RAPID COMMUNICATIONS

PHYSICAL REVIEW B 89, 081107(R) (2014)

Typical medium dynamical cluster approximation for the study of Anderson
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We develop a systematic typical medium dynamical cluster approximation that provides a proper description of
the Anderson localization transition in three dimensions (3D). Our method successfully captures the localization
phenomenon both in the low and large disorder regimes, and allows us to study the localization in different
momenta cells, which renders the discovery that the Anderson localization transition occurs in a cell-selective
fashion. As a function of cluster size, our method systematically recovers the reentrance behavior of the mobility
edge and obtains the correct critical disorder strength for Anderson localization in 3D.
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Introduction. The search for new methods to better under-
stand Anderson localization [1,2] remains an active area in the
study of disordered electronic systems [3]. Here, the scattering
of charge carriers off random impurities [4,5] may inhibit their
propagation across the sample leading to a phenomenon known
as Anderson localization [1]. Despite intensive studies, a
proper mean-field theory of this phenomenon remains elusive.

The most commonly used mean-field theory to study
disordered systems is the coherent potential approximation
(CPA) [6,7], where the original disordered lattice is replaced
by an impurity embedded in an effective medium. The CPA
successfully describes some one-particle properties, such as
the density of states (DOS) in substitutional disordered alloys
[6,7], but fails to capture the Anderson localization transition
(ALT). As a local approximation, the CPA is unable to capture
crucial multiple backscattering interference effects that can
lead to localization. Cluster extensions of the CPA such as the
dynamical cluster approximation (DCA) [8,9] and the molec-
ular CPA [10] incorporate nonlocal effects; however, they still
fail to describe the ALT. The average DOS calculated within
such mean-field theories cannot distinguish between extended
and localized states and it is not critical at the transition [9];
hence, it cannot be used as an order parameter. Finding a
proper single-particle order parameter for the ALT capable
of distinguishing between localized and extended states is a
major challenge in the study of disordered electronic systems.

While at the ALT the average DOS is not critical [11],
the geometrical mean of the local DOS (LDOS) [12-15],
which better approximates the typical value of the LDOS,
is actually critical. Dobrosavljevi¢ et al. [16] incorporated
such geometric averaging over disorder in the typical medium
theory (TMT) where the typical and not the average LDOS is
used in the CPA self-consistency loop. They showed that the
typical DOS (TDOS) obtained from geometric averaging over
disorder becomes critical at the transition, and hence can serve
as an appropriate order parameter for the ALT.
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The local TMT reproduces some of the expected features
of the ALT, but fails to provide a proper description of the
critical behavior in three dimensions (3D). It underestimates
the critical disorder strength with W™T ~ 1.65 instead of
the numerical value W, ~ 2.1 [17-20] (in a unit where 4¢ =
1), and the critical exponent of the order parameter §™T ~
1.0, whereas the recently reported value is 8 &~ 1.67 [20,21].
Another crucial drawback of the local TMT in 3D is that it
cannot describe the reentrant behavior of the mobility edge
(the energy separating extended and localized electron states)
as seen in transfer matrix method studies [4,22]. Hence, by its
construction the TMT is able to describe the effects of strong
localization due to disorder, but all nonlocal spatial correlation
effects are missed [23].

A natural way to improve upon the local TMT is to
construct its cluster extension using the DCA scheme, which
systematically incorporates nonlocal effects. Recently, we
extended the local TMT to a cluster version called the cluster
typical medium theory (CTMT) [24]. Here, the diagonal
cluster-momentum-resolved density of states is replaced by
its typical value p°(K,w) = exp({In p°(K,w))). This scheme
works well in lower dimensions, where weak localization
effects are most pronounced, and our results reveal that all
the states are localized in the large cluster limit. However, this
formalism does not properly describe the ALT in a 3D lattice.
The reason is that in 3D, at a given disorder strength below
the critical value W,, there are regions of the DOS consisting
of only localized states, and others only extended states. To
capture this mixing of localized and extended states requires
that different energy scales are treated separately. Our CTMT
formalism fails in 3D because the DOS at each cluster site
is first averaged over the cluster to obtain p“(K,w). For large
clusters, it will not contain any information about the localiza-
tion edge, and a theory based upon it is unable to distinguish
between states above and below the localization edge.

In this Rapid Communication, to avoid such self-averaging
issues in the TDOS, we propose a different typical medium
DCA (TMDCA) method by explicitly separating out the local
part of the TDOS and treating it with a geometric averaging
over disorder configurations. In this way, we are able to obtain
a proper TDOS that characterizes the ALT in 3D. The method
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we develop is a systematic self-consistent effective medium
theory to study ALT in 3D, which (i) recovers the original
local TMT scheme at N. = 1; (ii) recovers the DCA for small
W (when all states are metallic); (iii) provides a proper way to
treat the different energy scales such that the characteristic
reentrant behavior of the mobility edge is obtained; (iv)
captures the critical behavior of the ALT with correct critical
disorder strength; (v) provides a correct description of the
Anderson insulator at large W when all states are localized;
and (vi) fulfills all the essential requirements expected of
a “successful” cluster theory [9,25] including causality and
translational invariance.

Method. We consider the Anderson model of noninteracting
electrons subjected to a random potential. The Hamiltonian is
given by

H== ty(cle; +He)+ Y Vin;. (1)
(ij) i

The disorder is modeled by a local potential V; randomly
distributed according to a probability distribution P(V;). The
operator ciT (c;) creates (annihilates) an electron on site i,
n; = cjc,- is the number operator, and #;; is the hopping
matrix element between nearest-neighbor (NN) sites (i, j). We
set 4t = 1 as the energy unit, and use a “box” distribution
with P(V;) = ﬁ@(W — |Vi]), where ©(x) is a step function.
We use the shorthand notation (---) = deiP(V,-)(~ -) for
disorder averaging.

To solve the Hamiltonian (1) we utilize a modification of the
standard DCA procedure [9]. Here, the original lattice model
is mapped onto a periodic cluster of size N. = L embedded
in a self-consistent typical medium characterized by a nonlocal
hybridization function I'(K,w). Hence, spatial correlations up
to a range & < L. are treated explicitly, while the longer
length scale physics is described at the mean-field level.
The mapping is accomplished by dividing the first Brillouin
zone into N, nonoverlapping cells of equal size. The lattice
Green function is coarse-grained over the cells, and the cluster
self-energy is subtracted to form the cluster-excluded Green
function G(K,w) = [w — ['(K,w) — éx]~", where &k is the
coarse-grained bare dispersion. G(K,w) is Fourier transformed
to form the real space G, ,, = Y G(K)expliK - (r, — ry)l.
Then for each randomly chosen disorder configuration V, we
calculate the cluster Green function G¢(V) = (G~! — V)~

From this quantity we obtain the typical density of states
Piyp (K, ) which is constructed as

local TDOS
1 N, p‘(K w V)
phakn = (5 2 (i) (L5 )
i=1 N
—
nonlocal
(2)

Here, pf(w,V)= —%Im Gi(w,V), while p°(K,w,V)=
— %Im G°(K,w,V) is obtained from the diagonal Fourier
transform of the cluster Green function G j(a), V).

As mentioned in the Introduction, to avoid self-averaging as
N increases, we modify our CTMT [24] scheme in the way we
calculate the spectra pj,, (K, ) used in the self-consistency. In
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particular, as shown in Eq. (2), we separate the “local TDOS,”
and treat it with geometrical averaging over disorder, from the
“nonlocal” part which is treated via algebraic averaging.

This py,,(K,w) possesses the following properties: for
N.=1, it reduces to the local TMT with Pryp(@) =
exp(ln p¢(w,V)). At low disorder strength W < W, the
local real space prefactor (In pf(w,V)) =~ In(p;(w,V)). Then
Piyp(K @) reduces to the DOS calculated in DCA scheme,
with pt‘:vp(K,a)) — (p°(K,w,V)).

From Eq. (2), the disorder averaged typical cluster Green

function is obtained using the Hilbert transform Giyp(K,0) =
f dw’%. Finally, the self-consistency loop is closed by
calculating the coarse-grained cluster Green function of the

lattice

el NS (K, e)d

G(K,CL)):/ - 0( E) € ’
(G, (K@) +T(K,w)—€+&K)+pn

where Nj(K ,€) is the bare partial density of states.

We note that our formalism preserves causality just as the
DCA [9], since all the Green functions are causal, both the DOS
and the TDOS calculated from them are positive definite. Also,
we observe that as N, increases, our method systematically
interpolates between the local TMT and the exact result.

Results and Discussion. We start the discussion of our
results by comparing the algebraically averaged DOS (ADOS)
and the TDOS for N, = 1 and 38 at various disorder strengths
(Fig. 1). Our TMDCA scheme for N. = 1 corresponds to the
original TMT procedure. The ADOS is obtained from the
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FIG. 1. (Color online) Evolution of the ADOS and TDOS at
different disorder strength W for the TMT (N, = 1) and TMDCA
with N, = 38. At low disorder, where all the states are metallic,
the TDOS is the same as the ADOS. As W increases the TDOS
gets suppressed. In the local TMT, the mobility edge (indicated by
arrows) moves towards w = 0 monotonically. In the TMDCA the
mobility edge first moves to higher energy, and around W > 1.75
it starts moving towards the band center, indicating that TMDCA
can successfully capture the reentrance behavior missing in the TMT
scheme.
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conventional DCA scheme, where the ADOS is used in the
self-consistency. As can be seen from Fig. 1 for both TMT
(N.=1) and TMDCA (N, = 38), the ADOS remains finite
while the TDOS gets suppressed as W, is approached.

Hence, the TDOS indeed serves as a proper order parameter
of the ALT. In addition, at low disorder, W = 0.4, for N, =
38, the ADOS and TDOS are practically the same, indicating
that our TMDCA procedure at W < W, reduces to the DCA
scheme in agreement with our analytical analysis described
above. Moreover, a crucial difference between the local TMT
at N, =1 and TMDCA at N, = 38 can be seen from the
comparison of the left and right panels of Fig. 1. The mobility
edge, separating extended from localized states, is defined by
the boundary of the TDOS and indicated by arrows. For the
local TMT the edge always gets narrower with increasing W,
while for TMDCA, the mobility edge first expands and then
retracts, hence giving rise to the reentrance behavior, which is
missed in the local TMT.

Next, we consider the evolution of W, with N,.
Figure 2 shows the TDOS at the band center as a function of
W for several N.. W, is defined by the vanishing of the TDOS
(w = 0). Our results show that as cluster size N increases, for
N. > 12 the W, systematically increases until it converges to
W, & 2.1 (for details, see Supplemental Material (SM) [26])
which is in good agreement with the values reported in the
literature [4,17,18,20-22,27]. This cluster is the first one with
a complete NN shell (for details, see SM [26]). From this
cluster onward, W, converges to ~2.1. Fitting the data for the
two largest clusters starting from W = 1.0 with a power law
TDOS (w = 0) = ay|W — C|?, we obtain 8 > 1.40, which
is greater than a single site TMT value of 7T = 1.0; but
it is still smaller than the most recently reported 8 ~ 1.67
[20,21,28]. We note that other mean-field methods reported
B < 1.0 [29]. In our method, we note that it is unlikely that
we can calculate the critical disorder strength and exponents
as precisely as diagonalization and transfer matrix methods
[4,17,18,20-22,27]. However, the advantage of our method
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FIG. 2. (Color online) The TDOS (w = 0) vs W for different
cluster sizes N. = 1,10,12,38,92. The TDOS (w = 0) vanishes at
W. where all states become localized. For N. = 1 (TMT), the critical
disorder strength WCNC=1 ~ 1.65. As N, increases, W, increases
quickly to ijc}lz ~2.10£0.01.
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is that we can incorporate both interactions and realistic
electronic structure as in, e.g., the dynamical mean-field theory
[30] and other DCA calculations (see, e.g., Ref. [31]).

The probability distribution function (PDF) is a natural way
to characterize the 3D Anderson localization transition. This is
due to the fact that the “typical” value of a “random” variable
corresponds to the most probable value of the PDF [21,24].

Since, for a proper description of electron localization
in disordered systems, one should focus on the distribution
functions of the quantities of interest [1], we calculate the
PDF of the cluster-momentum-resolved DOS p(K,w = ég)
(at different momenta cells K and energy w = ég) sampled
over a large number of disorder configurations. Our results for
the evolution of the PDF[p(K,w = €g)] with W are shown in
Fig. 3.

From statistical studies of disordered systems [12,22], it
is known that for extended states, when the amplitude of
the wave function is approximately the same on every site,
the distribution of the local DOS is Gaussian and the most
probable value coincides with the arithmetic mean. On the
other hand, for localized states, which have substantial weight
on a few sites only, the distributions develop long tails and
are extremely asymmetric with a log-normal shape. Most of
the weight is concentrated around zero, and its most probable
value is much smaller than the arithmetic mean. As can be
seen from Fig. 3, we indeed observe such behavior in our
results. In particular, we find that as W increases, different
cluster cells localize at different rates. The cells centered at
cluster momenta K = (0,0,0) and (7r,7,7) (labeled as D in
Fig. 3) and energy at the band edges have the same PDF. They
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FIG. 3. (Color online) The evolution of the probability distribu-
tion of the cluster-momentum-resolved DOS at different cluster cells,
PDF[p(K,w = €x)], with increasing W for N. = 38. The labels A-D
and their associated momenta K correspond to each of the four
distinct cells obtained using the point-group and particle-hole sym-
metry [p(K,w) = p(Q — K, — w), with Q = (7,7,7)] of the cluster.
Before the localization transition, the edge cells [corresponding to
(0,0,0) and (7,7, 7) label D] develop a log-normal distribution while
other cells remain Gaussian at small and moderate W [(a)—(d)]. Close
to the critical disorder strength W = 2.0, panel (e), all the cells show
log-normal distributions.
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FIG. 4. (Color online) Phase diagram of the Anderson localiza-
tion transition in 3D obtained from TMDCA simulations. As N,
increases, a systematic improvement of the trajectory of the mobility
edge is achieved. At large enough N, and within computation error,
our results converge to those determined by the TMM [4].

localize much faster than other cells with lower energies. The
PDFs of these edge cells exhibit log-normal distribution far
earlier than other cells which remain Gaussian up to moderate
disorder strengths W ~ 1.0 [panel (c)]. However, close to W,
[cf. Fig. 3(e)], all the cells show log-normal distributions with
their most probable values peaked close to zero. For W = W,
all the states are localized and the system undergoes a full ALT
in agreement with numerically exact results [32]. Hence, the
localization transition occurs as a “momentum cell-selective
Anderson localization transition.”

Finally, in Fig. 4 we present the phase diagram in the
disorder-energy (W-w) plane for the 3D ALT constructed
from our TMDCA procedure. Here, we show the mobility
edge trajectories given by the frequencies where the TDOS
vanishes at a given disorder strength W, and the band edge
determined by the vanishing of the ADOS calculated within
the DCA. For comparison, we also present the numerical
results from the transfer matrix method in Ref. [4]. For
large enough clusters, N. = 92, our results converge to their
results within the errors of both approaches. In particular,
as N, increases, the mobility edge trajectories are sys-
tematically reproduced, with reentrance behavior gradually
captured.

As evident from Fig. 4, at N, = 12 (the first cluster with
complete NN shell), the W, at w = 0 quickly converges to
W. = 2.1, while the trajectory of the mobility edge continues
to change with N .. This may be understood from the different
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localization mechanisms for states at the band center and edge
[4]. States at the band center become localized mainly due to
coherent backscattering, while those above and below the bare
band edges are initially localized in deeply trapped states. They
become delocalized with increasing W due to the increasing
DOS and hence increasing quantum tunneling between
the deeply trapped states. They finally become localized
again with increasing disorder, which explains the reentrant
behavior. Since coherent backscattering requires a retracing of
the electronic path, the effective length scales captured by the
cluster are doubled, so W, converges very quickly at the band
center. On the other hand, the quantum tunneling mechanism
has no path doubling and requires multiple deeply trapped
states on the cluster and therefore converges more slowly
with N .

Conclusions. In this Rapid Communication we develop
a DCA-based typical medium theory (TMDCA) to study
Anderson localization in three dimensions. The developed
TMDCA presents a successful self-consistent, causal, and nu-
merically manageable effective medium scheme of Anderson
localization. Employing the one-particle typical density of
states as an order parameter of the Anderson transition, the
TMDCA gives the critical disorder strength of W, = 2.10 +
0.01 which is in very good agreement with the acceptable
value in literature, and it is of noticable improvement over
the single-site TMT result of W, = 1.65. Moreover, our
method systematically captures the reentrance behavior of the
mobility edge trajectories, which are absent in the local TMT
scheme. Our analyses further show a cell-selective Anderson
localization transition, with different cluster cells localizing
at different rates. Our TMDCA method is easy to implement
and computationally inexpensive since it requires only the
computer time required to diagonalize small clusters, average
over the disorder, and iterate to convergence. Once combined
with electronic structure calculations [33] and more sophisti-
cated many-body techniques for electron interactions, it will
open a new avenue for studying localization phenomenon in
real materials as well as the competition between disorder and
electron correlations.
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