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Second harmonic generation in h-BN and MoS2 monolayers: Role of electron-hole interaction

M. Grüning1,2 and C. Attaccalite3

1School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
2Centre for Computational Physics and Physics Department, University of Coimbra, Portugal
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We study second harmonic generation in h-BN and MoS2 monolayers using an ab initio approach based on
many-body theory. We show that electron-hole interaction doubles the signal intensity at the excitonic resonances
with respect to the contribution from independent electronic transitions. This implies that electron-hole interaction
is essential to describe second harmonic generation in those materials. We argue that this finding is general for
nonlinear optical properties in nanostructures and that the present methodology is the key to disclose these effects.
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Introduction. Optical properties of two-dimensional (2D)
semiconducting crystals, and specifically of hexagonal boron
nitride (h-BN) and MoS2 monolayers, have been the object of
intense research in the past years (e.g., Refs. [1–4]). Several
studies have investigated the absorption and photolumines-
cence spectra and possible applications to optoelectronics (for
a review see Ref. [5]).

Significant advances in the knowledge of linear optical
properties of h-BN and MoS2 have been possible also
thanks to ab initio studies that contributed both through the
interpretation of experimental results (e.g., Refs. [6,7]) and
the envisagement of possible applications (e.g., Ref. [8]).
Key in those studies has been the inclusion of the electron-
hole interaction, essential to capture the excitonic features—
particularly strong due to the geometric confinement and
the weak dielectric screening—that characterize the optical
response of 2D crystals. [9]

More recently, there has been a surge of interest also
for nonlinear optical properties of these materials. Several
experimental studies [10–12] show that h-BN and MoS2

monolayers have a remarkable second harmonic generation
(SHG) hinting at potential applications to nonlinear optical
devices. Being sensitive to the stacking, orientation, and
number of layers, SHG has been proposed and already used
as a noninvasive optical probe to characterize h-BN and
MoS2 films [10,11]. On the other hand, as for linear optical
properties, it is important to support or even guide experiments
through accurate and reliable numerical simulations. As an
example, for the MoS2 monolayer, depending on the study
the experimental estimate for the SHG varies by 4 orders of
magnitude [10–12].

Unfortunately, in contrast to the case of linear optical
properties, calculations of the nonlinear optical response still
remain a challenge. With few isolated exceptions [13–15], a
large number of calculations of nonlinear optical properties,
and specifically of SHG in 2D crystals [16–18], employ the
independent-particle approximation (IPA), which is inade-
quate for low-dimensional systems, where it is expected that
the strongly bound excitons significantly modify the SHG.

One of the main obstacles for the inclusion of electron-hole
interaction in calculations of nonlinear optical properties
actually comes from complexity of the expression for the
correlated nonlinear susceptibility in terms of the electronic
structure. For example, within many-body perturbation theory

the diagrams that enter in the calculation of the second-
and third-order susceptibilities are so intricate that their
implementation becomes awkward if not impracticable (see
for instance Fig. 3 of Ref. [19]). Even within the “simpler”
time-dependent density functional theory, equations for the
second-order optical response have been solved only for
particular approximations for the correlation functional [15]
or have been limited to the static response [20].

In a recent work [21], we propose to avoid the direct
calculation of the nonlinear optical susceptibilities, and use
instead a real-time approach. In such an approach the optical
susceptibilities are obtained from the time propagation of
“simpler” objects such as the single-particle Green’s function,
the density matrix, or the density. Many-body effects then
are included easily as an operator into the time-dependent
(effective) Hamiltonian. This approach has been already
successfully implemented and used for example within time-
dependent density functional theory, but usually limited to
finite systems, such as atoms, molecules, or clusters [22]. Our
approach is instead designed to treat periodic systems, such as
crystals, and is based on an approximation for the electron-hole
interaction [23] derived from many-body perturbation theory
that proved to be successful for linear optical properties (e.g.,
Refs. [6,7]).

Here we apply this approach to calculate and analyze the
contribution of electron-hole interaction on the SHG spectra of
h-BN and MoS2 monolayers. For both materials we disclose
the signature of bound excitons and show that excitonic effects
not only significantly modify the shape of the spectrum with
respect to the IPA, but strongly enhance its intensity. In the
conclusions we comment how this finding may open the
possibility of engineering the SHG signal in these materials.

Computational methods. The main equation in our real-time
approach to nonlinear optical properties is the equation of
motion for the time-dependent valence states |vk,m〉:

i�
d

dt
|vk,m〉 = (H 0

k + �Hk + Vh[�ρ] + �SHF[�γ ])|vk,m〉
+E|∂kvk,m〉, (1)

where �ρ(r) = ρ(r; t) − ρ(r; t = 0) and �γ = γ (r,r′; t) −
γ (r,r′; t = 0) are respectively the variation of the electronic
density and of density matrix induced by the external field
E . The last term on the right-hand side of Eq. (1) describes
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the coupling with the external field. We treat this term within
the modern theory of polarization [24] in the extension to
dynamical polarization proposed by Souza et al. [25] that we
recently implemented in an ab initio framework [21].

The rest of the terms on the right-hand side correspond to
different approximations for the effective Hamiltonian. The
first term H 0

k is the unperturbed mean-field Hamiltonian, for
which we choose the Kohn-Sham one [26] and corresponds
to the IPA. The second term, �Hk, is the so-called scissor
operator that corrects the band structure of H 0

k to provide
the quasiparticle band structure. Here the scissor is evaluated
within the GW approximation [27] and the corresponding ap-
proximation referred as IPA +GW corrections. The third term,
Vh(r)[�ρ], is the Hartree [28] potential. This term is respon-
sible for the local-field effects [29] originating from system
inhomogeneities. By truncating Eq. (1) at this level one obtains
the time-dependent Hartree (TDH) approximation. The next
term in Eq. (1) is the screened Hartree-Fock (SHF) self-energy
�SHF, which accounts for the electron-hole interaction [23],
and is written as �SHF[�γ ] = W (r,r′)�γ (r,r′; t), where the
static screened Coulomb interaction W (r,r′) is calculated in
random phase approximation keeping the screening fixed to
its zero-field value (for details see Ref. [28]). Approximation
at this level is referred as time-dependent SHF (TDSHF).
Note that within Green’s function theory the linear response
limit of the full Eq. (1) is equivalent to the solution of the
Bethe-Salpeter equation [23] in the static ladder approximation
on top of the G0W0 quasiparticle band structure [27].

In order to calculate the nonlinear optical response to
an external field, we choose a monochromatic (sinusoidal)
electric field in Eq. (1), and calculate the time-dependent
polarization as

P‖ = − ef

2πv

a
Nk⊥

∑

k⊥

Im log

Nk‖−1∏

k‖

detS(k,k + q‖), (2)

where P‖ is the polarization along the lattice vector a, v

is the unit cell volume, S(k,k + q‖) is the overlap matrix
between the time-dependent valence states |vk,n〉 and |vk+q‖,m〉,
Nk‖ and Nk⊥ are respectively the number of k points along
and perpendicular to the polarization direction, and q‖ = b

Nk‖
(with b the primitive reciprocal lattice vector such that b · a =
2π ). The second harmonic coefficient is extracted from the
power series of total polarization P = χ (1)E + χ (2)EE + · · ·
as explained in more detail in Ref. [21].

We apply the method here reviewed to h-BN [30] and
MoS2 [31] monolayers. Valence states are expanded in a
plane-wave basis set and the isolated monolayers are simulated
by a slab supercell approach with large intersheet distance.
Numerical details can be found in Refs. [30–32].

h-BN monolayer. h-BN is a transparent insulating material
with a large band gap of about 6 eV. Its absorption spectrum is
dominated by strong bound excitons, nearly independent from
the layers arrangement [7,33]. The h-BN monolayer inherits
all these properties from its bulk counterpart.

In Fig. 1 we report the calculated absolute value of χ
(2)
aab(ω),

the only independent in-plane component of χ (2)(ω) (a and
b are the in-plane Cartesian directions) at different levels of
approximation. Assignment of the peak is done by comparison

FIG. 1. (Color online) SHG spectra for the h-BN monolayer at
different levels of theory [Eq. (1)]: (a) IPA (blue continuous line)
and TDH (green dashed line); (c) IPA + GW correction (blue
continuous line); (e) TDSHF (blue continuous line) and IPA (gray
dashed line). The imaginary part of the dielectric constant at both
ω/2 (red continuous line) and ω (red dashed line) is reported in (b),
(d), and (f) for IPA, TDH, and TDSHF, respectively. The vertical lines
represent the GW fundamental gap (green dashed line) and half of
the GW fundamental gap (green continuous line).

with the imaginary part of the independent-particle dielectric
constant ε2 [Figs. 1(b), 1(d), and 1(f)]. At IPA level [Fig. 1(a)],
the SHG presents a peak at 2.3 eV and a broad structure
between 4 and 7 eV, corresponding respectively to two-photon
and one-photon resonances with π → π∗ transitions, with
contributions around 7 eV of two-photon resonances with σ →
σ ∗ transitions. The IPA level of theory is the one usually em-
ployed in theoretical calculations of SHG. Results for the h-BN
monolayer were previously obtained by Guo and Lin [16] and
are in good agreement with our calculations (see also Table I).
In the following we show how effects beyond the IPA—that is,
the additional terms in Eq. (1)—modify the SHG spectrum.
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TABLE I. ω → 0 limit of χ
(2)
aab(−2ω,ω,ω) of the h-BN monolayer

at different levels of the theory [Eq. (1)]. As a comparison, for the
IPA we report in square brackets also the value obtained in Ref. [16].

χ
(2)
aab(0) (pm/V) IPA TDH IPA + G0W0 TDSHF

h-BN 41.2(7) [40.7] 34.7(9) 16.8(1) 36.8(3)

We start by adding crystal local field effects included at
the TDH level [Fig. 1(a)]. Because of the weak in-plane
inhomogeneity of the h-BN, local field effects are small and
reduce by about 20% the peak at 2.3 eV. Note however that they
are larger than in the absorption spectrum for which the effect
is negligible [Fig. 1(b)]. Next we consider the renormalization
of the band structure by quasiparticle corrections within the
GW approximation (IPA + GW ) [Fig. 1(c)]. For h-BN this
renormalization can be safely approximated by a rigid shift
of the conduction bands [30]. Differently from the absorption
spectrum [Fig. 1(d)], the SHG is not simply shifted by GW

corrections, but its shape changes remarkably as a consequence
of the more involved pole structure of the second-order
susceptibility [15,34]. In fact, the IPA + GW shows two
peaks: the first at about 4 eV is the shifted two-photon π → π∗
resonances peak which is attenuated by 40% with respect to
IPA [Fig. 1 (a)]; the second very pronounced peak at about
8 eV comes from the interference of π → π∗ one-photon
resonances and σ → σ ∗ two-photon resonances.

Finally, in Fig. 1(e) we consider the full Hamiltonian in
Eq. (1). In particular we add the SHF term that introduces
an attractive interaction between the excited electrons and
holes [23]. The SHG spectrum presents four sharp and strong
peaks and its onset is redshifted by about 1 eV with respect to
the the IPA + GW [Fig. 1(c)]. The two couples of peaks can be
identified respectively as the two- and one-photon resonances
with the excitons at 6 and 7 eV. Figure 1(c) also emphasizes
the striking difference with respect to IPA, and shows that
TDSHF is twice as strong as IPA at the exciton resonances. In
Table I we report the value of the second optical susceptibility
at ω = 0, χ (2)(ω → 0), extrapolated from the SHG behavior
at small frequencies. Again, at the IPA level our result agrees
with the one of Guo and Lin [16] within the error bar. Adding
the effects beyond IPA modifies the χ (2)(ω → 0) value, and in
particular within TDSHF we found a value smaller by about
10% than within IPA. Experimentally, Ref. [11] provides an
estimate for the SHG at 1.53 eV (810 nm) (assuming an
effective layer thickness of 3.3 Å) of about 5 × 10−8 esu, one
order of magnitude smaller than what we find, though a direct
quantitative comparison is difficult since experiments measure
the second harmonic signal of the monolayer relative to the
underlying substrate.

MoS2 monolayer. MoS2 differs from h-BN in several
aspects. First, in MoS2 an indirect-to-direct band gap transition
occurs passing from the bulk to the monolayer due to the
vanishing interlayer interaction. Second, spin-orbit coupling
plays an important role in this material, splitting the top valence
bands, as visible from the absorption spectrum, presenting a
double peak at the onset [2]. Third, Mo and S atoms in the
MoS2 monolayer are on different planes resulting in a larger
inhomogeneity than for the h-BN.

FIG. 2. (Color online) SHG in the MoS2 monolayer for different
approximations: (a) IPA, (b) TDH, and (c) TDSHF (green line). The
latter is compared with IPA (red dashed line) and experimental results
of Malard et al. [12] (black circles). The intensity of the experimental
spectrum has been renormalized to match the intensity of the 1.5 eV
peak (see text). The dotted vertical lines show the energy of half of
the Kohn-Sham band gap in (a) and (b), and of half of the GW band
gap in (c).

Figure 2 presents the SHG spectra |χ (2)
aab| of the MoS2

monolayer at the different levels of approximations of Eq. (1).
At the IPA level [Fig. 2(a)], the SHG presents three main
features: a small peak at 1 eV, which originates from two-
photon resonances with transitions close to the minimum
gap at the K point; a larger peak around 1.5 eV, which
originates from two-photon resonances with transitions along
the high-symmetry axis between � and K where the highest
valence and lowest conduction bands are flat and there is a high
density of states; and a broad structure between 2–3.5 eV which
originates from one-photon resonances with transitions at K

and along �-K and two-photon resonances with transitions
at higher energies. Note that we do not include spin-orbit
coupling in Eq. (1). The latter is expected to split the lowest
peak into two weaker subpeaks [6] but to leave unaffected the
second peak, the one observed experimentally [12].

Because of the inhomogeneity of the MoS2 monolayer the
addition of crystal local field effects within the TDH strongly
modifies the SHG [Fig. 2(b)]. In particular the main peak at
1.5 eV merges with the plateau at 2 eV while a peak appears
around 3.3 eV. Finally, within the TDSHF [Fig. 2(c)] the small
shoulder around 1 eV, below half of the GW gap (1.25 eV, gray
dotted vertical line in the figure), originates from two-photon
resonances with the bound excitons around 2 eV which are well
visible in the experimental absorption spectra [2]. The main
peak at about 1.5 eV, present in the IPA spectrum but washed
out by local field effects within the TDH, is restored by the
electron-hole interaction and its intensity is two times larger
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than in the IPA case. This peak corresponds to a two-photon
resonance with the bright exciton at 3 eV observed in the ab-
sorption spectrum [6,12]. The calculated spectrum also shows
a strong one-photon resonance with the same exciton at 3 eV.

Interestingly the two-photon resonance with the bright
exciton at 3 eV falls into the wavelength range of Ti:sapphire
lasers. In fact it has been measured recently in different
experiments [10–12] reporting estimates for the SHG at
810 nm (1.53 eV) ranging over 4 orders of magnitude. In
Fig. 2(c) we compare the TDSHF-calculated spectrum with the
experimental measurements of Malard et al. [12] between 1.2
and 1.7 eV, finding a good agreement for the position and shape
of the peak at about 1.5 eV. The calculated intensity is one order
of magnitude larger (about a factor 21) than the experimental
estimate from both Refs. [11,12] (assuming an effective layer
thickness of 6.2 Å). On the other hand our value is smaller
by 2–3 orders of magnitude than the experimental estimate
reported in Ref. [10]. The same differences between theoretical
and experimental SHG have been also reported recently by
Trolle and coworkers [18] that calculated the SHG of the MoS2

monolayer in the IPA from a tight-binding band structure.
As in the case of h-BN, a quantitative comparison with
experiment is however difficult: in the experiment the second
harmonic signal from the monolayer is measured relative to
the underlying substrate and assumptions are made to deduce
its absolute value. On the other hand in our calculations we
neglect effects that may be relevant such as the reflection of
the fundamental and second harmonic field from the substrate.
We note finally that our calculations predict the difference of
one order of magnitude between the SHG in MoS2 and h-BN
at 810 nm (1.53 eV) as reported in Ref. [11].

To summarize, we have shown that electron-hole inter-
action greatly enhances the SHG signal in 2D crystals with
respect to the independent-particle picture. Specifically, for the

h -BN monolayer one- and two-photon resonances with bound
excitons produce strong signatures in the SHG spectrum with
intensities two times larger than expected from the IPA. In
MoS2, though the shape of the spectrum is not strikingly
modified by excitonic effects as for h-BN, the electron-hole
interaction enhances, again by about 200%, the SHG signal in
the visible range with respect to the IPA.

This finding may provide a spin-off for the quest of
materials with high SHG. In fact—given that the SHG signal
depends largely on the electron-hole interaction that in turn
depends on the electronic screening—the SHG intensity can
be tuned by changing the electronic screening. Then, it may be
possible, as proposed in Ref. [35], to engineer metamaterials
with a high SHG by combining layers of different 2D
crystals [35] so as to change the electronic screening, and
further enhance the electron-hole interaction effects.

As a side finding, our results emphasize that it is critical
for theoretical and computational approaches to accurately in-
clude electron-hole interaction, together with quasiparticle and
local field effects, in order to predict nonlinear optical response
in low-dimensional materials. In this regard, our recently
proposed approach [21,28] is quite promising as it imports into
the very flexible real-time framework—apt to treat nonlinear
optics—the combination of BSE + GW successfully applied
to the linear optical response of low-dimensional materials.
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