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Prediction of a Weyl semimetal in Hg1−x− yCdxMn yTe
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We study strained Hg1−x−yCdxMnyTe in a magnetic field using a k · p model and predict that the system is a
Weyl semimetal with two nodes in an experimentally reasonable region of the phase diagram. We also predict
two signatures of the Weyl semimetal phase which arise from tunability of the Weyl node splitting. First, we find
that the Hall conductivity is proportional to the average Mn ion spin and thus is strongly temperature dependent.
Second, we find an unusual magnetic field angle dependence of the Hall conductivity; in particular, we predict a
peak in σxy as a function of field angle in the xz plane and a finite σyz as the x component of the field goes to
zero.
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Introduction. Since the connection of the Chern number
to the quantum Hall effect [1], topology has become an
increasingly important ingredient in classifying phases of
matter. Despite all early examples of topological states being
insulators, it has recently been shown that gapless materials can
also have topologically nontrivial properties, with the primary
example being the Weyl semimetal (WSM) [2–5].

A WSM is a three-dimensional (3D) topological phase
characterized by pairs of nondegenerate linear touchings of the
bulk bands, called Weyl nodes. Such touchings are hedgehogs
in momentum space with quantized topological charge [6].
Weyl nodes always come in pairs of opposite charge due to
the Nielsen-Ninomiya theorem [7], and they are topologically
protected. In the simple case of two nodes, this protection
can be seen by considering a 2D slice of the Brillouin zone
(BZ) which is perpendicular to the vector between the Weyl
nodes; the Chern number of each low-energy band changes by
the charge of the node when this slice crosses a Weyl node
[8]. This implies that Weyl nodes can only be gapped out by
annihilating two nodes of opposite charge at the same point
in momentum space if charge conservation and translation
symmetry are present. Moreover, the nonzero Chern number
between the nodes implies the existence of surface states with
Fermi arcs, i.e., a Fermi surface that does not form a closed
curve but instead terminates at the projection of the Weyl nodes
onto the surface momentum space [3].

There have so far been several proposals for creating a
WSM; candidate structures include pyrochlore iridates [3],
topological insulator/normal insulator heterostructures [9,10],
and HgCr2Se4 [11]. Two related materials are Na3Bi [12] and
Cd3As2 [13], which are Dirac semimetals, i.e., their Weyl
nodes are degenerate. However, experimental confirmation of
these predictions has been limited. dc resistivity measurements
of Y2Ir2O7 [14] are in good agreement with theoretical models
[15], hinting at a WSM phase, and there is possible evidence
for Weyl physics in Bi0.97Sb0.03 in a magnetic field [16].

In this paper, we predict that in experimentally feasible
parameter regimes, strained Hg1−x−yCdxMnyTe in an external
magnetic field is a WSM with one pair of nodes. In order to
form a WSM, a “parent” 3D Dirac cone is typically required
for each pair of nodes. Upon breaking either inversion or
time reversal (T ) symmetry, the Dirac cone can split into
Weyl nodes separated in momentum space. In our model, the

parent Dirac cone appears when the 3D topological insulator
(TI) HgTe [17–19] is Cd doped to the TI-normal insulator
phase transition. Further doping by Mn breaks T in the
presence of an external magnetic field via exchange between
the paramagnetic Mn ions and the sp conduction electrons,
producing a WSM.

We emphasize that our model is particularly simple in that
it contains the minimum number of Weyl nodes and appears
in a material which is experimentally well controlled. Another
advantage is that, in our realization, tuning the magnetization
of the Mn ions adjusts the splitting of the Weyl points. We
demonstrate that this tunability leads to two signatures of
the WSM phase which could be used to distinguish it from
other semimetallic phases. First, for compressive strain in the
z-direction and x-direction magnetic field, the Hall conduc-
tivity σyz is proportional to the Mn magnetization, which is
strongly temperature dependent. Second, for the same strain,
σxy is nonmonotonic in magnetic field angle above the xz

plane.
Model. Our starting point is the six-band k · p model

for Hg1−x−yCdxMnyTe with exchange coupling and diagonal
strain [20]. The six bands in this effective model are the �6 and
�8 bands; we neglect the �7 bands since they are split from
the �6 and �8 bands by the spin-orbit scale � ∼ 1 eV, which
is much larger than all other energy scales in the problem.
The k · p approximation breaks down when kP + �

2k2/2m

(with P the Kane matrix element) is of the order of the gap
between the included and neglected bands at k = 0; this gap
is of order 1 eV, which leads to ka ∼ 0.5, far larger than
any momentum that will be considered in this work. This
Hamiltonian should therefore be valid for any momentum we
consider. The Hamiltonian is also valid at temperatures smaller
than this 1 eV gap, i.e., at T � 104 K.

We perform all calculations within the virtual crystal ap-
proximation (VCA). This requires that y � 1 (an assumption
that we also use to neglect the effect of Mn dopants on the
band structure parameters) and that the Cd dopants do not
order. In principle we should assume x is small as well, but the
VCA has yielded excellent agreement with experiment even
for quantum wells with x = 0.7 [20], so we assume the VCA
for all x. All lattice parameters are linearly interpolated in
x except for the zero-field gap at y = 0. We use a quadratic
interpolation of the last parameter from the literature [21].
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FIG. 1. (Color online) Effect of strain and exchange on the
continuum band structure near the � point. The label |�8, ± 3/2〉
refers to the character at k = 0. Parameters: ky = kz = 0, x tuned to
set Eg + Estr = 0 [see discussion after Eq. (1) in the text]. “Exchange”
means y = 0.05 and Bx = −5 T; “Strain” means εzz = −0.04. (a)
No strain, no exchange. (b) Strain only. (c) Exchange only; Weyl
bands are shown in red and the Fermi energy is the dashed blue line.
(d) Strain and exchange, same colors as (c); the chemical potential
crosses the k �= 0 degeneracies.

In general, the Zeeman and Landau splittings are far smaller
than the exchange interaction; for B ≈ 1 T, the energy scale of
the exchange interaction is ∼ (0.8 eV)y, whereas the Zeeman
and Landau splitting energy scale �eB/m is about 0.1 meV.
We therefore neglect orbital effects and check the consistency
of this assumption later.

At stoichiometry, four of the six bands are filled. At zero
strain, the mJ = ±3/2 bands add substantial complication
to the band structure, as shown in Fig. 1. With compressive
z-direction strain and/or tensile x- or y-direction strains, the
mJ = ±3/2 bands decrease in energy. These bands can be
neglected at large enough strain, as in Figs. 1(b) and 1(d),
leaving a four-band model at half-filling. We use the basis
of band-edge Bloch functions {|�6,mJ = +1/2〉,|�6,mJ =
−1/2〉,|�8,mJ = +1/2〉,|�8,mJ = −1/2〉} for the remaining
bands. We will consider the effects of decreased strain later.
We use as a basis for the anticommuting Dirac matrices in the
Euclidean metric (�0,�1,�2,�3,�5) = (τz ⊗ 1, − τy ⊗ σy,

− τy ⊗ σx,τx ⊗ 1,τy ⊗ σz), where τ and σ act on the orbital
and angular momentum degrees of freedom, respectively, and
let �ab = i/2 [�a,�b]. Assuming by rotational symmetry that
By = 0, the continuum model can be written (see Supplemen-
tal Material [22])

H =
3∑

j=1

(
vjkj�j + cj k

2
j�0

) + (Eg + Estr)�0

+ ax�23 + az�12 + bx�15 + bz�35, (1)

where ax,z and bx,z are proportional to both the average Mn
spin 〈Sx,z〉 in the x and z directions, respectively, and the
Mn doping y. The important tunable parameters are 〈Sj 〉, the

zero-field, zero-strain band gap Eg , and the strain contribution
Estr to the four-band Hamiltonian (see Supplemental Material
[22] for their explicit forms). The prefactors vj and cj ,
as well as the proportionality constants for ax,z and bx,z,
are phenomenological constants from the k · p model; some
depend on x and strain, but not in a way which qualitatively
affects the physics. Due to the particular values for this
material, it turns out that |bx | � |ax |, so we neglect bx .

To get the parent Dirac cone, we note that while both Eg

and Estr depend on x, only Estr depends on the strain. We
then choose to tune x so that Eg + Estr = 0. We assume that
the applied strain has the form εxx = εyy = −εzz/(2C12/C11),
with the deformation potentials C12 and C11 taken from the
literature [23]. This would be the case for strain due to
the lattice mismatch between HgTe and the CdTe substrate,
for example. In this case, the constraints Eg + Estr = 0 and
0 � x � 1 can be satisfied for any 0 � εxx � 0.8; the very
large upper bound on the strain means that this constraint is
easily satisfied in the range of validity of our model. We defer
discussion of what happens when Eg + Estr �= 0 until later, but
note that the topological protection of the Weyl nodes removes
the need for perfect fine-tuning.

At low energy, this model is easily diagonalized:

E = ±
⎧⎨
⎩a2

x + a2
z + b2

z +
∑

i=x,y,z

(viki)
2 ± 2

[
a2

z b
2
z

+ (axvxkx + azvzkz)
2 + b2

z

(
v2

yk
2
y + v2

xk
2
x

)]1/2

⎫⎬
⎭

1/2

. (2)

We assume for now that Bz = 0 so that az = bz = 0. There
are exactly three gapless points, appearing at k = 0 and at
±k∗

x = ±|ax |/vx and ky = kz = 0. The k = 0 degeneracy is
not topological and can be lifted by adding infinitesimal
Bz or coupling to the |�8, ± 3/2〉 bands, so we ignore this
degeneracy. The low-energy dispersion about the other two
gapless points is clearly linear. To confirm that this is indeed
a WSM with two nodes, we can consider our Hamiltonian to
be a set of 2D systems in the y and z directions, parametrized
by kx . This Hamiltonian will be gapped at all points except for
kx = ±k∗ and at the accidental degeneracy at k = 0. The Chern
number of these quasi-2D Hamiltonians can be computed
numerically [24] with the standard lattice regularization ki →
sin(kia0)/a0 and k2

i → 2[1 − cos(kia0)]/a2
0 (with a0 the lattice

constant). Indeed, for |kx | > k∗
x , the Chern number of the

low-energy bands is zero, but the Chern number becomes ±1
(depending on the band) for |kx | < k∗

x . This change in Chern
number, a hallmark of the WSM, indicates that the degeneracy
at the Weyl points is topologically protected so long as the
Weyl points remain separated in momentum space [3].

This change in Chern number also implies a quantized Hall
conductance σyz = (2k∗

xa0/2π )e2/h, where a0 is the lattice
constant [8]. That is, the Hall conductance is e2/h times the
fraction of the 2D systems which have a Chern number ±1
band.

To further confirm the WSM phase, we investigate the
surface states. We assume that there are edges in the z direction
and numerically diagonalize the lattice-regularized version of
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FIG. 2. (Color online) (a) Edge state spectrum in the four-band
model for a finite z direction at kx = 0 in a strip geometry. Edge
states are colored red. Parameters used: 400 sites in the z direction,
|Bx | = 5 T, y = 0.05, and critical x neglecting strain. (b) Surface
density of states at the Fermi level at the same parameters as in (a)
but in a semi-infinite geometry.

Eq. (1). Results are shown in Fig. 2(a). The edge states clearly
exist at small kx , though there is also a finite size gap at
the Weyl nodes. We also calculated the surface density of
states using a Green’s function method [18] for a semi-infinite
configuration. As expected, the resulting Fermi arc, shown in
Fig. 2(b), smoothly merges into the Weyl points at kx = ±k∗.

We now relax our conditions on the strain. First suppose that
we allow Eg + Estr = �E �= 0. So long as �E is smaller than
the exchange energy scale (about 100 meV for y ∼ 1%), the
Weyl nodes will not annihilate. At fixed strain, �E � 100 meV
means that x can vary from optimal by about 2%. At fixed
doping, the strain tolerated varies strongly on the direction
in which it is applied; for a strain like the HgTe/CdTe lattice
mismatch, the Weyl points tolerate a strain past the validity
of our model (the model allows �εxx ∼ 20%), while only an
∼ 1% uniaxial strain in the z direction is allowed.

Next consider the effect of allowing small strain, but
maintain the constraint Eg + Estr = 0 by changing x. As the
strain decreases, we find numerically that the Weyl points stay
approximately fixed in momentum. Assuming stoichiometry
(so that exactly four bands are full), the Hall conductivity is
therefore unchanged until the filling of the individual bands
changes. This occurs when the Fermi energy falls below the
Weyl points. The system also becomes fully metallic at this
point, as in Fig. 1(c).

The loss of the quantized zero-temperature Hall conductiv-
ity can be used to define a boundary between the WSM and
fully metallic phases. As can be seen from the resulting phase
diagram in Fig. 3(a), a WSM appears in a reasonable region
of parameter space; a field of 5 T (which fully saturates the
Mn spins), strain of tenths of a percent, and y of a few percent
are all within the realm of experiments. In particular, HgTe
on a CdTe substrate has a lattice mismatch of 0.3%, which is
enough to get a WSM up to y ≈ 0.02 at the optimal x = 0.16
for this strain. However, larger strain is preferred; although
the WSM phase requires less strain at smaller y, the Weyl
node splitting and thus all relevant signatures increase with y.
In particular, σyz = (2k∗a/2π )(e2/h), which has a maximum
value of 0.30y(e2/h). Hence larger strain is ideal to allow a
larger y, but small values of y also suffice.

We also need to check our assumptions that Zeeman
splittings and Landau level formation are not important,

FIG. 3. (Color online) (a) Phase diagram at B = 5 T with x tuned
so that Eg + Estr = 0. The slightly negative intercept of the boundary
line is interpreted as numerical error. (b) Hall conductivity σyz and
average Mn spin 〈Sx〉 as a function of temperature in the four-band
model at Bx = 4 T and y = 0.01. The lattice constant has been set to
1 nm for simplicity.

assuming that y is large enough that the exchange interaction
is large compared to the characteristic energy scales for
these effects. The Zeeman splitting has the same form as the
exchange term [20], but is y independent; in this regime the
Zeeman term may therefore certainly be neglected. Next, note
that the Landau level splitting does not affect the anomalous
Hall effect; the reason is that the Landau levels disperse in
kx . The only place that the bands will change filling due to
Landau level formation is near the Weyl points, in particular
for the k for which the gap is smaller than the cyclotron
frequency vF

√
eB/� (i.e., they differ from a Weyl point by

at most the inverse cyclotron length). For a field of 1 T, this
leads to �ka0 ∼ 0.02, or a total momentum space volume
∼ 4π (�ka)3/3 ≈ 3 × 10−5. However, the anomalous Hall
effect is due to the entire region |kx | � k∗, with a momentum
space volume ∼ (2π )2k∗a0 ∼ 2 for the k∗a0 = 0.05 from
Fig. 1(d). Since a negligible amount of this latter volume is
unaffected, the Hall response should be negligibly affected.
Finally, it is possible that in very clean samples Shubnikov–de
Haas oscillations could be observed if the scattering time is
larger than the inverse cyclotron frequency ω−1

c . Near the
Weyl points, �ωc = �vF

√
eB� ∼ 2 meV for B ∼ 1 T (here

we estimated vF ∼ 105 m/s directly from the band structure).
Experimental signatures. Since the Mn ions in our model

are paramagnetic, a magnetic field is required to realize the
WSM. This means that observing the Fermi arcs via angle-
resolved photoemission spectroscopy is not feasible, but it
allows the Weyl point splitting to be tuned by the temperature
and magnetic field. We will now show that this tunability leads
to two major signatures of the WSM phase in this material
which could reasonably be seen in experiments. The system is
assumed to have large enough strain that the four-band model
is valid.

First, we consider the temperature dependence of the
Hall conductivity σyz. The Weyl point splitting k∗ fully
determines the intrinsic contribution to the Hall conductivity
σyz. Increasing the temperature at fixed magnetic field will
disorder the Mn spins, decreasing the effect of exchange
coupling. In particular, k∗ is proportional to the average dopant
spin 〈S〉. Empirically [20],

〈Si〉 = −S0B5/2

(
5gMnμBBi

2kB(T + T0)

)
, (3)
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where Bi is the ith component of the magnetic field, B5/2 is
the spin-5/2 Brillouin function, gMn = 2 is the g factor of
Mn, and the effective spin S0 and effective temperature T0

account for antiferromagnetism between Mn ions. Hence we
expect that, barring other temperature-related contributions,
σyz will have the same temperature dependence as 〈Sx〉. The
temperature scale for this decrease is approximately 20 K for
magnetic fields of the order of teslas. To check this result, we
numerically calculated σyz(T ) using the Kubo formula in the
clean four-band model and plot the results in Fig. 3(b).

The conductivity follows the average Mn spin, indicating
that there are no other significant contributions in this limit
at zero chemical potential. We further claim that the Hall
conductivity is independent of small changes in the chemical
potential [8]. In particular, very close to the Weyl nodes,
the low-energy Hamiltonian H = χ (k − k0) · σ is invariant
under the antiunitary operation which takes �k = k − k0

to −�k and acts like time reversal on spin. The Berry
curvature is odd under this pseudo-time-reversal operation,
so any state and its pseudo-time-reversed partner have equal
and opposite contributions to the Berry curvature (and thus
the Hall conductivity). Thus the region of momentum space
well described by this low-energy Hamiltonian has zero net
contribution to the Hall conductivity, so changing the chemical
potential has no effect on the Hall conductivity so long as it
remains at low energy.

As a second probe, we consider the Hall conductivity as
a function of magnetic field angle θ above the xy plane. We
can see from Eq. (2) that, when Bz �= 0, all degeneracies must
occur at zero energy. The resulting equation for degeneracies
becomes quartic and its analytical solution becomes unwieldy,
but we can find numerically that the Weyl nodes follow a
path in the xz plane, shown in Fig. 4(a). “Slicing” the BZ in
the kx and kz planes yields σyz and σxy , resepectively, as the
conductivity is the fraction of the BZ which lies between the
slices with the Weyl nodes. The results are shown in Fig. 4(b).
The most striking feature is that σxy is nonmonotonic in θ .
Also, σyz does not go to zero as θ goes to π/2 because the
Weyl node splitting is not along the field.

There is a complication to these results; at θ = π/2 the
system forms a ring node that overlaps with the Weyl nodes.
This ring node is not topologically interesting because, like
typical ring nodes [4], it is unstable, but the additional

FIG. 4. (Color online) (a) Path of the Weyl nodes in momentum
space as θ changes. A and B correspond to θ = 0 and θ = π/2,
respectively. (b) Hall conductivities σxy , σyz as a function of magnetic
field angle θ .

gap closings as θ → π/2 increase the relevance of finite
temperature. Fortunately, for values of y of a few percent,
the θ = 0 gap at the eventual location of the ring node is of
the order of tens of kelvin, so at liquid He temperatures finite
temperature effects should not interfere with observation of
σxy until well past its peak.

So far we have only considered a clean system. Because
our system is gapless, at any finite disorder concentration
we expect side-jump and skew-scattering contributions to the
Hall conductivity [25]. However, none of these contributions
should show the nonmonotonicity in σxy that appears in the
tilted-field case, and nonmagnetic impurities should contribute
to σyz with a very different temperature dependence (likely on a
different temperature scale as well). Moreover, disorder-driven
contributions should be small; free carriers are usually needed
for such contributions, and the density of states at the Fermi
level vanishes in the ideal WSM case, so we may be in a
regime analogous to a band insulator. It is, however, difficult
to quantitatively treat this regime, as typical perturbation
expansions in 1/kF lmfp with lmfp the mean free path break
down near a Dirac point.
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