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We present a Keldysh nonlinear sigma-model approach to the renormalization group analysis of the disordered
electron liquid. We include both the Coulomb interaction and Fermi-liquid type interactions in the singlet
and triplet channels into the formalism. Based on this model, we reproduce the coupled renormalization group
equations for the diffusion coefficient, the frequency, and interaction constants previously derived with the replica
model in the imaginary time technique. With the help of source fields coupling to the particle-number and spin
densities, we study the density-density and spin density-spin density correlation functions in the diffusive regime.
This allows us to obtain results for the electric conductivity and the spin susceptibility and thereby to rederive
the main results of the one-loop renormalization group analysis of the disordered electron liquid in the Keldysh
formalism.
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I. INTRODUCTION

In disordered conductors, perturbations of charge and spin
relax diffusively at low frequencies and large distances. In
a system obeying time-reversal symmetry, the low-energy
modes in the Cooper channel also have a diffusive form. These
modes, Diffusons and Cooperons, describe the low-energy
dynamics of disordered electrons. The electron-electron (e-e)
interaction causes a scattering of the diffusion modes. As
a result, the diffusion constant, frequency, and interaction
constants acquire corrections, which in two dimensions are
logarithmically divergent at low temperatures [1–6]. The
procedure that handles these mutually coupled corrections
corresponds to a renormalization group (RG) analysis [7–9].
The derivation of the coupled RG equations is conveniently
based on a generalized nonlinear sigma model (NLσM) that
includes the effects of electron-electron interactions [7]. The
structure of the theory remains intact during the course of
renormalization, albeit with effective temperature-dependent
parameters. Among other things, the RG analysis reveals the
importance of spin [3] (as well as valley [10]) fluctuations for
establishing the strange metallic phase at low temperatures,
which does not exist in two dimensions in the absence of e-e
interactions [11–13]. Based on this theory, both quantitative
and qualitative statements about transport and thermodynamic
quantities close to the metal-insulator transition in two-
dimensional electron systems can be obtained for the case
when it is driven by disorder and interactions [6,14–16].

By its essence, the NLσM is a minimal microscopic theory,
which incorporates all symmetry constraints and conservation
laws relevant for the low-energy dynamics of electrons in
disordered conductors. Phenomenologically, such a theory
may be considered as an analog of the Fermi liquid theory
for the diffusion modes. As such, the range of applicability of
the NLσM can be broader than the conditions of its derivation.

The original formulations of the NLσM for noninteract-
ing [17–19] as well as for interacting systems [7] were based
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on the replica method [20], in combination with the imaginary
time technique [21]. In this scheme, the partition function
is replicated n times before the averaging over disorder-
configurations is performed; at the end of the calculation, the
limit n → 0 needs to be taken in order to remove certain
unphysical terms that are present in the theory for finite n. As
the main object of study is the equilibrium partition function,
the theory can serve as a platform for studying thermodynamic
quantities as well as the response to weak perturbations
through the calculation of equilibrium correlation functions.
The replica sigma model is very convenient for perturbative
RG calculations, which are at the heart of the mentioned
successes of this approach.

Despite these successes, the theory in its original for-
mulation has certain limitations. The study of equilibrium
correlation functions may be obscured by the required
analytical continuation from imaginary frequencies to real
ones, which can be very involved. Most notably, however,
true nonequilibrium phenomena are beyond the scope of
this theory as it is constructed with the help of the equi-
librium imaginary time technique. An alternative approach
to interacting many-body systems, which is free of these
limitations, is the so-called Keldysh technique [22–25]. It is
closely related to real-time techniques developed for classical
systems [25–29]. In these approaches, correlation functions
are calculated directly in real time, thereby rendering the
analytical continuation unnecessary. The range of applicability
of the Keldysh approach includes systems in thermodynamic
equilibrium as well as nonequilibrium problems. In this
context, the intimate connection to quantum kinetics is of
particular advantage. An additional property is very convenient
when treating quenched disordered systems: the normalization
of the Keldysh partition function is independent of the disorder
potential. The disorder averaging can therefore be performed
straightforwardly without introducing replicated fields as was
already noted in Refs. [27] and [30].

In this work, we analyze a Keldysh NLσM for e-e
interactions in disordered electron systems. The Keldysh
NLσM was first employed for noninteracting electrons in
Ref. [31]. (A combination of replicas and the Keldysh approach

1098-0121/2014/89(7)/075437(26) 075437-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.075437


G. SCHWIETE AND A. M. FINKEL’STEIN PHYSICAL REVIEW B 89, 075437 (2014)

was already used in Ref. [32].) For disordered fermions
with short-range interactions, a Keldysh sigma model was
constructed in Ref. [33], and the RG equations [7,8] were
rederived for this case. A sigma model for electrons with
long-range Coulomb interaction was introduced in Ref. [34],
and generalized to include the interaction in the Cooper
channel in a subsequent work [35]. Our study differs from
previous related works [33–35] in several aspects. In contrast
to Ref. [34], we account for both the Coulomb interaction
and Fermi liquid-type interactions in the singlet and the triplet
channels in order to find the Keldysh analog of the original
model of Ref. [7]. The obtained model allows us to perform the
full RG analysis in the presence of a perturbation that violates
the time-reversal symmetry, i.e., when the Cooperons can be
neglected. Unlike Ref. [33], we implement the procedure di-
rectly in the Larkin-Ovchinnikov representation (for a review,
see Ref. [25]), which is very convenient for the calculation
of retarded correlation functions. We also introduce source
fields coupled to the particle and spin densities. They allow
us to derive the density-density and spin-density spin-density
correlation functions. This requires an analysis of the static
and dynamic parts of the correlation functions, including
vertex corrections, and enables us, in particular, to obtain the
low-temperature behavior of the electric conductivity and the
spin susceptibility. In this way, we rederive the main results of
the RG theory of the disordered electron liquid with the help
of the Keldysh sigma model. Whenever possible, we try to
highlight those aspects of the analysis that are specific for the
Keldysh approach. We conclude, that despite the differences
related to working with Keldysh matrices instead of replicas,
the RG procedure in both schemes is rather similar.

The relevance of this study goes beyond a mere confirma-
tion of previously obtained results. We consider it as a step
towards tackling problems that are sensitive to the kinetics
of the electronic system at energy scales of the order of the
temperature or below. Such problems are transparently treated
within the Keldysh formalism. The renormalized Keldysh
NLσM allows to analyze the subtemperature regime with
effective parameters encoding the physics originating from
the RG interval, i.e., from energies exceeding temperature. An
important problem of this kind is the calculation of thermal
transport [36].

This paper is organized as follows. In Sec. II B, we describe
the main steps of the derivation of the Keldysh NLσM and cast
it into a form that is convenient for the RG analysis. Due to
the complex structure of the appearing fields and matrices in
spin, Keldysh, time (frequency), and coordinate (momentum)
spaces, the notation can at times be involved. We therefore
include, from the very beginning, a compact summary of
our notations as a reference point in Sec. II A. Section III is
concerned with the general structure of correlation functions
for particle-number densities and spin densities in the diffusive
regime. We perform their calculation in the Keldysh formalism
emphasizing the important role of conservation laws. In
Sec. IV, we present the RG analysis of the model. After
introducing the general formalism, we discuss in detail the
renormalization of the parameters (RG charges) appearing in
the model and derive the set of coupled RG equations. In
Sec. V, we return to the analysis of the correlation functions
and calculate corrections to the static parts as well as vertex

corrections that arise in connection with the source fields for
particle-number and spin densities. This allows us to obtain the
temperature dependence of the spin susceptibility in Sec. V A,
and the electric conductivity in Sec. V C. Finally, we conclude
in Sec. VI.

II. KELDYSH SIGMA MODEL FOR INTERACTING
ELECTRON SYSTEMS

In this section, we present a derivation of the Keldysh
NLσM for the interacting electron liquid. We include the
Coulomb interaction and Fermi-liquid type interactions in the
singlet and triplet channels as well as source fields coupling
to density and spin, see Sec. II B. The resulting sigma model,
which contains the Fermi liquid renormalizations, is presented
in Sec. II C. In Sec. II D, we rewrite the sigma model in a form
that is convenient for the RG procedure that will be presented
later in Sec. IV. For the convenience of the reader, we first
summarize our notations in Sec. II A.

A. Notations

In the approach we use, the original Keldysh contour [24]
disappears from the explicit formulation of the theory, which,
instead, is reformulated in terms of matrices [25]. The 2 × 2
matrices in Keldysh space are decorated with a hat and labeled
by a lower index, e.g., γ̂2 or σ̂3. For the Hubbard-Stratonovich
(H-S) fields generating the electron-electron interactions, the
lower index is also related to the Keldysh space. We write, e.g.,
θk , where k = 1,2 indicates the so-called classical or quantum
fields.

The Pauli matrices written without hats and labeled by
the upper indices are used to describe interactions in the
density/spin-density channels. They can be unified into the
four-component vector �σ = (σ 0,σ 1,σ 2,σ 3)T or the three-
component vector σ = (σ 1,σ 2,σ 3)T . For the H-S fields, e.g.,
for θ l , where l = (0,1 − 3), the upper index indicates whether
the field acts in the density channel (component 0) or spin-
density channels (components 1 − 3). Vector fields combine
all four components, �θ = (θ0,θ1,θ2,θ3)T , or three compo-
nents, θ = (θ1,θ2,θ3)T . Usually, each of the components of
these vectors itself is a two-component vector in the Keldysh
space, e.g., θ l

k . In total, the vectors �θ and θ acquire eight or six
components, respectively. Besides the H-S fields, the auxiliary
potentials (fields) �ϕ = (ϕ,ϕ1,ϕ2,ϕ3)T , ϕ = (ϕ1,ϕ2,ϕ3)T are
introduced to generate the correlation functions describing the
density (singlet) and spin-density (triplet) channels.

We will use the symbols tr and Tr for traces. The symbol
tr includes a trace in Keldysh space, an integration over
frequencies, and a summation over spin degrees of freedom.
The symbol Tr, in addition to all above, includes an integration
over the spatial coordinates of all the functions appearing under
the trace.

Underscoring of matrices and fields denote multiplication
by the matrices û from the left and right, e.g., Q̂ = û ◦ Q̂ ◦ û;
here the convolution is in the time domain. After the Fourier
transform, the convolution converts into an algebraic product,
Q̂

ε,ε′ = ûεQ̂ε,ε′ ûε′ . The definition of the matrix ûε is given in
Eq. (33); these matrices carry the information on the fermionic
equilibrium distribution function Fε = tanh(ε/2T ).
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Finally, in order to lighten the notation, we will in the
following often write

∫
t
= ∫ ∞

−∞ dt and
∫
x

= ∫
r,t . Whenever

the frequency integration is made explicit, we use the symbol∫
ε
= ∫

dε/2π . Furthermore, ε̂ acts trivially on a matrix in the
frequency space as ε̂Q̂εε′ = εQ̂εε′ .

The term irreducible correlation function in this paper
means that only those diagrams should be considered, which
cannot be separated into two disconnected parts by cutting a
single Coulomb interaction line. In order to find the irreducible
correlation function in the singlet channel, the long-range
Coulomb interaction V0(q) has to be separated from the rest of
the interaction amplitudes. The argument q in any amplitude of
the electron-electron interaction indicates that this amplitude
is reducible with respect to the Coulomb interaction.

B. Derivation of the model

Starting point for the derivation is the Keldysh partition
function for the interacting electron liquid in the coherent state
representation

Z =
∫

D[ψ†,ψ] exp(iS[ψ†,ψ]), (1)

where the action S is defined as

S[ψ†,ψ] =
∫
C
dt L[ψ†,ψ], (2)

L[ψ†,ψ] =
∫

r
ψ†

x i∂tψx − K[ψ†,ψ]. (3)

Here, C symbolizes the Keldysh contour [22–25], which
consists of the forward (+) and backward (−) paths; x = (r,t)
and ψx = (ψ↑(x),ψ↓(x))T , ψ

†
x = (ψ∗

↑(x),ψ∗
↓(x)) are vectors

of Grassmann fields comprising the two spin components. K

is the grand canonical Hamiltonian:

K = H − μN, H = H0 + Hint. (4)

The noninteracting part of the Hamiltonian is

H0 =
∫

r
ψ†

xh0ψx, (5)

where h0 = −∇2/2m∗ + udis . Here, udis(r) is the disorder
potential and m∗ is the (renormalized) mass. The interaction
Hamiltonian Hint can be subdivided into singlet and triplet
parts, Hint = Hint,ρ + Hint,σ , where

Hint,ρ = 1

2

∫
r,r′

n(r,t) Vρ(r − r′) n(r′,t), (6)

Hint,σ = 2
∫

r,r′
s(r,t) Vσ (r − r′) s(r′,t). (7)

We introduced the particle-number density and spin densities

n(x) = ψ†
xσ

0ψx, s(x) = 1
2ψ†

xσψx. (8)

The interactions in the singlet and triplet channels are
described in terms of the amplitudes

Vρ(q) = V0(q) + F
ρ

0

2ν
, Vσ = Fσ

0

2ν
. (9)

Here, Fρ

0 and Fσ
0 are the Fermi liquid parameters known from

the phenomenological Fermi liquid theory [21,37] and ν is the
single-particle density of states per spin direction. In Vρ(q), the
bare long-range part of the Coulomb interaction is separated
from the short-range part. The latter determines the Fermi
liquid renormalization of the polarization operator.

Next, we introduce fields on the forward and backward
paths of the Keldysh contour, ψ±, and group them into the
vector

�ψ =
(

ψ+
ψ−

)
. (10)

The corresponding action reads

S[ �ψ†, �ψ] =
∫ ∞

−∞
dt(L[ψ†

+,ψ+] − L[ψ†
−,ψ−]). (11)

The interaction part can be decoupled with the help of a four-
component H-S field for each of the ± paths, ϑl

±, organized
into a matrix

ϑ̂ l =
(

ϑl
+ 0
0 ϑl

−

)
, l = (0,1 − 3). (12)

As a result, the partition function can be written as

Z =
∫

D[�ϑ]D[ �ψ†, �ψ]exp(iS[ �ψ†, �ψ,�ϑ]), (13)

where

S[ �ψ†, �ψ,�ϑ] =
∫

x

�ψ†
x (i∂t − h0 + μ + ϑ̂ lσ l)σ̂3 �ψx

+1

2

∫
r,r′,t

�ϑT (r,t)V −1(r − r′)σ̂3 �ϑ(r′,t). (14)

In the last formula, the sum over the repeated index l from 0
to 3 is implied, while σ̂3 is the third Pauli matrix in the space
of forward and backward fields. As we have already noted in
Sec. II A, �ϑ has eight components: each of the l components
has two components in the Keldysh space. (The same will hold
for �θ and �ϕ introduced below.) We also introduced a matrix V

comprising the interaction potentials for the singlet and triplet
channels:

V = diag(Vρ,Vσ ,Vσ ,Vσ ). (15)

It is convenient to change the basis and perform the Keldysh
rotation [25,38] defined by

�
† = �ψ†L̂−1, �
 = L̂σ̂3 �ψ, (16)

where the rotation matrix L is given by

L̂ = 1√
2

(
1 −1
1 1

)
, L̂−1 = L̂T = σ̂3L̂σ̂3. (17)

Under the rotation L̂, the field ϑ̂ transforms into θ̂ (the upper
index l is not shown):

θ̂ ≡ L̂ϑ̂L̂−1 =
(

θcl θq

θq θcl

)
. (18)

As a result, we come to a description in terms of the classical
(cl) and quantum (q) components of the bosonic fields:

θ i
cl/q = (ϑi

+ ± ϑi
−)/2. (19)
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With the help of two matrices in Keldysh space,

γ̂1 = σ̂0, γ̂2 = σ̂1, (20)

one may write

θ̂ l =
∑
k=1,2

θ l
kγ̂k, (21)

where k = 1 denotes the classical component, while k = 2
denotes the quantum component. As a result, the Keldysh
action in the rotated basis reads

S[ �
†, �
,�θ ] =
∫

x

�
†
x(i∂t − h0 + μ + θ̂ lσ l) �
x

+
∫

r,r′,t

�θT (r,t)γ̂2V
−1(r − r′)�θ(r′,t). (22)

Working with classical and quantum fields is useful for the cal-
culation of physical quantities like correlation functions [25].

The first step in the derivation of the NLσM is the averaging
of the partition function over disorder configurations. For the
sake of simplicity, we will work with a δ-correlated impurity
potential. This choice corresponds to the statistical weight

〈. . . 〉dis = N
∫

D[udis](. . . ) e−πντ
∫

dru2
dis(r). (23)

The normalization factor N is chosen so that 〈1〉dis = 1.
Averaging of the disorder-dependent part of the partition
function gives

〈e−i
∫
x

�
†
xudis(r) �
x 〉dis = eiSdis , (24)

where

Sdis = i

4πντ

∫
r,t,t ′

( �
†
r,t

�
r,t )( �
†
r,t ′

�
r,t ′). (25)

Following further the standard route for the derivation of the
NLσM [39], the four fermion term Sdis is decoupled with a
H-S field Q̂ as

eiSdis =
∫

D[Q̂]e− 1
2τ

∫
r,t,t ′ �
†

r,t Q̂t,t ′ (r) �
r,t ′

× e− πν
4τ

∫
r,t,t ′ tr[Q̂t,t ′ (r)Q̂t ′ ,t (r)]. (26)

The matrix Q̂ is Hermitian (note that the transposition involves
the interchange of the time arguments).

To summarize, the Keldysh partition function has been
presented in the form

Z =
∫

D[Q]D[ �
†, �
]D[�θ] exp(iS[ �
†, �
,�θ,Q̂]), (27)

where

S[ �
†, �
,�θ,Q]∫
x,x ′

�
†
x

[
Ĝ−1

0 (x − x ′) + δr−r′
i

2τ
Q̂t,t ′ (r)

]
�
x ′

+
∫

x

�
†
x θ̂

l(x)σ l �
x + iπν

4τ

∫
r,t,t ′

tr[Q̂t,t ′ (r)Q̂t ′,t (r)]

+
∫

r,r′,t

�θT (r,t)γ̂2V
−1(r − r′)�θ(r′,t). (28)

After the averaging, the matrix Green’s function Ĝ(x,x ′) =
−i〈 �
x

�
†
x ′ 〉 (averaging is with respect to 
, Q, and θ ) acquires

the typical triangular structure

Ĝ =
(

GR GK

0 GA

)
, (29)

where GR , GA, and GK are the retarded, advanced, and
Keldysh components, respectively. Needless to say, the free
Green’s function Ĝ0 has the same structure.

At this point, it is convenient to introduce the auxiliary
potentials ϕl

cl,q(x) into the theory. To this end, we replace

�
†θ̂ lσ l �
 → �
†(θ̂ l − ϕ̂l)σ l �
. (30)

Here, ϕcl(x) can be interpreted as a classical external potential,
while ϕi

cl (i = 1,2,3) describes a magnetic coupling to the spin
degrees of freedom. The corresponding quantum components
do not have an immediate physical interpretation. They merely
play the role of source fields used to generate correlation
functions, see Sec. III.

The main purpose of the manipulations presented in this
section so far was to perform the disorder average and to cast
the Keldysh partition function into a form that is convenient for
further analysis. No approximations have been introduced. The
resulting functional with action (28) is still very complicated.
On the other hand, as is well known, perturbations of charge
and spin relax diffusively at low temperatures. One may
therefore seek to find a low-energy theory of the disordered
system by integrating out the fast electronic degrees of freedom
and focus on diffusion modes only. As described below, this
eventually yields the low-energy field theory that describes
the diffusion modes including effects of their re-scattering,
the so-called NLσM. For noninteracting electrons, the NLσM
was first introduced by Wegner [17].

In a system with time-reversal symmetry, the modes in
the particle-particle channel (i.e., the Cooper channel) also
have a diffusive form. Therefore the two mentioned types
of diffusion modes, known as Diffusons and Cooperons,
should both be included in the effective description. Initially,
the generalization of the sigma-model description to the
interacting electron liquid with the help of the replica approach
concentrated on the charge and spin degrees of freedom [7].
Subsequently, both the electron interaction in the Cooper
channel and the Cooperon modes were also included into the
RG analysis [40]. Compared to the model presented in (28),
this generalization requires a further doubling of the size
of vectors 
 and matrices Q as to include the so-called
time-reversal sector [39]. For the sake of clarity, Cooperons
and the interaction in the Cooper channel will be ignored in
the present work. Physically, this corresponds to the effect of
a weak perpendicular magnetic field.

The next important step in the derivation of the NLσM
is to find a saddle point for the field Q̂. In the presence
of the e-e interaction, this is a highly nontrivial task. One
possible route to deal with this problem is to use the saddle
point of the noninteracting theory (i.e., in the absence of θ )
as a first approximation, and then to analyze deviations with
respect to this reference point. This is the strategy chosen by
Finkel’stein [7] in its original work and we also will follow
this route here. (An alternative course was chosen in Ref. [34].
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There, a part of the effects of the electron interaction was
accounted for by a modification of the equation determining
the saddle point.)

Let us, therefore, write the saddle point equation for the
matrix field Q̂ in the absence of the e-e interaction:

Q̂0;t,t ′ (r) = i

πν

(
Ĝ−1

0 + i

2τ
Q̂0

)−1

r,r,t,t ′
. (31)

In equilibrium, it can be solved by the ansatz Q̂0;t,t ′ (r) = �̂t−t ′ ,
where

�̂ε =
(

1 2Fε

0 −1

)
, (32)

andFε = tanh(ε/2T ) is the fermionic equilibrium distribution
function. It is sometimes important to remember that the saddle
point �̂ inherits the analytical structure of the Keldysh Green’s
function. In particular, the unities in the 11 and 22 components
should be interpreted as retarded and advanced elements, i.e.,
slightly displaced in the time domain in accordance with the
analytical properties of the Green’s function. It is instructive
to present �̂ in the form �̂ = û ◦ σ̂3 ◦ û (here, ◦ symbolizes a
convolution), where

ûε = û−1
ε ≡

(
1 Fε

0 −1

)
. (33)

In order to discuss slow (in space and time) fluctuations around
this saddle point, we parametrize the matrix Q̂ as

Q̂ = Û ◦ σ̂3 ◦ Û , (34)

where Û = Û−1. We will also often use the matrix Q̂ defined
as

Q̂ = û ◦ Q̂ ◦ û. (35)

Recall in this connection that �̂ = σ̂ 3. The so defined Q̂ and
Q̂ fulfill the constraint

Q̂ ◦ Q̂ = Q̂ ◦ Q̂ = 1̂. (36)

The frequency representation of the matrix Q̂ is formed
according to the prescription

Q̂εε′ (r) =
∫

t,t ′
Q̂tt ′(r) eiεt−iε′t ′ . (37)

The matrices Q̂ and Û transform as Q̂ does, following the
same prescription. Naturally, we will consider the Fourier
transformed quantities Q̂εε′ , Ûεε′ , etc., as matrices in frequency
space and write the parametrization presented in Eq. (34)

as Q̂ = Û σ̂3Û , Û Û = 1̂, so that Q̂2 = 1̂. When choosing
this parametrization, we immediately restrict ourselves to the
so-called “massless” manifold. Fluctuations that violate the
constraint (36) are massive and their dynamics is beyond our
interest [17,18,39]. The parametrization of Eq. (35) is very
convenient for the RG procedure. For frequencies exceeding
the temperature, matrices û are almost frequency-independent.
One may therefore integrate out Û until the moment when û

introduces the information about temperature.
After integrating the fermionic fields 
, 
†, one can

perform a gradient expansion in the slow fields Û and Û and

also expand in the fields �θ and sources �ϕ (which are slowly
varying by definition). The relevant steps have been described
many times in the literature and we refer, e.g., to Refs. [39]
and [25], for details. The result is the nonlinear sigma model
in the form

S = πνi

4
Tr[D(∇Q̂)2 + 4i(ε̂ + (θ̂ l − ϕ̂l)σ l)Q̂]

+
∫

r,r′,t

�θT (r,t) γ̂2V
−1(r − r′) �θ (r′,t)

+ 2ν

∫
x

(�θ − �ϕ)T (x) γ̂2 (�θ − �ϕ)(x), (38)

where ε̂ acts trivially on a matrix in the frequency space
as ε̂Q̂εε′ = εQ̂εε′ . Note that for noninteracting electrons (in
contrast to the case of e-e interactions), owing to the trace
operation Tr(ε̂Q̂) = Tr(ε̂Q̂), only the source term prevents
one from removing the distribution function from the action.
The last term in Eq. (38) arises as a result of integrating out
fast electronic degrees of freedom with energies exceeding
1/τ . The interval of energies below 1/τ down to temperature
T is dominated by diffusion modes, and it will be studied later
in Secs. III and IV on the basis of the NLσM.

C. NLσM after Fermi liquid renormalizations

The last term in Eq. (38) allows us to obtain the Fermi
liquid (FL) renormalizations in the NLσM in a systematic
way, including the renormalization of the source fields. A
similar treatment of the Fermi liquid corrections in the Keldysh
formalism can be found, e.g., in Refs. [41] and [42]. Upon
integration in θ , one finds the action of the Keldysh sigma
model for interacting electrons in the form

S = S ′
0 + Sint + S ′

ϕ, (39)

where

S ′
0 = πνi

4

∫
r

tr[D(∇Q̂)2 + 4iε̂Q̂], (40)

Sint = −π2ν

8

∫
rr′t

tr[γ̂iQ̂tt
(r)]γ̂ ij

2 �̃ρ(r − r′)tr[γ̂j Q̂tt
(r′)]

−π2ν

8

∫
rt

tr[γ̂iσ Q̂
tt

(r)]γ̂ ij

2 �σ tr[γ̂jσ Q̂
tt

(r)], (41)

and S ′
ϕ = S ′

ϕQ + S ′
ϕϕ with

S ′
ϕQ = πν

∫
r

tr[ϕ̂l
FL(r)σ lQ̂(r)], (42)

S ′
ϕϕ = 2ν

∫
rt

�ϕT
FL(r,t)γ̂2 �ϕ(r,t). (43)

Notation S ′ indicates that the corresponding terms in the action
are not yet written in the final form suitable for the RG analysis,
and will be treated further in Sec. II D.

As a result of the integration in �θ , the source fields �ϕ =
(ϕ,ϕT )T acquire static vertex corrections describing the FL
renormalizations and screening. Namely, we get for the singlet
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component

ϕFL(q,t) = ϕ(q,t)

1 + F
ρ

0 + 2νV0(q)
, (44)

and for the triplet components

ϕi
FL = ϕi

1 + Fσ
0

, i = 1,2,3. (45)

Furthermore, the interaction amplitudes in the singlet and
triplet channels, symbolized by �̃ρ and �σ , respectively,
acquire the desired form

�̃ρ(q) = 2νV0(q) + F
ρ

0

1 + (2νV0
(
q) + F

ρ

0

) , �σ = Fσ
0

1 + Fσ
0

. (46)

For future purposes it will be convenient to decompose the
interaction in the singlet channel into two parts [3,7]. One
of them is the statically screened Coulomb interaction �0(q),
while the other one is the short-range interaction �ρ , which
acts within the polarization operator along with �σ ,

�̃ρ(q) = 2�0(q) + �ρ, (47)

where

�0(q) = ν(
1 + F

ρ

0

)2

1

V −1
0 (q) + ∂n

∂μ

, �ρ = F
ρ

0

1 + F
ρ

0

. (48)

We also obtained the FL renormalization for ∂n
∂μ

, the quantity
that determines the value of the polarization operator in the
static limit:

∂n

∂μ
= 2ν

1 + F
ρ

0

. (49)

This concludes the derivation of the Keldysh sigma model,
which, in principle, can be used as a starting point for the RG
analysis of the disordered electron liquid. In the next section,
we will nevertheless cast the NLσM in an equivalent form that
will turn out to be more suitable for the renormalization group
analysis.

D. NLσM: preparation for the RG procedure

As a preparation for the RG analysis, we will now present
the model in a slightly modified form. We write the action as

S = S0 + Sint + Sϕ (50)

and comment on the individual terms next.
The second (i.e., the frequency) term in the expression

for S ′
0, Eq. (40), acquires logarithmic corrections at low

temperatures in the presence of the electron interactions. In
other words, not only D, but also the dynamics of the diffusion
modes is modified in the course of the renormalization of
the NLσM. Following Refs. [7,9,43], we will introduce the
parameter z into the model in order to account for these
changes. As a result, S0 takes the form

S0 = πνi

4

∫
r

tr
[
D(∇Q̂)2 + 4izε̂Q̂

]
. (51)

For technical reasons, it is convenient to rewrite the interac-
tion term, Eq. (41), in a different form. Instead of organizing the
short-range part of the interaction amplitudes into the singlet

and triplet channel amplitudes, �ρ and �σ , we will pass to a
representation that separates small-angle and large-angle scat-
tering, described by �1 and �2, respectively. The RG analysis
takes a simpler form in this representation [3,7]. To this end,
we rewrite the interaction terms with the help of the identity

�σ �σ αβ �σ γ δ = 2�σ δαδδβγ − �σδαβδγ δ, (52)

where α, β, γ , and δ are spin indices. The interaction
amplitudes �1 and �2 are defined as

�1 = 1
2 (�ρ − �σ ), �2 = −�σ . (53)

The amplitude �2 describes large angle scattering, while �1

describes small angle scattering. It is therefore convenient to
define a new amplitude �(q), which comprises both �1 and
the screened Coulomb interaction �0(q):

�(q) = �0(q) + �1. (54)

In terms of the new amplitudes, one finds the relation
�̃ρ(q) = 2�(q) − �2, cf. Eq. (47). Note that in the limit of
small q, the effective amplitude in the ρ channel can be
expressed in terms of �1 and �2 as follows:

�̃ρ(q → 0) = 1

1 + F
ρ

0

+ 2�1 − �2. (55)

Returning to the action, the interaction term can be
(identically) rewritten as

Sint = −π2ν

4

∫
rr′t

tr[γ̂iQ̂αα;t t (r)]γ ij

2 �(r − r′)tr[γ̂j Q̂ββ;t t (r′)]

+ π2ν

4

∫
rt

tr[γ̂iQ̂αβ;t t (r)]γ ij

2 �2tr[γ̂j Q̂βα;t t (r)]. (56)

In order to obtain a more tractable form for the interaction
part of the action, let us introduce a set of H-S fields: real
φ0(x), φ1(x), and Hermitian φ2,αβ (x), each with classical
and quantum components, which we characterize by their
correlations:〈

φi
0(x)φj

0 (x ′)
〉 = i

2ν
�0(r − r′)δ(t − t ′)γ ij

2 , (57)

〈
φi

1(x)φj

1 (x ′)
〉 = i

2ν
�1δ(x − x ′)γ ij

2 , (58)

〈
φi

2,αβ(x)φj

2,γ δ(x ′)
〉 = − i

2ν
�2δαδδβγ δ(x − x ′)γ ij

2 . (59)

This definition allows us to cast Sint in a compact form:

Sint = i(πν)2

2

2∑
n=0

∫
rr′

〈tr[φ̂n(r)Q̂(r)]tr[φ̂n(r′)Q̂(r′)]〉. (60)

Here, the frequency representation of the fields φn has
been introduced in the matrix form, φ̂n;εε′ , according to the
convention:

φ̂n;εε′ (r) =
∫

t

φ̂n(r,t) ei(ε−ε′)t . (61)

We will sometimes use the notation φ̂ = û ◦ φ̂ ◦ û in analogy

to Eq. (35), so that tr[φ̂n(r)Q̂(r)] = tr[φ̂n(r)Q̂(r)].
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We had to split the interaction in the singlet channel into φ0

and φ1, because for the calculation of the irreducible density-
density correlation function (i.e., the polarization operator)
one needs to consider the Coulomb and the short-range parts of
the interaction separately. (Recall that the term irreducible in
this context means that only those contributions should be con-
sidered, which cannot be separated into two disconnected parts
by cutting a single Coulomb interaction line.) We encounter
this problem considering the source terms associated with the
singlet channel, see Eq. (44). Source fields were introduced be-
cause they allow generating correlation functions by functional
differentiation of the Keldysh partition function, for details see
Sec. III below. The potential related to the singlet channel, ϕ,
can be used to obtain the density-density correlation function
which, in turn, is related to electric conductivity through the
Einstein relation, see Sec. V C. It is important to note, however,
that only the knowledge of the irreducible density-density
correlation function is required for that purpose (for a detailed
discussion of this point we refer to Ref. [44]). For this
reason, we will not work with the source term S ′

ϕ , but with a
slightly modified one, Sϕ , for which the dependence on V0(q)
is removed. Note that the triplet part is unaffected by this
change.

Finally, we write Sϕ = SϕQ + Sϕϕ , where

SϕQ = πν

∫
r

tr
[(

γ
ρ
�ϕ̂(r) + γ σ

�ϕ̂(r)σ
)
Q̂(r)

]
, (62)

Sϕϕ = 2ν

∫
rt

�ϕT (r,t)γ̂2diag(γ ρ
• ,γ σ

• ,γ σ
• ,γ σ

• ) �ϕ(r,t). (63)

Here, the constants γ
ρ/σ
� and γ ρ/σ

• have been introduced. γ ρ/σ
�

characterize the (triangular) vertices and γ ρ/σ
• the static part of

the correlation function. By comparison with Eqs. (42)–(45)
and keeping in mind the previous remarks, one finds that the
initial values for the renormalization procedure read

γ
ρ
� = γ ρ

• = 1

1 + F
ρ

0

, γ σ
� = γ σ

• = 1

1 + Fσ
0

. (64)

As one can see, γ ρ/σ
� = γ ρ/σ

• initially coincide. It is a priori not
obvious, however, whether this important relation remains true
under renormalization, and this is why the different constants
have been introduced.

To summarize, the nonlinear sigma model contains several
parameters (“charges”) that may, in principle, acquire logarith-
mic corrections at low temperatures, D, z, �1, and �2, γ

ρ/σ
�

and γ ρ/σ
• . Let us state the initial values, which follow directly

from the derivation presented in Sec. II B, namely,

D = v2
F τ/2, z = 1; (65)

�1 = 1

2

(
F

ρ

0

1 + F
ρ

0

− Fσ
0

1 + Fσ
0

)
, �2 = − Fσ

0

1 + Fσ
0

, (66)

and the values for γ ρ/σ
• , γ

ρ/σ
� are written in Eq. (64).

III. CORRELATION FUNCTIONS

In this section, we first recall how retarded correlation
functions can be generated from the Keldysh partition function

by taking derivatives with respect to the so-called quantum and
classical components of suitably chosen source fields. Next,
we discuss the general structure of the correlation functions
for particle-number densities and spin densities in the diffusive
regime. The conservation laws for the total number of particles
and for spin impose important constraints on the structure of
these correlation functions.

A. Generalities

We are interested in the retarded correlation functions,
which are defined as a commutator of operators:

χR
oo(x1 − x2) = −iθ (t1 − t2) 〈[ô(x1),ô(x2)]〉T . (67)

In order to be in line with common notation, we use hats to
denote operators in this section up to Eq. (71). Afterwards, the
hat symbol will again be reserved for Keldysh matrices only.
In Eq. (67), ô can be either the operator of the density n̂ or of
a component of the spin density operator ŝ,

n̂(x) =
∑
αβ

ψ̂†
α(x)σ 0

αβψ̂β(x), (68)

ŝ(x) = 1

2

∑
αβ

ψ̂†
α(x)σ αβψ̂β(x). (69)

In Eq. (67), θ (t − t ′) is the Heaviside function and thermal
averaging is with respect to the grand canonical ensemble,

〈. . . 〉T = tr [ρ̂ . . . ] , ρ̂ = e−K̂/T

tr(e−K̂/T )
, (70)

where K̂ = Ĥ − μN̂ , Ĥ is the Hamiltonian, and N̂ the number
operator. The field operators ψ̂ and ψ̂† are written in the
Heisenberg representation with respect to K̂ .

Using the time ordered product T [ô(t1)ô(t2)] = θ (t1 − t2)
ô(t1)ô(t2) + θ (t2 − t1)ô(t2)ô(t1) and antitime ordered product
T̃ [ô(t2)ô(t1)] = θ (t1 − t2)ô(t2)ô(t1) + θ (t2 − t1)ô(t1)ô(t2), one
may present the correlation function as

χR
oo(x1 − x2) = − i

2
〈T [ô(x1)ô(x2)] − T̃ [ô(x2)ô(x1)]

+ ô(x1)ô(x2) − ô(x2)ô(x1)〉T . (71)

In the Keldysh formalism, this expression can conveniently be
represented with the help of the functional integral, namely,

χR
oo(x1 − x2) = − i

2
〈o+(x1)o+(x2) − o−(x1)o−(x2)

+ o−(x1)o+(x2) − o−(x2)o+(x1)〉
= − i

2
〈(o+ + o−)(x1)(o+ − o−)(x2)〉 , (72)

where o± are now the corresponding (bosonic) fields on for-
ward and backward paths of the Keldysh contour and averaging
is with respect to the action S [compare Eq. (11)]. Introducing
the classical and quantum components of the densities o as
ocl/q = 1

2 (o+ ± o−), one may write the correlation function in
the form

χR
oo(x1 − x2) = −2i〈ocl(x1)oq(x2)〉. (73)
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The source term that has been introduced into the action in
Eq. (30) can be rewritten as follows:

Ssource = − �
†ϕ̂iσ i �

= −2(ϕ2ncl + ϕ1nq + 2ϕ2scl + 2ϕ1sq). (74)

Therefore the correlation functions for the density n and the
spin components si can conveniently be written as

χR
nn(x1 − x2) = i

2

δ2Z
δϕ2(x1)δϕ1(x2)

∣∣∣∣
ϕ1=ϕ2=0

, (75)

χR
sisj (x1 − x2) = i

8

δ2Z
δϕi

2(x1)δϕj

1(x2)

∣∣∣∣
ϕ1=ϕ2=0

. (76)

This is rather intuitive, as

〈ncl(x)〉 = i

2

δZ

δϕ2(x)
,

〈
si

cl(x)
〉 = i

4

δZ

δϕi
2(x)

(77)

are the average particle-number and spin densities in the
presence of the external (classical) potentials and, hence, the
correlation functions describe the corresponding responses.

A very important observation can be made directly from
the definition of the correlation function, Eq. (67). To this
end, let us first define the Fourier transform of the retarded
correlation functions as χR

oo(x1 − x2) = ∫
q χR

oo(q,t1 − t2)
exp[iq(r1 − r2)]. Since for any given time the operators of
the total density and spin

∫
r n̂(x) and

∫
r ŝ(x) commute with

K̂ , as the total number of particles and the total spin are
conserved, the correlation function χ (q,t1 − t2) vanishes in
the limit q → 0. (This fact imposes an important constraint
on the RG flow of the various charges in the model.) When
further introducing the Fourier transform with respect to time,
χR

oo(q,t1 − t2) = ∫
ω

χR
oo(q,ω) exp(−iω(t1 − t2)), it should be

appreciated that the limits q → 0 and ω → 0 do not commute
with each other. In particular, if the limit ω → 0 is taken first,
the correlation functions do not vanish, but their values are
related to the corresponding thermodynamic susceptibilities.

B. Correlation functions from the sigma model

We will now discuss the density-density and spin-spin
correlation functions in the framework of the NLσM. The
discussion will be restricted to the so-called ladder approxi-
mation, i.e., to an approximation, for which no internal mo-
mentum and frequency integrations over diffusion modes are
carried out. In fact, those integrations give rise to logarithmic
corrections (arising from the interval T < ε < 1/τ ), which is
the essence of the RG scheme. The logarithmic corrections
may be absorbed into the various charges of the model, while
the form of the model is unchanged. The results for the
correlation functions obtained in the ladder approximation
are therefore applicable at different scales (or temperatures)
once the appearing charges are replaced by their renormalized
values. As already mentioned before, the conservation laws
for the number of particles and the total spin impose certain
constraints on the relation between different RG charges,
which must be obeyed at each step of the renormalization
procedure. This observation serves [5,6,40] as an important
check for the correctness of the obtained RG equations.

In short, we now find the correlation functions for density
and spin in the Gaussian approximation with respect to
fluctuations, i.e., with respect to diffusion modes. We thereby
assume that all non-Gaussian integrations that lead to RG
corrections have been already performed. As a preparation, let
us start with the parametrization of the matrix Û . A convenient
choice of the parametrization is

Û = e−P̂ /2, Û = eP̂ /2, (78)

with the additional constraint {P̂ ,σ̂3} = 0 in order to avoid
overcounting of the relevant degrees of freedom. The chosen
parametrization is not the only possible one. In fact, it
gives rise to a nontrivial Jacobian, which, however, does not
become relevant for the one-loop calculation discussed in this
manuscript. Other parametrizations exist; for an instructive
discussion within the context of the Keldysh NLσM, we refer
to Ref. [45]. Returning to the exponential parametrization,
Eq. (78), note that Q̂ = σ̂3exp(P̂ ). Further, the matrices P̂ can
be written as

P̂εε′ (r) =
(

0 dcl;εε′ (r)

dq;εε′ (r) 0

)
, (79)

where dcl/q are Hermitian matrices both in the frequency
domain and in spin space, [dαβ

cl/q;εε′ ]∗ = d
βα

cl/q;ε′ε. Expanding
S0 + Sint [see Eqs. (51) and (60)] up to second order in the
generators P̂ , one obtains

S = − iπν

4

∫
tr[D(∇P̂ )2 − 2izε̂σ̂3P̂

2],

+ i

2
(πν)2

2∑
n=0

∫
rr′

〈tr[φ̂
n
(r)σ̂3P̂ (r)]tr[φ̂

n
(r′)σ̂3P̂ (r′)]〉.

(80)

Recall that for the frequency representation of the fields φn,
the matrix form φ̂n;εε′ has been introduced.

By inverting the corresponding quadratic form, i.e., in
the Gaussian approximation, this action gives rise to certain
correlations for the components of P̂ . The result is most easily
obtained after separation into singlet and triplet channels.
Defining

dl
cl/q;εε′ = 1

2

∑
αβ

σ l
βαd

αβ

cl/q;εε′ , l = 0,1–3, (81)

one obtains for the correlation functions describing diffusion
of the particle-hole pairs in the singlet (indicated by 0) and
triplet (indicated by i,j ∈ {1,2,3}) channels, respectively:

〈
d0

cl;ε1ε2
(q)d0

q;ε3ε4
(−q)

〉 = − 1

πν
D(q,ω)

× (
δε1,ε4δε2,ε3 − δω,ε4−ε3 iπ�ε1ε2 �̃ρ(q)D̃1(q,ω)

)
(82)

and 〈
di

cl;ε1ε2
(q)dj

q;ε3ε4
(−q)

〉 = − 1

πν
δijD(q,ω)

× (
δε1,ε4δε2,ε3 − δω,ε4−ε3 iπ�ε1ε2�σD2(q,ω)

)
, (83)

where ω = ε1 − ε2, �ε,ε′ = Fε − Fε′ and δε,ε′ = 2πδ(ε − ε′).
Obviously, on the level of the Gaussian fluctuations, the singlet
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and triplet channels do not interfere with each other. Note that
three types of diffusons have been introduced [3,7] in the above
correlation functions:

D(q,ω) = 1

Dq2 − izω
, (84)

D̃1(q,ω) = 1

Dq2 − iz̃1ω
, (85)

D2(q,ω) = 1

Dq2 − iz2ω
, (86)

where z̃1(q) = z − 2�(q) + �2 = z − �̃ρ(q), and z2 = z +
�2 = z − �σ . We will see soon that actually z̃1(q) ≈ 0 and,
therefore, D̃1 does not depend on ω [7,9].

Transforming back to the original representation in terms
of spin projections, one finds〈

d
αβ

cl;ε1ε2
(q)dγ δ

q;ε3ε4
(−q)

〉
= − 2

πν
[δαδδβγ δε1,ε4δε2,ε3D(q,ω)

+ δαδδβγ δω,ε4−ε3 iπ�ε1,ε2D(q,ω)�2D2(q,ω)

− δαβδγ δδω,ε4−ε3 iπ�ε1,ε2D2(q,ω)�(q)D̃1(q,ω)]. (87)

In order to demonstrate the general structure of the correlation
functions for conserved quantities, we will be interested in the
irreducible correlation function in the singlet channel, ˆ̄χnn ≡
χ̂nn|irr. For that, the ladder which is irreducible with respect
to the Coulomb interaction is required. It can be found simply
by excluding �0(q), so that the expression for the irreducible
average 〈d0

cl;ε1ε2
(q)d0

q;ε3ε4
(−q)〉irr coincides with the one stated

in Eq. (82) up to the replacement �̃(q) → �ρ and D̃1 → D1,
where

D1(q,ω) = 1

Dq2 − iz1ω
(88)

with

z1 = z − 2�1 + �2 = z − �ρ. (89)

With this preparation, the correlation functions in the ladder
approximation can be calculated. In view of Eqs. (75) and (76),
we may integrate out the P̂ modes and keep resulting terms
only up to quadratic order in ϕ. Therefore we calculate the
dressed term

Sϕϕ;d = Sϕϕ + i

2

〈〈
S2

ϕQ

〉〉
irr, (90)

where for the second term both appearing matrices Q̂ are
replaced by σ̂3P̂ , and the averaging is with respect to the
action (80) for which the contraction rules obtained above can
be used. In Eq. (90), 〈〈. . . 〉〉 denotes the connected average.
One may anticipate that Sϕϕ;d has the following form:

Sϕϕ;d = −
∫

xx ′
�ϕT (x)X̂(x − x ′) �ϕ(x ′), (91)

where X̂ = diag( ˆ̄χnn,4χ̂sx sx ,4χ̂sy sy ,4χ̂szsz ) and the 2 × 2
blocks χ̂oo have a structure that is typical for correlation

γσ γσ

+

γσ Γσ γσ

+

γσ Γσ Γσ γσ

+ . . .

γρ γρ

+

γρ Γρ γρ

+

γρ Γρ Γρ γρ

+ . . .

FIG. 1. Dynamical correlation functions χ̄
dyn,R
nn (top) and χ

dyn,R
sk sk

(bottom).

functions in the Keldysh formalism. Indeed,

χ̂oo =
(

0 χA
oo

χR
oo χK

oo

)
, (92)

where χA
oo(ω) = χR

oo(−ω) and

χK
oo(ω) = Bω

(
χR

oo(ω) − χA
oo(ω)

)
. (93)

Furthermore, the two terms in Eq. (90) for Sϕϕ;d give rise to
the static (st) and dynamical (dyn) parts of the correlation
functions, respectively. As can directly be read off from
Eq (63), the contribution from Sϕϕ is

χ̄ st,R
nn = −2νγ ρ

• , χ
st,R
si si = −2νγ σ

• , (94)

while for the dynamical part, one finds

i

2

〈〈
S2

ϕQ

〉〉
irr

= i(πν)2

2

〈〈[∫
r

tr
[(

γ
ρ
�ϕ̂(r) + γ σ

�ϕ̂(r)σ
)
σ̂3P̂ (r)

]]2
〉〉

irr

= −
∫

xx ′
�ϕT (x)X̂dyn(x − x ′) �ϕ(x ′), (95)

where X̂dyn = diag(χ̂dyn
nn ,4χ̂

dyn
sx sx ,4χ̂

dyn
sy sy ,4χ̂

dyn
szsz ). The compo-

nents of χ̂dyn have again the structure indicated in Eq. (92)
and

χ̄dyn,R
nn (q,ω) = −2ν

(
γ �

ρ

)2
iωD1(q,ω), (96)

χ
dyn,R
si si (q,ω) = −2ν

(
γ �

σ

)2
iωD2(q,ω). (97)

For a diagrammatic illustration see Fig. 1.
In order to obtain this result, the following relation has been

used:

1 − Fε+ ω
2
Fε− ω

2
= Bω

(
Fε+ ω

2
− Fε− ω

2

)
, (98)

where

Bω = coth

(
ω

2T

)
(99)

is the bosonic equilibrium correlation function. A second
important identity is

π

∫
ε

(
Fε+ ω

2
− Fε− ω

2

) = ω. (100)

The total correlation function is then found by adding the static
and the dynamical parts,

χR
oo(q,ω) = χ st,R

oo + χdyn,R
oo (q,ω), (101)
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with the result

χ̄R
nn(q,ω) = −2νγ ρ

•
Dq2 − iω

(
z1 − (γ ρ

�)2

γ
ρ•

)
Dq2 − iz1ω

, (102)

χR
sisi (q,ω) = −2νγ σ

•
Dq2 − iω

(
z2 − (γ σ�)2

γ σ•

)
Dq2 − iz2ω

. (103)

As discussed in Sec. III A, conservation of charge and spin
demands that

χR
oo(q = 0,ω → 0) = 0. (104)

In order to fulfill these conditions, the following relations must
hold in view of Eqs. (102) and (103):

z1 =
(
γ

ρ
�

)2

γ
ρ•

, z2 =
(
γ σ

�
)2

γ σ•
, (105)

where the first relation is related to charge conservation [3,7]
and the second one to the conservation of spin [6,40]. One
may readily check that for the bare values of z1, γ ρ/σ

• , and
γ

ρ/σ
� , these relations are fulfilled. Below, we will discuss the

renormalization of the NLσM for interacting electrons. In the
RG scheme, the parameters z, �1, �2 (which determine z1 and
z2) as well as γ σ

• and γ σ
� acquire logarithmic corrections and

thereby become scale-dependent. It will be an important check
of the theory that the two conditions displayed in Eq. (105)
still hold after renormalization. Indeed, we will find that

γ
ρ
� = γ ρ

• = 1

1 + F
ρ

0

(106)

are not renormalized, and that the relation z1 = 1/(1 + F
ρ

0 )
holds under the RG flow. Therefore, the first relation in
Eq. (105) is fulfilled. As a byproduct, it follows from these
relations that 2�0(q) = 1/(1 + F

ρ

0 ) for small enough q when
V −1

0 (q)∂μ/∂n � 1. Therefore z̃1(q) = 0 in this limit and,
hence, D̃1(q,ω) = 1/Dq2.

Further, we will find that

γ σ
� = γ σ

• = z2, (107)

and the relation for the conservation of spin also holds, so that

χ̄R
nn(q,ω) = − ∂n

∂μ

Dq2

Dq2 − i ω

1+F
ρ

0

, (108)

χR
sisj (q,ω) = −2νz2

Dq2

Dq2 − iz2ω
δij . (109)

The correlation functions χ̄R
nn(q,ω) and χR

ss(q,ω) have a univer-
sal form, which is typical for diffusive correlation functions of
the densities of a conserved quantity. In a separate publication,
we show that the same structure, compare Eqs. (108) and (109),
also holds for the heat density—heat density correlation
function reflecting energy conservation [36].

Finally, a comment is in order. The vanishing of the
correlation function χnn(q,ω) in the limit q → 0 does not
request it to be irreducible. However, the obtained universal
form for the diffusive correlation functions will be lost for
the reducible correlation function because of plasmons. Recall
that the irreducible correlation function χ̄nn is, in fact, the
polarization operator. Furthermore, we need to know only

the irreducible function χ̄nn(q,ω) in order to extract the
conductivity using the Einstein relation [6,7].

IV. RENORMALIZATION

The renormalization group approach for the problem at
hand follows a general philosophy that is common to many
problems in condensed matter physics. For the RG procedure,
the fields in the action are separated into fast and slow
modes. Subsequently, the fast modes are integrated out with
logarithmic accuracy, leading to an effective action for the
slow modes with scale-dependent parameters, i.e., RG charges.
A remark about the RG procedure in the Keldysh technique
is in order: for any theory in which a quenched disorder
average is performed, diagrams that can be cut into separate
parts by cutting only impurity lines should not appear. In the
original model of Ref. [7], the so-called replica trick was
used in order to make sure that such contributions vanish.
When using the Keldysh approach, the vanishing is effected
in a somewhat different way. Generally speaking, the most
important observation about the vanishing of unphysical terms
in the Keldysh technique is that the frequency integral over a
product of several retarded or advanced functions (but not a
mixture of them) vanishes. This argument will frequently be
used later on. The argument, however, does not carry over
to the case when a single retarded or advanced function is
connected to the rest by impurity lines only. This special
case is discussed in connection with Fig. 7 in Sec. IV C. (An
alternative to the replica and Keldysh approaches exists, the
so-called supersymmetry technique [39]. It is a very powerful
tool for noninteracting systems. Its application to interacting
systems, however, is a formidable challenge, and progress
in this direction is so far limited [46].) In order to lighten
notations, starting from Sec. IV C, we will leave out the hats
symbolizing matrices in Keldysh space.

A. Generalities

For the NLσM, the separation into fast and slow modes
should be done in such a way that the nonlinear constraint
Q̂2 = 1 is preserved [47]:

Q̂ = ÛQ̂0Û , Q̂0 = Û0σ̂3Û 0, Û0Û 0 = Û Û = 1̂. (110)

Here, Q̂0 contains the fast variables, Û and Û represent the
slow degrees of freedom. It is also convenient to introduce the
slow field Q̂s as

Q̂s = Û σ̂3Û . (111)

When inserting Q̂ in the form specified in Eq. (110) into the
action S0, one obtains

S0 = πνi

4
Tr[D(∇Q̂0)2 + D[Q̂0,�̂]2

+ 2D�̂[Q̂0,∇Q̂0] + 4izε̂ÛQ̂0Û ], (112)

where �̂ = Û∇Û = −∇Û Û . Using this notation, the interac-
tion reads

Sint = i(πν)2

2

2∑
n=0

〈Tr[φ̂nÛQ̂0Û ]Tr[φ̂nÛQ̂0Û ]〉. (113)
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For the RG procedure, a particular parametrization for the
fast degrees of freedom needs to be chosen. In accord
with the previous section, we will work with the expo-
nential parametrization Û0 = exp(−P̂ /2), Q̂0 = σ̂3 exp(P̂ ),
{σ̂3,P̂ } = 0. It turns out to be sufficient to expand up to second
order in P̂ . We left out terms linear in P̂ . Such terms describe
the decay (or fusion) of a fast mode into slow modes. These
processes do not not play any role in the RG analysis. Then
the result of the expansion reads

S0 = πνi

4
Tr[D(∇Q̂s)

2 + 4izε̂Q̂s]

+ πνi

2
Tr[D(σ̂3P�̂)2 + DP̂ 2(�̂σ̂3)2

+D�̂[∇P̂ ,P̂ ] + izε̂Û σ̂3P̂
2Û ]

− πνi

4
Tr[D(∇P̂ )2], (114)

Sint = i

2
(πν)2

2∑
n=0

〈Tr[φ̂nQ̂s]Tr[φ̂nQ̂s]〉

+ i

2
(πν)2

2∑
n=0

〈Tr[φ̂nQ̂s]tr[φ̂nÛ σ̂3P̂
2Û ]〉

+ i

2
(πν)2

2∑
n=0

〈Tr[φ̂nÛ σ̂3P̂ Û ][φ̂nÛ σ̂3P̂ Û ]〉. (115)

So far, the separation into fast and slow degrees was purely
formal. Let us now qualify this distinction: (1) frequencies in
the interval λτ−1 < |ε| < τ−1, 0 < λ < 1 and momenta in the
shell λτ−1 < Dk2/z < τ−1 are referred to as fast. (2) If at least
one of the frequencies ε or ε′ for the slow field Ûεε′ is fast, it
has to be set equal to the unit matrix. (3) In the fast variables
P̂εε′ , at least one of the frequencies ε, ε′ or the momentum
should be fast.

For the frequency term in the action, one should explicitly
distinguish fast and slow frequencies, i.e., ε̂f and ε̂s . Then

Tr[zε̂Û σ̂3P̂
2Û ] = Tr[zε̂sÛ σ̂3P̂

2Û ] + Tr[zε̂f σ̂3P̂
2]. (116)

We will now present a list of all the terms that are relevant for
the one-loop RG analysis. The following terms contain only
slow modes:

SD = iπνD

4
Tr[(∇Q̂s)

2], (117)

Sz = −πνzTr[ε̂sQ̂s], (118)

S� = i

2
(πν)2〈Tr[φ̂nQ̂s]Tr[φ̂nQ̂s]〉, (119)

Sγ� = πνTr
[(

γ
ρ
�ϕ̂ + γ σ

�ϕ̂σ
)
Q̂s

]
, (120)

Sγ• = 2ν

∫
x

�ϕT (x)γ̂2diag(γ ρ
• ,γ σ

• ,γ σ
• ,γ σ

• ) �ϕ(x). (121)

Terms Sγ� and Sγ• arise from the source term Sϕ . In fact, Sγ•
is identical to Sϕϕ ; the present notation is used to emphasize
the dependence on the parameters γ ρ/σ

• .

Next, we come to the terms containing fast modes. The
terms originating from S0 read

Sf,0 = − iπν

4
Tr[D(∇P̂ )2 − 2izε̂f σ̂3P̂

2], (122)

S1 = −πνi

2
Tr[D�̂[P̂ ,∇P̂ ]], (123)

S2 = πνi

2
Tr[DP̂ 2(�̂σ̂3)2 + D(σ̂3P̂ �̂)2], (124)

Sε = −πν

2
Tr[zε̂sÛ σ̂3P̂

2Û ]. (125)

Here, S2 has two parts, which we label as S2a and S2b in the
order of appearance.

The interaction part of the action Sint gives rise to the
following terms:

Sint,1 = i

2
(πν)2

2∑
n=0

〈Tr[φ̂nÛ σ̂3P̂ Û ]Tr[φ̂nÛ σ̂3P̂ Û ]〉,

Sint,2 = i

2
(πν)2

2∑
n=0

〈Tr[φ̂nQs]Tr[φ̂nÛ σ̂3P̂
2Û ]〉. (126)

Note that the labeling of these two terms refers to their different
structure with respect to P̂ , and is not related to the fields φ1

and φ2.
Finally, the source term SϕQ, see (62), generates a term

Sϕ,2 = πν

2
Tr

[(
γ

ρ
�ϕ̂ + γ σ

�ϕ̂σ
)
Ûσ3P̂

2Û
]
, (127)

where the labeling is chosen in analogy to Sint,2. The terms
containing fast modes are conveniently represented in a
diagrammatic language as depicted in Figs. 2–4.

We want to integrate out fast modes P̂ in the Gaussian
approximation, and in this way generate a new effective
action. Besides the slow part of the action, compare Eqs. (117)
to (121), corrections arise from the term

�S = −i ln

(∫
D[P̂ ] eiS1+iS2+iSε+iSint+iSϕ,2 eiSf,0

)
. (128)

Sf,0

S1

S2,a

S2,b

Sε

FIG. 2. The elements of the RG procedure originating from the
noninteracting part of the action. Open ends imply P . Closed sleeves
correspond to U or U . When separated by an angle, a gradient acts
on one of them. A slow frequency εs stands in the vertex marked by
a dot.
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Sint,1

Sint,1;d

Sint,2

Sint,2;d

FIG. 3. The elements of the RG procedure originating from
the interaction part of the action. A shaded square implies one
of the interaction amplitudes. A ladder means that the interaction
was dressed by ladder diagrams. Such terms are indicated by the
subscript “d.”

In general, if there are N different parts in the action in which
slow and fast modes couple to each other, one finds

�S = −i ln

[∫
D[P̂ ] (ei

∑N
i=1 Si )eiSf,0

]

=
N∑

i=1

〈Si〉 + i

2

N∑
ij=1

〈〈SiSj 〉〉 − 1

6

N∑
ijk=1

〈〈SiSjSk〉〉 + · · · .

(129)

Here, the connected average means that contractions between
different terms must be taken as

〈〈AB〉〉 = 〈AB〉 − 〈A〉 〈B〉 , (130)

and so on.
When integrating out fast modes, two cases should be

distinguished. If at least one of the frequencies of the P̂ -matrix
is slow, then the contractions should be performed using Sf,0

alone. One can formulate two contraction rules for this case.
Rule (i) applies when the two contracted P̂ s stand under
different traces:

〈tr[ÂP̂ε1ε2 (r1)]tr[B̂P̂ε3ε4 (r2)]〉

= − 2

πν
tr[Â⊥�̂ε1ε2 (r1 − r2)B̂⊥]δε1,ε4δε2,ε3 , (131)

Sϕ,2

FIG. 4. Source term.

where we denote Â⊥ = 1
2 (Â − σ̂3Âσ̂3), and

�̂ε+ ω
2 ε− ω

2
(q) =

(D(q,ω) 0

0 D(q,ω)

)
(132)

contains a retarded diffuson D and an advanced one, D(ω) =
D(−ω). A second contraction rule (ii) applies when two
contracted P̂ s appear within one trace. It reads as follows:

〈tr[APε1ε2 (r1)BPε3ε4 (r2)]〉

= − 1

πν
(tr[A�̂ε1ε2 (r1 − r2)]tr[B]

− tr[Aσ̂3�̂ε1ε2 (r1 − r2)]tr[Bσ̂3])δε1ε4δε2,ε3 . (133)

In the second case, when both frequencies of the P̂ matrix
are fast, the free Gaussian action of the fast modes besides
Sf,0 also contains a part originating from Sint,1. In the case in
question, it takes the form Sint,1 → Sf,int, where

Sf,int = i

2
(πν)2

2∑
n=0

〈Tr[φ̂nσ̂3P̂ ]Tr[φ̂nσ̂3P̂ ]〉. (134)

Correspondingly, one should take the contraction with the full
quadratic form

Sf = Sf,0 + Sf,int. (135)

The relevant contraction rule for the components of P̂ has
already been stated in Eqs. (82), (83), and (87). As is
clear from the discussion presented in connection with these
formulas in Sec. III B, the extension of the quadratic form
corresponds to “dressed” diffusons, which include not only
impurity scattering but also a rescattering in the singlet and
triplet channels as described by the amplitudes �ρ and �σ .
An example when this extension becomes important is the
dressing of the interaction which will be discussed next.

B. Dressed interaction

Suppose that a certain average contains the interaction part
of the action, Sint. Besides Sint, one may as well insert in its
place the second cumulant i

2 〈〈S2
int〉〉, where for each of the

interaction terms one Q̂εε′ will be replaced by the fast σ̂3P̂εε′

with both frequencies fast, so that adjacent Û , Û should be
substituted by 1. The contraction of such fast P̂ s has to be
taken with respect to Sf . This case may occur because the
interaction fixes only the difference of frequencies ε − ε′ rather
than the two frequencies individually. It means that Sint should
be replaced by its dressed (extended) counterpart:

Sint;d = Sint + i

2

〈〈
S2

int

〉〉
, (136)

where specifically

i

2

〈〈
S2

int

〉〉 = − i

2
(πν)2〈〈〈Tr[φnQ̂]Tr[φnσ̂3P̂ ]〉2

φ

〉〉
Sf

(137)

and we indicated by the labels φ and Sf which kind of average
should be used. For the calculation of this object a separation
into singlet and triplet channel is useful, in close analogy to the
calculation of the correlation functions demonstrated before,
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see Fig. 1. The calculation gives

Sint;d = −π2ν

8

∫
rr′,εi

tr
[
γ̂iσ

0Q̂ε1ε2 (r)
]
tr
[
γ̂j σ

0Q̂ε3ε4 (r′)
]

× �̂
ij

ρ;d (r − r′,ε1 − ε2)δε1−ε2,ε4−ε3

− π2ν

8

∫
rr′,εi

tr
[
γ̂iσ Q̂ε1ε2 (r)

]
tr
[
γ̂jσ Q̂ε3ε4 (r′)

]
× �̂

ij

σ ;d (r − r′,ε1 − ε2)δε1−ε2,ε4−ε3 . (138)

The dressed (d) interaction can be obtained by the substitutions
γ̂

ij

2 �ρ(q) → �̂
ij

ρ;d (q,ω) and γ̂
ij

2 �σ (q) → �̂
ij

σ ;d (q,ω), where the

interaction matrices �̂
ij

ρ/σ ;d have a Keldysh space structure
[compare with Eq. (92)]. As a result, one gets

�̂μ;d (q,ω) =
(

�K
μ;d (q,ω) �R

μ;d (q,ω)

�A
μ;d (q,ω) 0

)
, μ = {ρ,σ },

(139)

where

�A
μ;d (q,ω) = �R

μ;d (q, − ω), (140)

�K
μ;d (q,ω) = Bω

(
�R

μ;d (q,ω) − �A
μ;d (q,ω)

)
, (141)

and

�R
ρ;d (q,ω) = �̃ρ(q)(1 − iω�̃ρ(q)D̃1(q,ω)), (142)

�R
σ ;d (q,ω) = �σ (1 − iω�σD2(q,ω)). (143)

Obviously, the difference between the dressed and bare
amplitudes is in the dynamic properties; in the static limit the
amplitudes are equal. A diagrammatic illustration of dressing
is shown in Fig. 5.

Clearly, �R
ρ/σ ;d describe rescattering in the singlet and

triplet channels with intermediate sections composed of a
pair of retarded and advanced Green’s functions (sometimes
referred to as RA sections). Each RA section gives rise to
a window function �ε+ω/2,ε−ω/2 which, when integrated in
ε, produces a factor of ω [compare relation (100)]. This is
why the coefficients of the frequencies of the diffusion modes
D̃1 and D2 are modified by the interaction amplitudes, see
Eqs. (84)–(86). An important difference to the calculation
of the correlation function is that in the present case the
interaction may be reducible with respect to the Coulomb
interaction, and �̃ρ(q) and D̃1 appear in the singlet channel.

Γρ;d

=

Γ̃ρ

+

Γ̃ρ Γ̃ρ

+

Γ̃ρ Γ̃ρ Γ̃ρ

+ . . .

Γσ;d

=

Γσ

+

Γσ Γσ

+

Γσ Γσ Γσ

+ . . .

FIG. 5. Dressed interactions.

A somewhat simplified way to express the same result is

�R
ρ;d (q,ω) = �̃ρ(q)

D̃1

D , �R
σ ;d (q,ω) = �σ

D2

D . (144)

In order to obtain �d and �2;d , one may use the relations
�R

d = 1
2 (�R

ρ;d − �R
σ ;d ) and �R

2;d = −�R
σ ;d to find

�R
d (q,ω) = �(q)

D̃1D2

D2
, �R

2;d (q,ω) = �2
D2

D . (145)

Needless to say, �R
d and �R

2;d are components of interaction
matrices �̂d and �̂2;d with a structure as indicated in Eq. (139).

If a model for a disordered Fermi liquid with short range
interactions is considered, one may use the replacement
�(q) → �1, D̃1 → D1 in the final expressions. For the
Coulomb case, it is useful to single out the screened Coulomb
interaction explicitly. To this end, one may use the identity

�R
d = �(q)

D̃1D2

D2
= �0(q)

D̃1D1

D2
+ �1

D1D2

D2
. (146)

After defining

�̃R
0;d = �0(q)

D̃1

D1
, (147)

one may single out the Coulomb interaction

�R
d = �R

0;d + �R
1;d , (148)

where

�R
0;d = �̃0;d

D2
1

D2
0

, �R
1;d = �1

D1D2

D2
0

. (149)

Note that the entire dependence on the Coulomb interaction is
delegated to �̃0;d . Furthermore, with the use of the identities
∂μn = 2ν/(1 + F

ρ

0 ) as well as z1 = 1/(1 + F
ρ

0 ), one can
obtain �̃0;d in the form

�̃R
0;d (q,ω) = ν(

1 + F
ρ

0

)2

[
V −1

0 (q) + ∂n

∂μ

Dq2

Dq2 − iz1ω

]−1

.

(150)

We observe that �̃R
0;d is the dynamically screened Coulomb

interaction. Following this decomposition of the dressed
interaction, we elevate relations (57)–(59) to

〈
φi

0(x)φj

0 (x ′)
〉 = i

2ν
�̂

ij

0;d (x − x ′), (151)

〈
φi

1(x)φj

1 (x ′)
〉 = i

2ν
�̂

ij

1;d (x − x ′), (152)

〈
φi

2,αβ(x)φj

2,γ δ(x ′)
〉 = − i

2ν
�̂

ij

2;d (x − x ′)δαδδβγ , (153)

whenever the dressed interaction is used. We remind that
�0;d and �1;d are defined in Eq. (149) and �2;d in Eq. (145).
The appearing interaction matrices have the typical Keldysh
structure, compare Eq. (139). When dressing is not needed
(such as for external vertices defined below), the static limit
may be taken and �R

n;d → �n for n = 0 − 2.

075437-13



G. SCHWIETE AND A. M. FINKEL’STEIN PHYSICAL REVIEW B 89, 075437 (2014)

(a) Sint,1 (b) i S1Sint,1

(c) i S2Sint,1 (d) −1
2 S2

1Sint,1

FIG. 6. The four different terms contributing to �SD . For the
terms (a) and (b), a gradient expansion is needed.

C. Renormalization of the diffusion coefficient

In this section, we discuss the renormalization of the
diffusive term SD in the one loop approximation. This term
contains two slow momenta (spatial gradients). It means that
we can use S1 at most twice or S2 once. Additionally, gradients
can be generated by Taylor expansion of the slow fields U , Ū .
As a result, one should consider

�SD = 〈Sint〉 + i〈〈S1Sint〉〉 + i〈〈S2Sint〉〉 − 1
2

〈〈
S2

1Sint
〉〉
. (154)

We will discuss these terms one by one and use the opportunity
to highlight some aspects that are specific for the RG procedure
in the Keldysh formalism. For a diagrammatic illustration of
the four terms, see Fig. 6. Recall that for notational simplicity,
we will from now on leave out hats for matrices in Keldysh
space.

1. 〈Sint〉
Sint consists of two parts, Sint,1 and Sint,2. First consider

〈Sint,2〉. The corresponding expression contains the following
average: ∫

ε2

〈
Pε1ε2Pε2ε3

〉 ∝
(
D(ω) 0

0 D(ω)

)
. (155)

The diagram for 〈Sint,2〉 is displayed in Fig. 7. It is immediately
obvious that this diagram can be cut into separate parts by
cutting only impurity lines. As is well known, such diagrams
should not appear for any theory in which a quenched disorder
average is performed. The so-called replica method was
invented [20] to eliminate such contributions. Indeed, the

FIG. 7. Diagram for 〈Sint,2〉. This term vanishes as discussed in
the text.

internal Green’s function allows for a free summation over
the replica index, and therefore the diagram vanishes in the
zero-replica limit. In the Keldysh technique, the vanishing of
unphysical terms mostly occurs because the frequency integral
over a product of several retarded or advanced functions (but
not a mixture of them) vanishes. This argument, however,
does not carry over to the case of a single retarded or advanced
function as is relevant for the discussed term. In this case,
one needs to argue that the contribution of the unphysical
diagram to the calculation of any physical quantity will always
contain the frequency integral of the sum of one retarded and
one advanced function, and it is simple to see that their sum
vanishes. In the example at hand, the retarded and advanced
diffuson appear as separate elements of the matrix Mε1ε3 =∫
ε2

〈Pε1ε2Pε2ε3〉. Whenever physical quantities are calculated,
all modes have to be integrated out, which implies that
eventually the sum of retarded and advanced functions will
appear. Anticipating this fact, diagrams as encountered for
〈Sint,2〉 may safely be dropped; Fig. 7 illustrates this important
point.

For the other term, 〈Sint,1〉, see Fig. 6(a), one finds

〈Sint,1〉 = iπν

2∑
n=0

∫
r1r2,ε1ε2

〈tr[(Ū (r1)φn(r1)U (r1))⊥ε1ε2

× (Ū (r2)φn(r2)U (r2))⊥ε2ε1
�ε1ε2 (r1 − r2)]〉. (156)

Here and in the following, we denote M⊥ = (M − σ3Mσ3)/2,
and M‖ = (M + σ3Mσ3)/2, so that M = M‖ + M⊥. M‖ is
the diagonal part of M in Keldysh space, and M⊥ the
off-diagonal part; [M‖,σ3] = 0, {M⊥,σ3} = 0. We will mostly
work in such a way that contractions in P are performed
first, while the choice of fast and slow frequencies for the
P matrices is made a posteriori. This is a straightforward
procedure since the frequency arguments of P always reappear
explicitly as arguments of the diffusion propagators �. For the
renormalization of the diffusion coefficient, in the discussed
contribution precisely one frequency argument of the P

matrices is fast. This might be either ε1 or ε2, see Fig. 8 for an
illustration. Due to the identity X⊥�̂ε1ε2 = �̂ε2ε1X

⊥ for any
matrix X in Keldysh space both possibilities are equivalent.
For definiteness, we choose here ε2 as fast and write ε2 = εf .

ε1

ε2

εf

ε2

ε1

εf

FIG. 8. This figure illustrates the two choices of εf for the average
〈Sint,1〉, where εf symbolizes the fast frequency. In fact, both choices
are equivalent and in this way one comes from Eqs. (156) to (157).
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FIG. 9. Terms of the kind displayed in this figure arise when
evaluating the average − 1

2 〈〈S2
1Sint,1〉〉, compare the first and third terms

in Eq. (161). All frequencies involved are bound to be small. This
makes the contributions of this type irrelevant.

This leads to the intermediate result

〈Sint,1〉 = 2iπν

2∑
n=0

∫
r1r2,ε1εf

〈tr[(Ū (r1)φn(r1))⊥ε1εf

× (φn(r2)U (r2))⊥εf ε1
�ε1εf

(r1 − r2)]〉. (157)

We do not evaluate this term right now, but first proceed with
the other terms.

2. i〈〈S1 Sint〉〉
The relevant contribution comes from Sint,1 only. One finds

i〈〈S1Sint,1〉〉
= −2iπν

2∑
n=0

∫
ri ,εi

D
(∇r′′

3
− ∇r′

3

)
× 〈

tr
[
(Ū (r1)φn(r1)U (r1))⊥ε1ε2

(Ū (r2)φn(r2)U (r2))⊥ε2ε3

×�‖
ε3ε1

(r3)�̂ε1ε2 (r1 − r′
3)�̂ε3ε2 (r′′

3 − r2)
]〉|r′′

3=r′
3=r3 ,

(158)

where ε1 and ε3 are necessarily slow, because of �ε1ε3 . Recall
that � = U∇U = −∇UU , and it is clear that it can only
have two slow indices or vanish. Therefore ε2 needs to be fast
and

i〈〈S1Sint,1〉〉

= −2iπν

2∑
n=0

∫
ri ,εi

D
(∇r′′

3
− ∇r′

3

)

×〈tr[(Ū (r1)φn(r1))⊥ε1εf
(φn(r2)U (r2))⊥εf ε3

×�‖
ε3ε1

(r3)�ε1εf
(r1 − r′

3)�ε3εf
(r′′

3 − r2)]〉|r′′
3=r′

3=r3 .

(159)

Figure 6(b) illustrates the structure of this term. One may
already notice the structural similarity to Eq. (157); the same
observation also holds for the remaining contributions to �SD .
This is why the further evaluation is postponed until all four
terms have been discussed.

3. i〈〈S2 Sint〉〉
S2 contains two terms, S2a and S2b. In S2b, all frequencies

of the P matrices are forced to be slow due to the presence
of � and this does not lead to an RG contribution to the
diffusion coefficient. The relevant contribution comes from a
combination of S2a and Sint,1:

i〈〈S2aSint,1〉〉 = 2iπνD

2∑
n=0

∫
ri ,εi

〈
tr
[
(Ū (r1)φn(r1))⊥ε1εf

(φn(r2)U (r2))⊥εf ε3
(�(r3)��(r3)�)‖ε3ε1

�ε1εf
(r1 − r3)�ε3εf

(r3 − r2)
]〉
.

(160)

For an illustration of this contribution see Fig. 6(c). The expression will be evaluated further together with the other contributions
to �SD .

4. − 1
2

〈〈
S2

1 Sint
〉〉

Similarly to the previously discussed terms, the dominant contribution comes from Sint,1. The contractions can be performed
in several ways, as indicated below:

−1

2

〈〈
S2

1Sint,1
〉〉

= i(πν)4

16
D2

2∑
n=0

(
2Tr[�P

↔
∇P ]Tr[�P

↔
∇P ]〈Tr[φnUσ3P Ū ]Tr[φnUσ3P Ū ]〉

+ 4Tr[�P
↔
∇P ]Tr[�P

↔
∇P ]〈Tr[φnUσ3P Ū ]Tr[φnUσ3P Ū ]〉 + 2Tr[�P

↔
∇P ]Tr[�P

↔
∇P ]〈Tr[φnUσ3P Ū ]Tr[φnUσ3P Ū ]〉

)
.

(161)

For the first and last terms, all frequencies of P are fixed to be slow by the presence of two � fields. This is why terms of this
kind are irrelevant for the RG; see Fig. 9 for an illustration. Out of the three terms, the relevant one is the second which reduces
to the contribution displayed in Fig. 6(d). It gives

− 1
2

〈〈
S2

1Sint
〉〉 = 2iπνD2

2∑
n=0

∫
ri ,εi

(∇r′′
3
− ∇r′

2

)(∇r′′
4
− ∇r′

4

)
× tr

[
(Ū (r1)φn(r1))⊥ε1εf

(φn(r2)U (r2))⊥εf ε3
�ε3εf

(r1,r′′
3)�‖

ε3ε4
(z)�ε4εf

(r′
3,r

′′
4)�‖

ε4ε1
(r4)�ε1εf

(r′
4,r2)

]
. (162)
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5. The correction �D

In the previous sections, expressions were obtained for the four different contributions to the RG corrections to SD . They can
be found in Eqs. (157), (159), (160), and (162). As is obvious from these formulas, and also from the diagrammatic representation
in Fig. 6, the following block is common to all four terms:

2∑
n=0

〈
(Ū (r1)φn(r1))⊥ε1εf

(φn(r2)U (r2))⊥εf ε3

〉 = i

2ν

∫
ε5

V̂ ij
ε5εf

(r1 − r2)
(
U ε1ε5 (r1)γiuεf

)⊥(
uεf

γjUε5ε3 (r2)
)⊥

, (163)

where U = uU , Ū = Ūu and V = �d − 2�2;d .
The gradient expansion of U and Ū mentioned at the beginning of the calculation is necessary for 〈〈Sint〉〉 and i〈〈S1Sint〉〉 only,

since the expressions for i〈〈S2Sint〉〉 and − 1
2 〈〈S2

1Sint〉〉 already contain two slow gradients (via �). Since εf is fast and all other
frequencies are slow, we can neglect, with the logarithmic accuracy, the slow frequencies εi compared to εf in the RG integrals.
Putting these remarks into effect, one finds

�SD = 〈Sint〉 + i〈〈S1Sint〉〉 + i〈〈S2Sint〉〉 − 1

2

〈〈
S2

1Sint
〉〉

(164)

= −π

∫
r,p,εi

tr
[{−δε3ε1D∇r′∇r′′ − �‖

ε3ε1
(r)D∇r′′ + �‖

ε3ε1
(r)D∇r′ + D(�ε3ε4 (r)σ3�ε4ε1 (r)σ3)‖

}
× (

Ūε1ε5 (r′)γiuεf

)⊥ V̂ ij
−εf

(p)�2
εf

(p)
(
uεf

γjUε5ε3 (r′′)
)⊥ ]∣∣

r′′=r′=r

− 4

d
π

∫
r,p,εi

tr
[{

δε3ε1D∇r′∇r′′ + �‖
ε3ε1

(r)D∇r′′ − �‖
ε3ε1

(r)D∇r′ − D�‖
ε3ε4

(r)�‖
ε4ε1

(r)
}

× (
Ūε1ε5 (r′)γiuεf

)⊥ V̂ ij
−εf

(p)Dp2�3
εf

(p)
(
uεf

γjUε5ε3 (r′′)
)⊥ ]∣∣

r′′=r′=r,

where d is the dimension. An additional term, which does
not contain any gradients, was left out here. Fortunately, such
terms need to cancel once all corrections are considered, as
they would make the diffuson massive. (We have checked this
cancellation by a perturbative calculation.) In order to further
evaluate this expression, we study the quantity

R̃m
ab(p) =

∫
εf

[
γiuεf

]aV ij
−εf

(p)�m
εf

(p)
[
uεf

γj

]b
, (165)

where a,b ∈ {‖ , ⊥}, m = 2,3 is the power with which the
diffusons enter the expressions, and R̃m

ab(p) is a matrix in
Keldysh space. For example, R̃m

‖‖(p) is a diagonal matrix with
entries

R̃m
‖‖(p)11 =

∫
εf

(
Bεf

VR
εf

+ (
Fεf

− Bεf

)
VA

εf

)
Dm

εf
, (166)

R̃m
‖‖(p)22 =

∫
εf

(−Bεf
VA

εf
+ (

Bεf
− Fεf

)
VR

εf

)
Dm

εf
. (167)

For the RG calculation in 2d, these integrals need to be found
with logarithmic accuracy only. To this end note that for the
purpose of the RG analysis, we may set

Fεf
≈ Bεf

≈ sign(εf ). (168)

Due to the frequent occurrence of the sign factor, let us
introduce the notation

σf = sign(εf ). (169)

As a consequence,

R̃m
‖‖(p) ≈

∫
εf

σfDm
εf
VR

εf
. (170)

In a similar way, one finds R̃m
⊥⊥(p) = R̃m

‖‖(p).

Next, consider the off-diagonal matrix R̃m
‖⊥ with entries

R̃m
‖⊥(p)12 =

∫
εf

(
Fεf

Bεf
VR

εf
+ VA

εf

(
1 − Fεf

Bεf

))
Dm

εf
,

R̃m
‖⊥(p)21 =

∫
εf

Dn

εf
VA

εf
. (171)

Employing again the approximations of Eq. (168), we see
that both components reduce to integrals over a product of
only retarded or only advanced functions. A similar structure,
obviously, holds for R̃m

⊥‖(p). In perturbative calculations such
terms vanish after integration in frequency a discussed earlier.
In the RG procedure, it is a little bit more complicated.
After integration in momentum, such terms are odd functions
in frequency. Thus, although the integration over the fast
frequency is performed within limited intervals, the sum over
the positive and negative frequency-intervals vanishes. It is
useful in this connection to compare the expressions for the
diagonal and off-diagonal matrices R̃. The diagonal ones, see
Eq. (170), contain an additional factor σf which makes the εf

integrals finite.
Therefore we need to keep only the ‖‖ and ⊥⊥ components.

Coming back to �SD as given in Eq. (164), one obtains

∫
ε5,εf

(
Ūε1ε5γiuεf

)⊥ V ij
−εf

�n
εf

(
uε5γjUεf ε3

)⊥

=
∑

a,b=⊥‖

[
Ūa R̃m

a′b′ Ub
]
ε1ε3

= (Ū‖U‖ + Ū⊥U⊥)ε1ε3

∫
εf

σfDm
εf
VR

εf
, (172)
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where in the second line we denoted ⊥′ =‖, ‖′=⊥ for a′ and
b′, and used the obvious fact that the off-diagonal part of the
product C = AB is given by C⊥ = ∑

a=⊥,‖ AaBa′ . As only the
parallel component of the total matrix considered in Eq. (172)
enters the trace in Eq. (164), we may effectively replace

Ū‖(r′)U‖(r′′) + Ū⊥(r′)U⊥(r′′) → Ū (r′)U (r′′). (173)

It was used that the matrices u cancel. Let us further introduce
the notation

R2 =
∫

p
R̃2

‖‖(p) =
∫

p,εf

σfD2
εf

(p)VR
εf

(p),

R3 =
∫

p
Dp2R̃3

‖‖(p) =
∫

p,εf

σf Dp2D3
εf

(p)VR
εf

(p). (174)

The expression for the renormalization of the diffusion
constant reads

�SD = −πR2Tr[−D∇U∇U − D∇U�‖U

+DU�‖∇U + D[(�‖)2 − (�⊥)2]]

−4π

d
R3Tr[D∇U∇U + D∇U�‖U

−DU�‖∇U − D�‖�‖]

= 4π

d
R3Tr[D(�⊥)2]. (175)

We see that the two-diffuson contributions cancel out (as
it may be expected from general arguments [3,6]), and the
remaining term comes from the three-diffuson term only.
Using Tr[(�⊥)2] = − 1

4 Tr[(∇Qs)2], one finds

�SD = −π

d

∫
tr[D(∇Qs)

2]

×
∫

p,εf

σf Dp2D3
εf

(p)
[
�R

d (p,εf ) − 2�R
2,d (p,εf )

]
,

(176)

This leads to the following result for the correction to the
diffusion coefficient

�D = 4iD

dν

∫
p,εf

σf Dp2D3
εf

(p)
[
�R

d (p,εf ) − 2�R
2,d (p,εf )

]
.

(177)

The factor d in the denominator results from an averaging over
the direction of momentum. The logarithmic integral will be
evaluated in Sec. IV F below.

Finally, the situation with the abandoned terms, where all
frequencies were forced to be slow, is worth commenting. See
Fig. 9 as an example. Such terms have a hybrid structure, as
they resemble at the same time the SD term and the interaction
term of the action: they contain gradients and mix frequencies.
The remaining momentum integrals are not logarithmic,
and are determined by the lower cutoff λτ−1 of the RG
interval. Compared to the electron-electron interaction terms,
the discussed terms contain a small parameter ρDk2/(λτ−1),
which is not compensated by a large logarithm. Here, the small
parameter ρ is the only small parameter introduced for the RG

analysis:

ρ = 1

(2π )2e2νD
. (178)

It has the meaning of the sheet resistance measured in
dimensional units; note an extra factor π as compared to the
quantum resistance.

D. Renormalization of z

There are two corrections to Sz,

�Sz = i 〈〈SεSint〉〉 + 〈Sint〉 . (179)

Below we present some details of the calculation. As it turns
out, the dominant contributions arise from those terms for
which Sint is replaced by Sint,1.

1. i〈〈Sε Sint,1〉〉
After evaluating the relevant contractions in the P matrices,

one obtains the expression

i〈〈SεSint,1〉〉 = 2πν

2∑
n=0

∫
ri ,εi

× 〈
tr
[
(U (r1)φn(r1)U (r1)σ3)⊥ε1ε2

�ε2ε3 (r3 − r2)

×�ε2ε1 (r3 − r1)(U (r2)φn(r2)U (r2))⊥ε2ε3

× (U (r3)zεsU (r3))‖ε3ε1

]〉
. (180)

The frequencies ε1 and ε3 are bound to be slow due to presence
of εs , while ε2 is fast. This observation directly leads to the
result

i〈〈SεSint,1〉〉 = −πiR2Tr[zεsQs]. (181)

The corresponding diagram is displayed in Fig. 10.

2. 〈Sint,1〉
This term is somewhat special, as it contains a contribution

from the boundaries of the frequency integration interval.
Starting point is formula (157), see also Fig. 11, where (unlike
previously) r2 may directly be set equal to r1, but an expansion
in slow frequencies is performed. In order to see how it works,
it is convenient to first perform the average in φ:

〈Sint,1〉 ≈ −πTr
[
(U ε1ε5γiuεf

)⊥�̂εf −ε1 (p)V ij
ε5−εf

(p)

× (uεf
γjUε5ε1 )⊥

]
. (182)

An expansion in slow frequencies could be either in ε5 or in
ε1. When expanding in ε1, the matrices U , Ū cancel following

FIG. 10. Diagrammatic representation for i〈〈SεSint,1〉〉. This term
contributes to �z.
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FIG. 11. The average 〈Sint,1〉 as relevant for the calculation of �z.
Expansion in the slow frequency is needed to be performed.

the previous arguments. Therefore one should consider an
expansion in ε5 and study

R̃1
ab(p; ε5) =

∫
εf

[
γiuεf

]a [
Vε5−εf

(p) − V−εf
(p)

]ij

×�εf
(p)[uεf

γj ]b, a,b ∈ {⊥ , ‖}. (183)

Only the ⊥⊥ and ‖‖ components give a logarithmic contri-
bution. Further, it should be noted that an expansion of the
distribution function in ε5 is not necessary since such terms
would be exponentially suppressed in the RG regime. Defining

R1 = 1

z

∫
εf ,p

σfDεf
(p)∂εf

V R
εf

(p), (184)

one obtains

R̃‖‖
1,ε5

≈ −R̃⊥⊥
1,ε5

≈ −zε5R1σ3, (185)

and further on

〈Sint,1〉 ≈ −πR1Tr [zεQs] . (186)

The integral R1 may be rearranged with the use of a partial
integration in εf :

R1 = 1

2πz

∫
p
σfD(p)VR

εf
(p)

∣∣∣∣
bound

− iR2, (187)

where the index bound indicates that expression should
be evaluated at the boundaries of the frequency integration
interval.

3. The correction �z

When combining the two contributions, Eqs. (181) and
(186), a partial cancellation occurs and only the boundary
terms remain. For the total correction to z, one reads off

�z = 1

2πν

∫
p
σfDεf

(p)VR
εf

(p)

∣∣∣∣
bound

. (188)

It is important to note that once the integrand is evaluated
at the two boundaries, i.e., the upper and lower limits of the
frequency integral, the momentum integral is convergent and
yields a logarithmic correction.

E. Renormalization of the interaction amplitudes

The interaction term S� contains three interaction ampli-
tudes, �0(q), �1, and �2. The amplitude �2 differs by the
spin structure from the other two and, therefore, corrections to
either of these two classes are easily identified. The amplitudes
�0(q) and �1 have the same spin structure, but they differ
in another aspect. Recall that �0(q) is the statically screened

long-range Coulomb interaction, while �1 is short-range as it is
directly related to the Fermi liquid amplitudes. A correction to
�0(q) could arise only from diagrams, for which the Coulomb
interaction is not part of the logarithmic integration. Such type
of diagrams can be generated with the help of Sint,2 and closely
resemble vertex corrections for a scalar vertex. Importantly,
such corrections, although they arise from individual diagrams,
eventually cancel, once all contributions are summed up.
Indeed, it turns out that the cancellation occurs between certain
pairs of diagrams. The calculation will, therefore, be organized
in such a way that these pair diagrams are treated together. As
already indicated, the cancellation of the corrections to �0(q)
also reflects itself in the fact that the scalar triangular vertex γ

ρ
�

remains unrenormalized. This will be demonstrated explicitly
below in Secs. V A and V B. In contrast, the correction to the
amplitude �1, which is short-range in character, is finite.

Generally, the RG equations at the one-loop level sum the
series of logarithmic corrections of the kind (ρ ln 1/T τ )n,
where ρ, the small parameter of the RG expansion, has been in-
troduced in Eq. (178). Corrections to the interaction amplitude
may contain a product of several interaction amplitudes, with
some of them being dressed. Even on the level of the one-loop
approximation, it is a priori not clear whether the number of
diagrams that needs to be considered in order to derive such a
system of equations is finite. As has first been demonstrated by
Finkel’stein in Ref. [7], it is fortunately the case and the product
of at most four (dressed and undressed) interaction amplitudes
is involved in the calculation. The main guiding rule here is that
the order of the RG equation is determined by the number of
momentum integrations: each integration generates the small
parameter ρ. There cannot be too many dressed amplitudes,
because otherwise it is impossible to arrange them without an
additional momentum integration.

In order to structure the calculation, we will present the
correction to S� as the sum of 6 individual contributions.
Apart from the first one, all of them consist of pairs of
diagrams. These pairs arise as a result of a different choice of
the fast frequency for the logarithmic integration. The above
mentioned cancellation of corrections to �0(q) takes place
between the two partner diagrams forming a pair [whenever
such correction appears]. For the corrections to �1 and �2

the cancellation is not complete, and these corrections remain
finite. We write

�S� =
5∑

i=0

(�S�)i , (189)

where

(�S�)0 = 〈Sint,1〉, (190)

(�S�)1 = i

2

〈〈
S2

int,1

〉〉
, (191)

(�S�)2 = i〈〈Sint,1Sint,2〉〉, (192)

(�S�)3 = −1

2

〈〈
S2

int,1Sint,2
〉〉

, (193)

(�S�)4 = −1

2

〈〈
Sint,1S

2
int,2

〉〉
, (194)

(�S�)5 = − i

4

〈〈
S2

int,1S
2
int,2

〉〉
. (195)
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FIG. 12. 〈Sint,1〉 as relevant for the renormalization of the inter-
action amplitudes. In this case, all frequencies involved are slow, the
logarithmic correction arises from an integration over fast momenta .

We will present details of the calculation of the first two
contributions, the other ones can be considered in a similar
way, but we will only state the results and display the corre-
sponding diagrams. As already mentioned, the calculation of
vertex corrections presented in Secs. V A and V B have a close
similarity to some of the diagrams that are important here.
The interested reader may find additional information there, in
particular about the cancelations for pair diagrams.

1. 〈Sint,1〉
This term has been considered before and we may use

formula (156) for 〈Sint,1〉 as our starting point. In the present
context, we consider the case that the two frequency arguments
ε1 and ε2 are slow, while the momentum entering � is fast, see
Fig. 12. Therefore we can approximate it by just �(p,0), i.e.,
for the range of momenta p that are of interest, the frequency
dependence may be neglected. In this approximation.
�(p,0) ≈ D(p,0) ≡ D(p) becomes proportional to the unit
matrix in Keldysh space and additionally the summation in ε1

and ε2 may be performed. As no expansion in slow momenta
is required, we may put r2 → r1 for the arguments of the slow
modes:

〈Sint,1〉 = iπν

2∑
n=0

∫
rr′

〈tr[(Ū (r)φn(r)U (r))⊥

× (Ū (r)φn(r′)U (r′))⊥]〉D(r − r′)

= iπν

2

2∑
n=0

∫
r,r′

tr[φn(r)φn(r′)

−Qs(r)φn(r)Qs(r)φn(r′)]D(r − r′). (196)

The first term in the last equation is just a constant and can be
dropped. After performing the average in φ, one obtains

〈Sint,1〉 = π

4

∫
εi

Tr[Qs,αβ;ε2ε1γiQs,βα;ε4,ε3γj ]

×
∫

r
�̂ij (p)D(p)δε1−ε4,ε2−ε3

− π

4

∫
tr[Qs,αα;ε2ε1γiQs,ββ;ε4,ε3γj ]

×
∫

r
�̂

ij

2 D(p)δε1−ε4,ε2−ε3 . (197)

As the frequency arguments of �, �2 are slow (while the
momenta are fast), no dressing of the interaction line was
included, and the static amplitudes can be used. As was already
noted before, in such a case �̂ and �̂2 are off-diagonal matrices

in Keldysh space and take the simple form

�̂ =
(

0 �

� 0

)
, �̂2 =

(
0 �2

�2 0

)
. (198)

We can use the relation (recall that γ1 is the unit matrix)

Tr[Q1Q2γ2] + Tr[Q1γ2Q2]

= Tr[Q1]Tr[γ2Q2] + Tr[γ2Q1]Tr[Q2], (199)

where all appearing Q matrices have fixed frequency argu-
ments and spin indices. The result is

〈Sint,1〉 = π

4

∫
r,εi

tr[γiQs,αβ;ε2ε1 (r)]γ ij

2

× tr[γjQs,βα;ε4,ε3 (r)]δε1−ε4,ε2−ε3

∫
p
�(p)D(p)

− π

4

∫
r,εi

tr[γiQs,αα;ε2ε1 (r)]γ ij

2

× tr[γjQs,ββ;ε4ε3 (r)]δε1−ε4,ε2−ε3

∫
p
�2D(p). (200)

Comparing to the original interaction term, Eq. (56), one finds
that the structure of the �1 and �2 terms are reproduced, leading
to the resulting corrections from (�S�)0:

(��1)0 = 1

πν
�2

∫
p
D(p), (201)

(��2)0 = 1

πν

∫
p
�(p)D(p). (202)

2. Pairs of diagrams

As we have already mentioned, pairs of diagrams arise as
a result of a different choice of the fast frequency εf for the
logarithmic integration. These pairs of diagrams are displayed
as two columns in Fig. 13. As an illustration, we discuss in
detail one a pair of diagrams, labeled as 1(a) and 1(b). This
pair gives rise to the correction (�S�)1, and originates from

i

2

〈〈
S2

int,1

〉〉 = − i(πν)4

8

〈〈〈Tr[φ2Uσ3PU ]Tr[φ2Uσ3PU ]〉φ2

×〈Tr[φ′
2Uσ3PU ]Tr[φ′

2Uσ3PU ]〉φ′
2

〉〉
. (203)

Note that φ′
2 has the same correlation as φ2. (As it will become

clear later, only the φ2-contractions have to be considered in
all diagrams presented in Fig. 13. Otherwise, the contributions
are canceled out within each of the pairs.)

We perform the contractions, and introduce a symmetry
factor two:

i

2

〈〈
S2

int,1

〉〉
= −i(πν)2

∫
ri ,εi

×〈tr[(Uφ2U )⊥ε1ε2
(r1)�ε2ε1 (r1 − r4)(Uφ′

2U )⊥ε2ε1
(r4)]

× tr[(Uφ′
2U )⊥ε3ε4

(r3)�ε4ε3 (r3 − r2)(Uφ2U )⊥ε4ε3
(r2)]〉φ2φ

′
2
.

(204)
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1(a 1) (b)

2(a 2) (b)

3(a 3) (b)

4(a 4) (b)

5(a 5) (b)

FIG. 13. The pairs of diagrams related to (�S�)i , i = 1–5.
Diagrams labeled as (a) give rise to the corrections (��1)i and
diagrams labeled as (b) to the corrections (��2)i . Only those
contributions remain, for which all interaction amplitudes are of
the �2 type. All other contributions, which contain the amplitudes
�0 or �1 at least once, cancel between the two diagrams forming
a pair. An important consequence is that the amplitude �0 remains
unrenormalized.

The different ways in which the occurring frequencies can
be chosen as being fast are as follows: (a) (ε2,ε3) fast or
equivalently (ε1,ε4) fast → (��1)1 and (b) (ε2,ε4) fast or
equivalently (ε1,ε3) fast → (��2)1.

These two possibilities lead to the diagrams displayed in
Figs. 13 as 1(a) and 1(b), respectively. For case (a), a correction
to �1 arises; for case (b), a correction to �2.

(a) Let (ε2,ε3) be fast. We account for the equivalent choices
by a factor of two, neglect slow frequencies in the diffusion
propagators, and take the slow U modes at coinciding points.
In this way, one obtains

�S = −i(πν)2

2

∫
〈tr[(φ′

2(r4)Q(r1)φ2(r1)σ3)ε2ε2�ε2 (r1 − r4)

− (φ′
2(r4)φ2(r1))ε2ε2�ε2 (r1 − r4)]

× tr[(φ′
2(r3)Q(r2)φ2(r2)σ3)ε3ε3�ε3 (r2 − r3)

− (φ′
2(r3)φ2(r2))ε3ε3�ε3 (r2 − r3)]〉. (205)

The term of interest is the one containing two Q’s and for this
term one obtains

�S = π2i

8

∫
r,p,εi

�
ij

2;d (p,εf )�kl
2;d (p, − εf )δε1−ε2,ε4−ε3

×tr[(γk�εf
�εf

(p)γi)Qαα;ε1ε2 (r)]

×tr[(γl�−εf
�−εf

(p)γj )Qy,ββ;ε3ε4 (r)], (206)

where we remind that �ε = uεσ3uε and we defined �ε =
uε�εuε. After a somewhat tedious but straightforward calcu-
lation, one may show that the following expression emerges:

�S = −iπ2

2

∫
p,εf

σf

[
DR

εf
(p)�R

2;d (p,εf )
]2

×
∫

r,εi

tr[γ1Qαα;ε1ε2 (r)]tr[γ2Qββ;ε3ε4 (r)]δε1−ε2,ε4−ε3 .

(207)

We see that the typical structure of the �1-type interaction term
is reproduced.

(b) Now, let (ε2,ε4) be fast. In a similar way, we find that
we should evaluate the following expression:

�S = −i(πν)2

2

∫
〈tr[(φ′

2(r4)Q(r1)φ2(r1)σ3)ε2ε2�ε2 (r1 − r4)]

× tr[(φ2(r2)Q(r2)φ′
2(r3)σ3)ε4ε4�ε4 (r3 − r2)]〉φ2φ

′
2
.

(208)

After performing the averaging with respect to φ and φ′, one
obtains

�S = π2i

4

∫
r,p,εi

�il
2,d (p,εf )�jk

2,d (p, − εf )

×tr[(γj�εf
�εf

γi)Qε1ε2;αβ]

×tr[(γl�εf
�εf

γk)Qε3ε4;βα]δε1−ε2,ε4−ε3 . (209)

The origin of the additional factor 2 compared to formula (206)
is the spin degree of freedom. Further evaluation gives

�S = iπ2
∫

p,εf

σf

[
DR

εf
(p)�R

2;d (p,εf )
]2

∫
r,εi

tr[γ1Qαβ;ε1ε2 (r)]tr[γ2Qβα;ε3ε4 (r)]δε1−ε2,ε4−ε3 .

(210)

Here, the structure of the �2-type interaction term is
reproduced.

The result for the corrections to �1 and �2 from the first
pair of diagrams can easily be found by comparing the obtained
results to S� ,

(��1)1 = i

ν

∫
p,εf

σf

[
DR

εf
(p)�R

2;d (p,εf )
]2

, (211)

(��2)1 = 2i

ν

∫
p,εf

σf

[
DR

εf
(p)�R

2;d (p,εf )
]2

. (212)

Now let us clarify the cancellation within each pair when a
contraction is not of the φ2 type. If one or both of the H-S fields
φ2 and φ′

2 are replaced by φ0 (φ′
0) or φ1 (φ′

1), then the overall
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spin structure of both types of terms corresponding to diagrams
(a) and (b) coincide as well as their spin factors. However, the
relative sign apparent from formulas (207) and (210) remains,
and thus those terms cancel. Therefore the only contribution
that remains is the one shown above with two amplitudes �2.

The remaining pairs of diagrams can be treated in a similar
way. The diagrams are displayed in Fig. 13. Each pair is formed
by the two diagrams labeled as (a) and (b).

The results are

(��1)2 = −2i

ν
�2

∫
εf

σf �2,d (p,εf ) D2
εf

(p), (213)

(��1)3 = 2

ν
�2

∫
|εf |�2

2,d (p,εf )D3
εf

(p), (214)

(��1)4 = −2

ν
�2

2

∫
|εf |�2,d (p,εf )D3

εf
(p), (215)

(��1)5 = − i

ν
�2

2

∫
|εf |εf �2

2,d (p,εf )D4
εf

(p). (216)

The previously explained relation holds for all five pairs of
diagrams:

(��2)i = 2(��1)i , i = 1–5. (217)

Note that the amplitudes, which appear in connection with the
external legs of the diagrams, are not dressed. As encountered
already for the first pair of diagrams, a cancellation takes place
if at least one of the amplitudes �2 is replaced by �0 or �1.

F. Logarithmic integrals

Here, we present a list of logarithmic integrals that appear
as a result of the RG transformations. As shown above, the
NLσM preserves its original form during the course of this
procedure. This implies that the obtained corrections can
be rewritten in the form of RG equations for the flowing

(i.e., scale-dependent) parameters of the model. As we have
already mentioned, the only small parameter needed for the
RG analysis is ρ, which has the meaning of the sheet resistance
determined at a given scale and measured in dimensional units.

1. ρ = 1
(2π )2e2ν D

We concentrate on the long-range Coulomb interaction. In
this limit, the effective interaction in the singlet channel is
controlled by the inverse of the polarization operator. Even
despite the screening, the resulting correction to D differs
substantially from the case of the short-range interaction due
the frequency dependence of the polarization operator, as given
by Eq. (108), which cannot be ignored. One has to start with
Eq. (177), and to write inside the integral

i

∫
p,εf

σf Dp2D3
εf

(p)
[
�R

d (p,εf ) − 2�R
2,d (p,εf )

]
(218)

all dressed amplitudes in the explicit form:

D3
εf

(p)
[
�R

d (p,εf ) − 2�R
2,d (p,εf )

]
= �0D̃1D1D2 + �1DD1D2 − 2�2D2D2. (219)

For brevity, we omitted the arguments p,εf in the second line.
At a given εf , the integral over p is convergent for each of the
three terms, both in the limits of large and small momenta. One
can, therefore, safely perform the integration over p; the result
is real and inversely proportional to εf . The last fact is clear,
if one takes a look at the dimension of the integrands. Next,
owing to σf , the remaining integral over εf is twice the integral
over the positive frequencies only. To present the integral in
a form suitable for the RG treatment, it remains to integrate
within the energy shell λ�τ < εf < �τ , where λ < 1 and �τ

is the current scale in the RG procedure. The upper cutoff of
the scaling process is �τ ∼ 1/τ ; the lower one is discussed
below. We will present all corrections as proportional to∫ �τ

λ�τ

dεf

εf

= ln λ−1. (220)

Performing the integrations described above, one gets the
result

�ρ

ρ2
=

[
1

1 + F
ρ

0

f1(z,z1) + �1f2(z,z1,z2)

− 2�2f2(z,z,z2)

]
ln λ−1, (221)

where

f1(a,b) = 1

a − b
ln

a

b
, (222)

f2(a,b,c) = 2b

b − c
f1(a,b) − 2c

b − c
f1(a,c), (223)

together with the definition f1(a,a) = 1/a. The terms in
Eq. (221) arise from the �0, �1 and �2 contributions as given
in the second line of the expression (219). Obviously, for a
short-range interaction, the �0 term should be excluded.

2. z

The most natural way to get the RG equation for z is to
rewrite Eq. (188) as follows:

�z = 1

2πν

∫
p
σfDεf

(p)VR
εf

(p)

∣∣∣∣
�τ

λ�τ

. (224)

The integral in p becomes convergent once the upper and
lower limits are considered together. Then, the straightforward
integration yields

�z = ρ

[
− 1

2
(
1 + F

ρ

0

) − �1 + 2�2

]
ln λ−1. (225)

In the case of a short-range interaction, the first term should
be abandoned. Note that another way to perform the RG
procedure is to introduce a momentum cutoff besides the one
in frequency.

3. 
1 and 
2

After uncovering the dressed amplitudes, and performing
the necessary integrations, one gets

(��1)0 = �2 ρ ln λ−1 (226)
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and

(��1)1 = −�2
2

z2
ρ ln λ−1,

(��1)2 = 2�2
2 f1(z2,z) ρ ln λ−1,

(��1)3 = −�3
2

z2
f2(z,z,z2) ρ ln λ−1, (227)

(��1)4 = �3
2

z
f2(z2,z2,z) ρ ln λ−1,

(��1)5 = �4
2

(z − z2)2

(
1

z
+ 1

z2
− 2f1(z,z2)

)
ρ ln λ−1.

Remarkably, the sum of the five terms i = 1–5 reduces to a
very simple combination

5∑
1

(��1)i = �2
2

z
ρ ln λ−1. (228)

For �2, we have

(��2)0 =
[

1

2
(
1 + F

ρ

0

) + �1

]
ρ ln λ−1, (229)

and (��2)i = 2(��1)i for i = 1–5.
The corrections (��1) and (��2) can be summarized as

follows:

(��1) =
[
�2 + �2

2

z

]
ρ ln λ−1, (230)

(��2) =
[

1

2
(
1 + F

ρ

0

) + �1 + 2
�2

2

z

]
ρ ln λ−1. (231)

4. z1 = z − 2
1 + 
2

It follows from the above results that z1, which determines
the dynamics in the ρ channel (e.g., in the polarization
operator), remains unchanged during the RG transformations.
Indeed, by comparing Eq. (225) with Eqs. (230) and (231),
one immediately observes that

�z1 = 0. (232)

The initial values stated in Eq. (66) in Sec. II B, therefore allow
to determine the value of this unrenormalized combination:

z1 = z − 2�1 + �2 = 1

1 + F
ρ

0

. (233)

This Ward identity [5–7,9] is important for finding the correct
form of χ̄R

nn(q,ω) and also for establishing the universal form
of the RG equations in the case of the screened long-range
Coulomb interaction. Indeed, in view of Eq. (55), where the
interaction amplitude in the ρ channel for small momenta has
been defined, �̃ρ(q → 0) = 1

1+F
ρ

0
+ 2�1 − �2, one can read

the obtained relation (233) as

�̃ρ(q → 0) = z. (234)

Thus the renormalized interaction amplitude and the parameter
describing the renormalization of the frequency term in the
case of the screened long-range interaction coincide, and do
not depend on the nonuniversal Fermi liquid amplitudes. This
is the reason why the RG equations in this case acquire a
universal form.

5. Final form of the RG equations

We will write now the RG equations for the case of
the screened Coulomb interaction. To make the equations
universal, we exclude the combination 1

2(1+F
ρ

0 )
+ �1 using

identity (233) discussed above. As a result, on can rewrite
Eq. (221) in the form

�ρ

ρ2
=

[
1 − 3

(
z + �2

�2
ln

z + �2

z
− 1

)]
ln λ−1, (235)

where the two terms in the square brackets represent contribu-
tions of the ρ (singlet) and σ (triplet) channels, respectively.
Note that the factor 3 is typical for the triplet channel, and that
these two contributions have opposite signs. With the help of
Eq. (233), the equation describing the renormalization of �2

acquires the following form:

(��2) =
[

z

2
+ �2

2
+ 2

�2
2

z

]
ρ ln λ−1. (236)

Finally, the equation for �z simplifies, and takes a form
in which the contribution of the two channels becomes
immediately recognizable,

�z = 1
2 [−z + 3�2] ρ ln λ−1. (237)

The corresponding RG equations can be obtained by taking
derivatives with respect to ln λ−1, with all the coefficients
understood as flowing parameters. These three (instead of
four) equations constitute a complete set of RG equations
describing the disordered electron liquid in the presence of
the long-range Coulomb interaction. The long-range character
of the Coulomb interaction, i.e., the infinite amplitude in the
limit q → 0, leads to a universal form of the RG equations.
Moreover, one may introduce a new variable w2 = �2/z,
which allows to decouple the equations for ρ and the
interaction in the σ channel (represented now by w2) from
the equation for z:

1

ρ

d ln ρ

d ln λ−1
= 4 − 3

1 + w2

w2
ln(1 + w2), (238)

1

ρ

dw2

d ln λ−1
= (1 + w2)2

2
, (239)

and

1

ρ

dz

d ln λ−1
= z(3w2 − 1)

2
. (240)

Although these equations were derived in the one-loop (first
order in ρ) approximation, the observed decoupling of the
equation for z from the equations describing the other two RG
charges (as well as the possibility of presenting the equations
in terms of the ratio �2/z) reflects the general structure of
the NLσM [3,6,40]. This fact is important for the analysis of
the metal-insulator transition [14]. The fixed point existing
in the phase plane ρ − w2 determines the equation for z,
which, in turn, controls the critical behavior (as a function
of temperature) at the metal-insulator transition.

6. Lowest cutoff

Finally, let us comment on the lowest cutoff for the RG
procedure. In the replica NLσM the lower cutoff appears from
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the discreteness of the Matsubara frequencies, which are used
to describe electron interactions at finite temperatures. In the
Keldysh technique, it happens differently. The matrix Q̂ = û ◦
Û ◦ σ̂3 ◦ Û ◦ û, which is the main object of study in theory of
interacting electrons, contains a superposition of two kinds of
rotations. Matrices U,U describe fluctuations that correspond
to diffusons, while matrices u establish the connection of the
diffusion modes with temperature. The latter matrices limit
rotations of U at energies smaller than T , and this is the way
how the low-energy cutoff enters the RG scheme. Technically,
the cutoff enters due to the smoothening of the function σf at
εf ∼ T . The whole RG procedure can be reformulated as a
process of gradual sharpening of σf , starting from 1/τ and up
to T .

V. CORRELATION FUNCTIONS AND CONDUCTIVITY

We now combine the analysis presented in Secs. III and IV;
the RG equations derived above will be connected with
the observable quantities, such as the correlation functions
and electric conductivity. As it will be shown below, there
is an important difference between the static part of the
density-density correlation function χ̄ st,R

nn , and the static part
of the spin-density spin-density correlation function χ

st,R

si si .
Namely, χ̄ st,R

nn = −2νγ σ
• = −2ν/(1 + F

ρ

0 ) remains unrenor-
malized, whereas χ

st,R

si si becomes scale-dependent. The reason
for the particular behavior of χ̄ st,R

nn lies in the well known
Ward identity: χ̄ st,R

nn = −∂n/∂μ. It has been argued [3] that
the cancellation of corrections to ∂n/∂μ is related to the
fact that it is the much smaller quantity 1/τ and not μ

that determines the ultraviolet cutoff for the logarithmic
singularities originating from the diffusive regime. As a
consequence, the dependence of the density n on the chemical
potential μ cannot be modified by the discussed logarithmic
corrections and, therefore, ∂n/∂μ remains unchanged. (We
shall demonstrate below that, technically, it is due to the
cancellation of the logarithmic corrections.) No protection of
this type exists for the spin susceptibility that is determined
by the static part of the spin-density spin-density correlation
function and, indeed, the spin susceptibility is renormalized.
Finally, we use the density-density correlation function to
obtain the Einstein relation for interacting electrons, and to
relate the electric conductivity to the scaling parameter ρ.

A. Corrections to γ
ρ/σ
• and the spin susceptibility

The static parts of the correlation functions are determined
by γ ρ/σ

• ; compare the discussion in Sec. III, in particular,
Eq. (94). We now show how these quantities are modified by
the RG corrections. One needs to find

�Sϕϕ = −1

2

〈〈
S2

ϕ,2Sint,1
〉〉 − i

4

〈〈
S2

ϕ,2S
2
int,1

〉〉
. (241)

The corresponding diagrams are closely related to those
presented in Fig. 13, in particular to contributions 4 and 5 for
the renormalization of the interaction amplitudes. In a similar
way, when calculating the corrections to γ ρ/σ

• , one also deals
with pairs of diagrams, see Fig. 14.

4(a 4) (b)

5(a 5) (b)

FIG. 14. These diagrams give rise to the corrections to γ ρ/σ
• . They

are organized into two pairs, in close analogy to the corresponding
diagrams in Fig. 13 with the same labels.

We present some details for the first term in Eq. (241). As
mentioned, the correction consists of two parts,

− 1

2

〈〈
S2

ϕ,2Sint,1
〉〉 = A + B, (242)

corresponding to the diagrams labeled as 4(a) and 4(b) in
Fig. 14, respectively. A and B take the form

A = − i

8
(πν)4

2∑
n=0

×
(

〈〈Tr[ϑσ3PP ]Tr[φnσ3P ]tr[φnσ3P ]tr[ϑσ3PP ]〉〉φ

+〈〈Tr[ϑσ3PP ]Tr[φnσ3P ]tr[φnσ3P ]tr[ϑσ3PP ]〉〉φ
)

= −2
∫

x

�ϑT
αβ(x)γ 2 �ϑβα(x)

∫
p,εf

|εf |�R
d (p,εf )D3

εf
(p)

+ 2
∫

x

�ϑT
αα(x)γ 2 �ϑββ(x)

∫
p,εf

|εf |�R
2,d (p,εf )D3

εf
(p)

(243)

and

B = − i

4
(πν)4

2∑
n=0

×
〈〈

Tr[ϑσ3PP ]Tr[φnσ3P ]tr[φnσ3P ]tr[ϑσ3PP ]
〉〉

φ

= 2
∫

x

�ϑT
αβ(x)γ 2 �ϑβα(x)

×
∫

p,εf

|εf | [�R
d (p,εf ) − 2�R

2,d (p,εf )
]
D3

εf
(p). (244)

In these expressions, we abbreviated ϑ = γ
ρ
�ϕ + γ σ

�ϕσ .
Summing contributions A and B, one gets

−1

2

〈〈
S2

ϕ,2Sint,1
〉〉

= −8(γ σ
�)2

∫
x

�ϕT (x)γ2 �ϕ(x)
∫

p,εf

|εf |�R
2,d (p,εf )D3

εf
.

(245)
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Two remarks are in order here. First, we see that the am-
plitude � disappears from the final result due to a cancellation
between A and B. Second, a logarithmic correction exists only
for the triplet component, the singlet part remains untouched.
These two observations carry over to the calculation of the
other contribution to �Sϕϕ , which is also organized into a pair
of diagrams; see diagrams 5(a) and 5(b) in Fig. 14. The total
result can conveniently be written in the form

�Sϕϕ = 4ν(γ σ
�)2

�2
2

∑
i=4,5

(��1)i

∫
x

�ϕT (x)γ2 �ϕ(x). (246)

Comparing with Sϕϕ , and using the relations for (��)i stated
in Eq. (226), one finds

�γ ρ
• = 0, �γ σ

• = 2�2

zz2
(γ σ

�)2 g ln λ−1. (247)

The correction to γ σ
• depends on the vertices γ σ

�. In
Sec. V B, we will show that the RG equations generalize the
Fermi-liquid relations for γ σ

� and γ σ
• as follows:

γ σ
� = γ σ

• = z + �2. (248)

As a result, we observe that the renormalization of the electron-
electron interaction in the triplet channel leads to the scale-
dependent spin susceptibility [40,48]

χσ = (z + �2)χσ
free, (249)

where χσ
free = 1/2(gLμB)2ν is the unrenormalized spin sus-

ceptibility of the free electron gas.

B. Vertex corrections

As we have seen in Eq. (247), the knowledge of the
triangular vertices γ σ

� is crucial for finding the static vertex γ σ
• .

In addition, γ
ρ/σ
� also determines the dynamical correlation

functions, see Eqs. (96) and (97). We will discuss the
renormalization of the vertices in this section.

First of all, it is important to stress that γ ρ/σ
� has been chosen

as the common charge for two vertices: the one associated with
the quantum source and the one associated with the classical
one. It is crucial for the overall structure of the theory that
both of them are renormalized in the same way. As will be
seen below, it is indeed the case.

In order to find the vertex corrections, one needs to find
corrections to the term SϕQ defined in Eq. (62):

�SϕQ = i〈〈Sϕ,2Sint,1〉〉 − 1

2

〈〈
Sϕ,2S

2
int,1

〉〉 − 〈〈Sϕ,2Sint,1Sint,2〉〉

− i

4

〈〈
Sϕ,2S

2
int,1Sint,2

〉〉
. (250)

Due to the structural similarity between Sϕ,2 and Sint,2, the
calculation is very similar to the one performed for the
renormalization of the interaction amplitudes, compare the
corrections (�S�)2−5 in Eqs. (192)–(195).

Again, the diagrams come in pairs, see Fig. 15, which is
structured in analogy to Fig. 13. Here, we merely state the
result, which can be expressed in terms of the corrections to

2(a 2) (b)

3(a 3) (b)

4(a 4) (b)

5(a 5) (b)

FIG. 15. The four pairs of diagrams relevant for the vertex
corrections.

the interaction amplitudes stated in Eq. (226):

�SϕQ = 2πνTr[γ σ
�ϕ̂σQ]

[
1

2

3∑
i=2

(��1)i
�2

+
5∑

i=4

(��1)i
�2

]
.

(251)

It turns out that the final result is very simple:

�γ
ρ
� = 0, �γ σ

� = 2�2

z
γ σ

� g ln λ−1. (252)

It is instructive to compare �γ σ
� with the correction to z2,

�z2 = �z + ��2 = 2�2

z
z2 g ln λ−1. (253)

Since initially z2 = γ σ
� = 1/(1 + Fσ

0 ), as it follows from
Eqs. (64) and (66), we may conclude that the relation

γ σ
� = z2 (254)

holds also for the renormalized quantities. With this informa-
tion at hand, one may return to the calculation of �γ σ

• , and
finds

�γ σ
• = 2�2

z
z2 g ln λ−1 = �z2. (255)

Since initially γ σ
• = 1 + �2, one obtains that γ σ

� = γ σ
• = z2

as it was already stated in Eq. (107). Besides, the above
calculations confirm that �γ

ρ
� = �γ ρ

• = 0.
Importantly, these results imply that the relations (105)

are indeed fulfilled. These relations make sure that the
conservation laws hold at any stage of the renormalization
procedure. Let us note that for the triplet channel not only
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the ratio (γ σ
� )2/γ σ

• equals z2 but, besides, each of the
quantities γ σ

� and γ σ
• separately. For the singlet channel,

the statement �γ
ρ
� = �γ ρ

• = 0 should be supplemented with
the observation that �z1 = 0. This is sufficient for the relation
z1 = (γ ρ

�)2/γ ρ
• to hold unchanged.

C. Electric conductivity

Combination of the continuity equation and the
Kubo formula allows to extract the electric conductivity
from the retarded density-density correlation function as
follows:

σ = −e2 lim
ω→0

lim
q→0

[
ω

q2
Imχ̄R

nn(q,ω)

]
. (256)

Formula (108) can be conveniently written as

χ̄R
nn(q,ω) = − ∂n

∂μ

DFLq2

DFLq2 − iω
, (257)

where

DFL = D
(
1 + F

ρ

0

)
. (258)

As a result, Eq. (256) leads to the Einstein relation

σ = e2 ∂n

∂μ
DFL = 2νe2D. (259)

One can see that the Fermi liquid correction 1 + F
ρ

0
cancels between DFL and ∂n/∂μ = 2ν/(1 + F

ρ

0 ), so that the
renormalized diffusion coefficient D in the NLσM yields
directly the electric conductivity with minimal dimensional
coefficients [7].

VI. CONCLUSION

We, thus, rederived using the Keldysh technique the
main results of the RG theory of the disordered electron
liquid [3,5,6]. Besides the set of the RG equations, the
discussed items include: (i) the derivation of the Einstein
relation which allows to connect the electric conductivity to
the scale-dependent diffusion coefficient D in the NLσM, (ii)
the expression for the renormalized spin susceptibility, (iii) a
number of relations between the vertices and the interaction
parameters, which in essence are the Ward identities. For
understanding the overall structure of the Keldysh NLσM, it
was crucial to observe that the two vertices, the one associated
with the quantum source and the one associated with the
classical one, are both renormalized in the same way. The
validity of the theory has been confirmed experimentally by
measuring resistance along with in-plane magnetoresistance in
Si-MOSFETs at various temperatures and densities [15,16,49].

We concentrated here mainly on the peculiarities induced
by the matrix structure of the NLσM in the Keldysh technique.
We conclude, that apart from differences related to working
with Keldysh matrices instead of replicas, the RG procedure
in both schemes are rather similar. In subsequent papers, we
apply the developed technique for the calculation of the heat
density-heat density correlation function, which allows us to
analyze heat transport at low temperatures.
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