening from charge fluctuations yields good
agreement with experiment.
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Introduction. The coupling of electrons to spin fluctuations
causes many fascinating phenomena: For example, it has
been proposed that spin fluctuations can “glue” electrons
together to form Cooper pairs, giving rise to unconventional
high-temperature superconductivity [1–4]. In particular, spin
fluctuations were invoked to explain superconductivity in the
cuprates [1–3] and recently also in the iron pnictide and
chalcogenide materials [5–7]. In addition, it is well known
that the coupling of spin fluctuations to electrons can affect the
electronic effective mass and consequently transport properties
and the specific heat.

Theoretically, the effect of spin fluctuations on quasiparticle
excitations is usually calculated using model Hamiltonians.
Early studies [8–10] constructed empirical theories including
spin fluctuations based on the homogeneous electron gas and
simple tight-binding models. More recently, many empirical
theories involving spin fluctuations were constructed to inves-
tigate superconductivity in the cuprates and pnictides. In these
theories the spin susceptibility is either parametrized using ex-
perimental neutron scattering and nuclear magnetic resonance
data [1,3,11] or estimated by combining density-functional
theory (DFT) with interaction parameters (such as the Hubbard
U ) adjusted to reproduce experimental findings [6,7].

While the aforementioned theories have been very instruc-
tive, their applications have been limited by the availability of
concrete experimental data needed to determine their input
parameters, supporting the need for a fully first-principles
theory without empirical parameters. There have been several
attempts to compute the spin fluctuation-electron coupling
from first principles. Notably, Winter and coworkers [12,13]
calculated the spin susceptibility and the spin fluctuation–
electron self-energy from DFT and evaluated the correction
to the specific heat for palladium and vanadium. Later studies
[14–16] employed a first-principles T -matrix approach to
calculate satellites in the photoemission spectrum of nickel
and quasiparticle lifetimes in metals. However, such theory
requires the solution of a computationally expensive four-point
equation and also a correction to account for the double
counting of certain Feynman diagrams.
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The alkali metals are arguably among the simplest systems
in condensed matter theory. Careful comparisons between
theory and experiment in these systems has guided progress
in understanding electron correlation physics in the itinerant-
electron limit. In particular, the Fermi surfaces of sodium
and lithium are highly spherical, indicating that a description
based on the homogeneous electron gas might be valid. There-
fore it was surprising when angle-resolved photoemission
experiments [17,18] reported a substantially smaller occupied
bandwidth than was found in Hartree calculations on the
homogeneous electron gas and also in DFT calculations. In
addition, self-energy corrections employing the standard GW
correction to the electron self energy [19,20], where the self
energy is expressed as the product of the interacting Green’s
function G and the screened Coulomb interaction W, could
not account for the full reduction of the occupied bandwidth,
indicating that electron correlation effects not included in these
calculations play an essential role in these materials.

Northrup et al. [21,22] included vertex corrections in the
dielectric matrix approximately by computing the charge
susceptibility from DFT instead of employing the random-
phase approximation (RPA) and found the resulting GW values
to be in good agreement with experimental results for the
occupied bandwidths of lithium and sodium. At the same time,
Zhu and Overhauser [23] found that spin fluctuations within
a paramagnon pole model could also explain the reduction of
the bandwidth. This difference in the mechanism responsible
for the band width reduction in the alkali metals has not yet
been resolved. In particular, no first-principles calculation of
the self-energy correction arising from spin fluctuations has
been reported for the alkali metals.

In this paper, we describe our first-principles calculations
of the contribution to the self-energy arising from spin
fluctuations. In particular, we employ the spin-fluctuation
self-energy formalism proposed by Kukkonen and Overhauser
[24], which is simpler than the T -matrix approach since it
requires neither the solution of a four-point equation nor a
double counting correction. We apply the theory to sodium
and lithium and find that the contribution of spin fluctuations
to the reduction of the occupied bandwidth is small and, by
itself, cannot explain experimental findings. We also carry
out standard GW calculations and GW calculations with a
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vertex-corrected charge susceptibility, with the latter resulting
in a larger reduction of the occupied bandwidth, in agreement
with experiment and results in Refs. [21,22].

Methods. The properties of quasiparticles, such as their
energy or lifetime, can be measured in photoemission or
tunneling experiments. Mathematically, quasiparticle energies
are given by the positions of the poles of the single-particle
Green’s function and can be determined by solving the Dyson
equation (

−∇2

2
+ Vion(r) + VH (r)

)
ψn(r)

+
∫

d r ′�(r,r ′,En)ψn(r ′) = Enψn(r), (1)

where Vion and VH denote the external potential due the ionic
cores and the Hartree potential, respectively, En and ψn are
the quasiparticle energy and wave function, and � denotes the
electron self-energy.

We approximate the self-energy using [23,25]

�(r,r ′,ω) = i

∫
dω′

2π
e−iδω′

G(r,r ′,ω − ω′)Veff(r,r ′,ω′),

(2)

where G and Veff denote the single-particle Green’s function
and the effective interaction between electrons, respectively,
and δ = 0+. We separate Veff and subsequently � into
three contributions: a bare Coulomb term v(r,r ′) = 1/|r − r ′|
(resulting in the bare exchange contribution to the self-energy),
a charge-fluctuation-mediated interaction δWC (resulting in a
correlation contribution to � arising from charge fluctuations),
and a spin-fluctuation-mediated interaction δWS (resulting in
a spin-fluctuation contribution to �).

In a standard GW calculation [19,20], δWS = 0 and δWC =
vχRPA

C v (suppressing all arguments and integrals for clarity)
are assumed, where χRPA

C denotes the interacting charge
susceptibility in the RPA. We refer to this approximation as
GWRPA.

Following Refs. [21,22] we include vertex corrections
to the dielectric screening by calculating χC from DFT,
i.e., by solving χC = χ0 + χ0(v + fxc)χC , where χ0 denotes
the noninteracting Kohn-Sham susceptibility and fxc(r,r ′) =
δ2Exc/[δρ(r)δρ(r ′)] with Exc and ρ(r) being the exchange-
correlation energy within DFT and the electron density,
respectively. Note that χC is exact if we know the exact
Exc. The simplest approximation to the exchange-correlation
energy is the local density approximation (LDA) [26] and we
refer to this approximation as GWLDA. Inclusion of vertex
corrections in χC leads to a better satisfaction of the Ward
identity associated with particle conservation [27].

The spin-fluctuation-mediated interaction can be approxi-
mated [23,24] using

δWS(r,r ′,ω) = 3
∫

d r1d r2Ixc(r,r1)χS(r1,r2,ω)Ixc(r2,r ′),

(3)

where χS = χ0 + χ0IxcχS denotes the interacting spin sus-
ceptibility and Ixc(r,r ′) = δ2Exc/[δm(r)δm(r ′)] with m(r)
denoting the spin density. The factor of 3 results from the
vector boson nature of the spin fluctuations.

This intuitively appealing expression for the self-energy
arising from spin fluctuations was first derived by considering
the effective interaction between electrons in a homogeneous
electron gas including exchange and correlation effects [24].
Later [25] it was found that the same expression may be
obtained from an analysis of Feynman diagrams [42].

Computational details. We carry out DFT-LDA calculations
using a plane-wave basis and norm-conserving pseudopo-
tentials as implemented in the QUANTUM ESPRESSO program
package [28]. Our plane wave cutoff is 30 Ry. For sodium
we choose the unit cell corresponding to rs = 3.93 and for
lithium we choose it corresponding to rs = 3.26 [rs is related
to the valence charge density n via n = 3/[4π (rsaB)3

s ] with aB

being the Bohr radius]. The self-energy is calculated using the
BERKELEYGW [29] program package. For the calculation of
the susceptibilities and the self-energies we use 16 × 16 × 16
k-point sampling of the Brillouin zone. In our first-principles
calculations, we do not employ a generalized plasmon-pole
model for the interacting charge and spin susceptibilities but
sample these quantities along the real frequency axis. We use
fine sampling with a step size of 0.1 eV up to a lower cutoff of
30 eV and then coarser sampling up to 60 eV. A broadening
of 0.15 eV is used as well as 30 empty states in the calculation
of the dielectric matrix and the self-energy. In this work, we
employ a one-shot procedure to calculate the self-energy.
The effect of self-consistency on the occupied band width of
simple metals was investigated in Ref. [21] and found to be
quite small.

Sodium. The occupied bandwidth of sodium in DFT
is 3.19 eV. Figure 1(a) shows the self-energy correction
(evaluated “on-shell,” i.e., at the mean-field energy) to the
DFT-LDA band structure from charge fluctuations (including
the bare exchange) and from spin fluctuations. We find a
reduction of the occupied bandwidth with charge fluctuations
giving a significantly larger contribution than spin fluctuations.
In agreement with previous calculations [21,22], we find
that vertex corrections in the charge susceptibility are very
important (increasing the bandwidth reduction by a factor of
two compared to the standard GWRPA result): Standard GWRPA

theory gives a reduction of 0.31 eV, while GWLDA yields
a reduction of 0.63 eV, resulting in an occupied bandwidth
in good agreement with the experimental findings [17,18].
See Table I. The contribution from spin fluctuations to the
bandwidth reduction is very small, less than 0.1 eV.

To understand these results we observe that retaining only
the bare exchange contribution to the self-energy results in
a drastic increase of the occupied bandwidth by 3.30 eV as
expected from usual Hartree-Fock theory. Inclusion of screen-
ing by charge fluctuations has the opposite effect, yielding a
net reduction of the bandwidth. The RPA underestimates the
screening, which explains the larger bandwidth reduction in
GWLDA theory [22].

Figure 1(a) also shows the result from a self-energy
calculation for the homogeneous electron gas (jellium) with
rs = 3.93 corresponding to the valence charge density of
sodium, n = 3/(4π [rsaB]3) with aB being the Bohr radius.
The occupied bandwidth in Hartree theory is 3.15 eV. This
agrees very well with the ab initio DFT-LDA result, indicating
that corrections caused by the inhomogeneity of the crystalline
potential are very small. Figure 1 shows good agreement
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FIG. 1. (Color online) (a) On-shell self-energy corrections for
the occupied states in sodium. The dashed curves are results for the
homogeneous electron gas (HEG) with rs = 3.93, while the circles
are results from ab initio calculations. The GWRPA theory (blue [dark
gray]), GWLDA theory (green [light gray]), and the spin-fluctuation
self energy (red [gray]) are shown. (b) Imaginary part of the on-shell
self-energy for the occupied states in sodium. The labels are the same
as in panel (a).

between the on-shell self energies from the ab initio calculation
and jellium.

If the exact self-energy was known, quasiparticle proper-
ties should be calculated “off-shell”; i.e., the quasiparticle
equation, Eq. (1), should be solved and the self-energy
should be evaluated at the quasiparticle energy. It has been
argued [30,31], however, that for approximate self-energies
quasiparticle properties should be determined by evaluating
the self-energy “on the shell” to avoid mixing different
orders of perturbation theory. Table I shows that off-shell
calculations result in a larger occupied bandwidth than on-shell
calculations. The ratio of the bandwidth reductions in off-
shell and on-shell calculations is approximately equal to the
renormalization constant Zk = [1 − ∂�k(Eqp

k )/∂ω]−1, which
is about 0.6 for the occupied states of sodium.

According to Eq. (2), the self-energy should be calculated
using the interacting Green’s function. To approximately
account for this self-consistency requirement we have shifted
all mean-field energies such that the resulting quasiparticle
energy agrees with the shifted mean-field energy [32] at the

TABLE I. Occupied bandwidth of sodium obtained from on-shell
and off-shell evaluations of the self-energy. We also give results with
approximate self-consistency (sc) achieved by shifting the mean-field
energies. All energies are given in electron volts.

On-shell Off-shell Off-shell + sc

GWRPA 2.86 3.00 2.98
GWLDA 2.55 2.83 2.80
GWLDA + SF 2.51 2.85 2.78
Exp. [17] 2.5
Exp. [18] 2.65
DFT-LDA 3.19

Fermi level. Table I shows that self-consistency leads to only
very small changes in the occupied bandwidth.

We employed the jellium model to investigate the effect
of additional approximations to the self-energy. In standard
first-principles GWRPA calculations, one sometimes employs
a generalized plasmon-pole model [19] to extend the static
inverse dielectric matrix to finite frequencies. In this model
the imaginary part of the inverse dielectric function for each
G and G′ component is assumed to be a simple δ function,
i.e., Imε−1

GG′(q,ω) ∝ δ[ω − ωGG′(q)] with ωGG′(q) denoting
the effective plasmon frequency. Figure 2(a) shows that the
plasmon-pole model reproduces the self-energy shifts arising
from charge fluctuations quite well. Zhu and Overhauser [23]
employed a similar paramagnon-pole model to simplify the
calculation of the spin-fluctuation self-energy: They assumed
that the imaginary part of the interacting spin susceptibility can
be represented by a single mode, the paramagnon. However, in
contrast to the plasmon, which cannot decay into particle-hole
pairs for small wave vectors, the paramagnon has a linear
acoustic-like dispersion (as determined by the f -sum rule
[23]) and can decay into particle-hole pairs: Fig. 2(b) shows
the imaginary part of the spin, charge, and noninteracting
susceptibilities at q/qF = 0.6. The charge susceptibility has a
sharp plasmon peak at ∼7 eV that lies outside the particle-hole
continuum given by the noninteracting susceptibility. The spin
susceptibility has significant overlap with the noninteracting
susceptibility and exhibits a broad structure. In contrast to
the charge susceptibility, the spin susceptibility is not well
represented by a single sharp mode.

As a consequence, the spin-fluctuation self energy with a
paramagnon-pole model gives very different results from the
theory without this approximation; see Fig. 2(a). It results in
a drastic narrowing of the occupied bandwidth by ∼1.4 eV.
While Zhu and Overhauser [23] empirically correct for the
finite lifetimes of the paramagnon, it is likely that their
predicted bandwidth narrowing of 0.7 eV is also spuriously
large and caused by the paramagnon-pole approximation.

Figure 2 also shows that for the GWLDA theory the plasmon-
pole approximation leads to a further reduction of the occupied
bandwidth by ∼0.2 eV. The resulting bandwidth (calculated
“off-shell”) agrees well with previous first-principles results
[21,22].

Figure 1(b) on the other hand shows that spin fluctuations
contribute significantly to the line width [2Im�k(εk)] of quasi-
particles. In particular, at the bottom of the band, k = 0, the
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FIG. 2. (Color online) (a) Comparison of the on-shell self-energy
corrections for the occupied states of jellium with rs = 3.93 (corre-
sponding to sodium) from full-frequency and simplified calculations
using the generalized plasmon-pole (GPP) and paramagnon-pole
(PaP) models for the GWRPA self-energy (blue [dark gray]), GWLDA

self-energy (green [light gray]), and spin-fluctuation self-energy (red
[gray]). (b) Frequency-dependent imaginary parts of the charge
(blue [dark gray] dashed curve), spin (red [gray] solid curve), and
non-interacting (magenta [gray] dotted curve) susceptibilities for
jellium at q/qF = 0.6. The susceptibilities are divided by the Pauli
susceptibility χP = −kF /π 2. The vertical lines denote the locations
of the δ-function peaks in a plasmon-pole model (blue [dark gray])
[33] and a paramagnon-pole model (red [light gray]) [23].

quasiparticle line width is a factor of 2 larger than the GWRPA

value when vertex corrections in χC and spin fluctuations
are included. This agrees well with the experimental findings
[16,34–35].

Lithium. In contrast to sodium, the occupied bandwidth
resulting from Hartree theory applied to the homogeneous
electron gas, 4.65 eV, is much larger than the value obtained

TABLE II. Occupied bandwidth of lithium obtained from on-shell
and off-shell evaluations of the self-energy. We also give results with
approximate self-consistency (sc) achieved by shifting the mean-field
energies. All energies are given in electron volts.

On-shell Off-shell Off-shell + sc

GWRPA 3.19 3.29 3.30
GWLDA 2.83 3.09 3.10
GWLDA + SF 2.87 3.24 3.08
Exp. [37] 2.86
DFT-LDA 3.45

in a DFT-LDA calculation including the crystalline potential,
3.45 eV. This shows that—even though the Fermi surface
is spherical to a high degree [36]—crystal effects are very
important in lithium.

Table II shows our results for the occupied bandwidth of
lithium. Again, the occupied bandwidth reduction in GWRPA

theory is too small to explain the experimental finding. Adding
vertex correction in χC yields good agreement with experiment
[37], while spin fluctuations lead only to a small change in the
occupied bandwidth.

Conclusions. We have calculated the effect of spin and
charge fluctuations on quasiparticle excitations in alkali metals
from first principles. In contrast to previous calculations
[23], we find that spin fluctuations contribute little to the
observed bandwidth reduction compared to mean-field results.
Instead, as observed in Refs. [21,22] inclusion of vertex
corrections in the dielectric screening gives agreement with
experimental bandwidths. Previous studies which included
vertex corrections in both the dielectric screening and the
self-energy found that agreement with experiment worsens
[38,39]. Other studies reported cancellations between self-
energy vertex corrections and self-consistency effects [40,41].
Further work is necessary to clarify this issue. We also
find that spin fluctuations give an important contribution to
the line width and lifetime of the quasiparticle excitations.
We note that the first-principles framework presented here
can be applied to materials with d electrons, where spin
fluctuations are expected to play an essential role, such as
pnictide superconductors and ferromagnetic metals.
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