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Delocalization and scaling properties of low-dimensional quasiperiodic systems
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In this paper, we explore the localization transition and the scaling properties of both quasi-one-dimensional
and two-dimensional quasiperiodic systems, which are constituted from coupling several Aubry-André (AA)
chains along the transverse direction, in the presence of next-nearest-neighbor (NNN) hopping. The localization
length, two-terminal conductance, and participation ratio are calculated within the tight-binding Hamiltonian.
Our results reveal that a metal-insulator transition could be driven in these systems not only by changing the NNN
hopping integral but also by the dimensionality effects. These results are general and hold by coupling distinct AA
chains with various model parameters. Furthermore, we show from finite-size scaling that the transport properties
of the two-dimensional quasiperiodic system can be described by a single parameter and the scaling function can
reach the value 1, contrary to the scaling theory of localization of disordered systems. The underlying physical
mechanism is discussed.
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I. INTRODUCTION

Since the original prediction by Anderson that the disorder
could lead to the absence of electron diffusion in imperfect
crystals [1], Anderson localization has always been one of
the most fascinating phenomena in condensed-matter physics
and much progress has been achieved in this research field
[2–5]. In fact, Anderson localization is a ubiquitous quantum
phenomenon and has been directly observed in a variety of
disordered systems [6–14].

On the other hand, the complementary subject of the
exploration of metallic states in low-dimensional disordered
systems arises and has attracted extensive attention among
the physics community, in the context of electron transport
and direct application of realistic materials which are always
disordered. For instance, the extended states have been
reported in one-dimensional (1D) disordered systems when
the short- or long-range correlations are incorporated [15–19].
Another celebrated example is the Aubry-André (AA) model
[20],

[E − W cos(2παn)]ϕn = t(ϕn−1 + ϕn+1), (1)

where E is the Fermi energy, W is the strength of the on-site
potential, α is an irrational number and is incommensurate
with the lattice, t is the nearest-neighbor hopping integral, and
ϕn is the amplitude of the wave function at the nth site. Because
α is irrational, the on-site potential displays quasiperiodicity
and the AA model can be regarded as a quasiperiodic (QP)
system.

Let us consider the commensurate case of α = p/q with
p and q being co-prime integers. It is obvious that the
resultant energy spectrum of Eq. (1) consists of q subbands
and all electronic states are described by Bloch’s theorem.
Since an irrational number can be viewed as the ratio of
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two infinite integers, the energy spectrum of the AA model
splits into infinite subbands, leading to a highly fractal band
structure. Besides, it has been claimed that all electronic
states of the AA model are delocalized when W < 2t and
are exponentially localized with Lyapunov exponent ln(W/2t)
when W > 2t [20]. This metal-insulator transition (MIT) in
parameter space has been verified experimentally in both
Bose-Einstein condensates and photonic lattices. Roati et al.
have demonstrated this phase transition for noninteracting
ultracold atoms in optical lattices by studying the transport
properties and both spatial and momentum distributions [10].
Lahini et al. have directly measured the spreading of initially
narrow wave packets in photonic lattices and observed a
localization phase transition at W = 2t [12]. These recover the
interest in the electronic properties of the AA model. Sil et al.
have shown that a ladder network, consisting of two identical
AA chains, exhibits an MIT at multiple Fermi energies in
the presence of next-nearest-neighbor (NNN) hopping [21].
Biddle et al. have studied the localization properties of the AA
chain by considering non-nearest-neighbor hopping and found
the mobility edges [22,23].

Since the realistic materials usually have finite width, there
is a growing interest in the localization properties of the
quasi-1D system [24–30] and of the two-dimensional (2D)
system in recent years [31–37]. From this perspective, it would
be significant to investigate the localization transition and
the scaling properties of both quasi-1D and 2D QP systems,
which are made up from coupling several AA chains along
the transverse direction, and there has already been one work
along this research field [21]. One wonders whether there still
exists an MIT in these systems in parameter space and whether
the scaling theory of localization remains valid in the 2D QP
system. In this paper, we will answer the above two questions
and Fig. 1 plots the schematic illustration of the system
contacted by two leads. By combining the Landauer-Büttiker
formula with the recursive Green’s-function technique, the
conductance of the QP system is calculated in the presence of
NNN hopping. Our results reveal that an MIT could occur in

1098-0121/2014/89(7)/075434(8) 075434-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.075434


AI-MIN GUO, X. C. XIE, AND QING-FENG SUN PHYSICAL REVIEW B 89, 075434 (2014)

FIG. 1. (Color online) Schematic view of the QP system (white
region with open symbols) connected by two leads (gray region with
filled circles). The black, blue, and red lines denote the intrachain,
interchain, and NNN hopping integrals, respectively. Here, the width
of the system is S = 3.

the quasi-1D QP system by tuning not only the NNN hopping
integral but also the number of the AA chains. All of these
results are general and still hold by coupling distinct AA
chains with different strengths of the on-site potentials and
other model parameters. In addition, we show from finite-size
scaling that the transport properties of the 2D QP system can
be described by a single parameter and the scaling function can
reach the value 1, contrary to the scaling theory of localization.
Finally, the MIT phase diagram is obtained and the statistical
properties of the conductance are performed for the 2D QP
system.

The rest of the paper is constructed as follows. In Sec. II, the
theoretical model and the method are presented. In Sec. III,
the conductance and the localization length are shown for
different situations, and the scaling and statistical properties
are also studied for the 2D QP system. Finally, the results are
summarized in Sec. IV.

II. MODEL AND METHOD

Within the framework of the tight-binding approximation,
the Hamiltonian of the QP system connected by two leads can
be written as

H =
∑
j,n

[εj,nc
†
j,ncj,n + tc

†
j,ncj,n+1 + λc

†
j,ncj+1,n

+ td (c†j,ncj−1,n+1 + c
†
j,ncj+1,n+1) + H.c.], (2)

where c
†
j,n (cj,n) creates (annihilates) an electron at lattice site

(j,n) of the left lead (n < 1), of the central region (1 � n � L;
white region in Fig. 1), and of the right lead (n > L). Here,
j ∈ [1,S] is the chain index, S is the width, and L is the length
of the central region. The on-site potential εj,n at the central
region is set as

εj,n = Wj cos(2παn), (3)

with Wj the strength of the on-site potential of the j th chain
and α the irrational number. t is the intrachain hopping integral
and is chosen as the energy unit. λ and td are, respectively,
the interchain and NNN hopping integrals between two
neighboring chains (see Fig. 1).

The Schrödinger equation H|�〉 = E|�〉 in the site repre-
sentation can be expressed as

(EI − Hn)�n = M(�n−1 + �n+1). (4)

Here, I is the S × S identity matrix, Hn is the sub-Hamiltonian
matrix of the nth layer,

Hn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ε1,n λ 0 · · · 0

λ ε2,n λ
. . .

...

0 λ ε3,n

. . . 0
...

. . .
. . .

. . . λ

0 · · · 0 λ εS,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

�n = (ψ1,n,ψ2,n, · · · ,ψS,n)T with ψj,n the amplitude of the
wave function at lattice site (j,n) and T the transpose, and
M is the sub-Hamiltonian matrix connecting two successive
layers,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

t td 0 · · · 0

td t td
. . .

...

0 td t
. . . 0

...
. . .

. . .
. . . td

0 · · · 0 td t

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

At zero temperature, the Landauer conductance G can be
obtained from the Landauer-Büttiker formula [38]:

G = G0Tr[�RGr�LGa], (7)

with G0 = 2e2/h the quantum conductance. �L/R =
i(�r

L/R − �a
L/R) is the linewidth function, Gr = (Ga)† =

(EI − H − �r
L − �r

R)−1 is the Green’s function, �r
L/R is

the retarded self-energy due to the coupling to the left/right
lead with the on-site potential being 0 [39], and H is the
Hamiltonian of the central region. In the numerical calculation,
the conductance can be evaluated by using the recursive
Green’s-function technique for very large system size. Besides,
the Lyapunov exponents γj ’s are also calculated by the
transfer-matrix method [26]. For the S × L system, there are S

propagating channels along the longitudinal direction and each
γj reflects the exponential decay of the corresponding channel.
The smallest γj is the most physically significant quantity and
its inverse is the localization length ξ . We emphasize that
the propagating channel is distinct from the chain in Eq. (2)
because of the interchain hopping integral λ and the NNN one
td , and these two concepts are equivalent to each other when
λ = td = 0. The fixed boundary condition is imposed in the
transverse direction. In this situation, the system is closer to the
realistic materials, of which their edges usually do not connect
to each other, and corrections to scaling disappear faster with
increasing system size [40,41].

In the following, the irrational number is taken as α =
1/(10π ) and the results are usually averaged over 104 QP
samples to reach convergence, except for specific indication
in the figure caption. Each QP sample is uniformly selected
from the infinite system [see Eq. (3) where the integer n can
be +∞ theoretically] by using the sliding window strategy
[42]. For instance, the mth sample can be expressed as εj,n =
Wj cos[2πα(n + i ∗ m − 1)] = Wj cos[2παn + ϕi,m] with i

and m being positive integers. Here, the integer i is chosen
as i = 1 and the results are independent on i when the number
of samples is sufficiently large.
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III. RESULTS AND DISCUSSIONS

A. Delocalization induced by the NNN hopping

We first consider the case of all Wj = W and prove
analytically the NNN hopping-induced MIT in the QP system
which is composed of several identical AA chains. In this
regard, all Hn’s and M can be diagonalized by applying
a single unitary matrix U through Pn = U†HnU and Q =
U†MU [43]. Then, Eq. (4) can be decoupled into the following
Schrödinger equations:

(E − νk,n)φk,n = μk(φk,n−1 + φk,n+1), (8)

where k ∈ [1,S], (φ1,n,φ2,n, · · · ,φS,n)T = U†�n, and νk,n and
μk are the kth eigenvalue of Hn and M, respectively. In
addition,

νk,n = W cos(2παn) + 2λ cos
kπ

S + 1
(9)

and

μk = t + 2td cos
kπ

S + 1
. (10)

Accordingly, the QP system can be transformed into S isolated
AA chains with identical strength W of the on-site potential
[Eq. (9)] and different hopping integrals [Eq. (10)]. These
decoupled chains are exactly the propagating channels as
mentioned above. One can see that the interchain hopping
integral only determines the positions of the energy bands of
the decoupled chains and the energy bands will be farther
away and even separated from each other for greater λ. In
contrast, the NNN hopping integral only contributes to the
hopping integrals of the decoupled chains, and some of the
decoupled chains will be more delocalized with increasing td
and contrarily the others will become more localized. Besides,
we can also demonstrate the mobility edges from Eqs. (9) and
(10) for the specific case td = t [21]. It is clear that when any
one of the decoupled chains has extended states, the QP system
shows metallic behavior. Since the most conducting decoupled
chain is the first one with k = 1, the critical condition to
observe the MIT in the QP system is [20]

Wc = 2

(
t + 2td cos

π

S + 1

)
. (11)

When W < Wc, there will be at least one delocalized decou-
pled chain and the system exhibits metallic behavior, whereas
when W > Wc, all of the decoupled chains are localized and
the system is insulating. Although the analytical argument is
performed on the special case of all Wj = W , we believe that
the NNN hopping-induced MIT is general for other quasi-1D
QP systems by coupling distinct AA chains.

To explore the generality of the NNN hopping-induced
MIT in the QP system, we study the localization properties
of the two-leg ladder model as an example, by coupling two
distinct AA chains with different Wj ’s. In this situation, it
is difficult to provide analytical results and the numerical
calculations are performed instead. Figures 2(a)–2(c) show the
localization length ξ for td = 0, 0.3t , and 0.6t , respectively,
as a function of energy E with W1 = t and W2 = 4t , while
the insets display the corresponding Landauer conductance
G. Here, ξ is averaged within a very small energy interval of

FIG. 2. (Color online) Energy-dependent localization length ξ of
the two-leg ladder for (a) td = 0 (solid line), (b) td = 0.3t , and (c) td =
0.6t with L = 105. The insets show the corresponding conductance
G and the dotted line in (a) denotes the DOS. The above results are
performed for a single QP sample. (d) Length-dependent averaged
conductance 〈G〉 for typical values of E with td = 0.6t , which is
obtained from 104 QP samples. Other parameters are S = 2, λ = 5t ,
W1 = t , and W2 = 4t .

10−4 to avoid numerical fluctuations. Although the localization
properties of the two-leg ladder strongly depend upon the
NNN hopping integral td (discussed later), one can see several
general features that are irrespective of td . First, all of the
energy spectra consist of two isolated subbands because of the
repulsion effects between the two chains driven by the large
interchain hopping integral λ = 5t [Eq. (9)]. And these two
subbands are exactly the propagating channels of the two-leg
ladder. Second, there exist many sharp peaks in the curve
ξ -E due to the highly fractal energy band of the AA model.
This feature can be further identified in the density of states
(DOS) [see the dotted line in Fig. 2(a)], which is obtained
by diagonalizing the Hamiltonian of the central region, and
the quantized energy levels coincide with the peaks in the
curve ξ -E [Fig. 2(a)]. Here, we emphasize that the DOS
profile does not change with the system length L when the
two-leg ladder is sufficiently long. The origin of the extremely
fractal energy spectrum can also be understood as follows: the
AA model can be projected from the 2D square lattice which
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develops degenerate Landau energy levels in the presence of a
perpendicular magnetic field [44].

In the absence of td , the two subbands are almost
symmetric with respect to E = 0 and the two-leg ladder
exhibits insulating behavior with ξ � L and G = 0 [see
the solid line and the inset of Fig. 2(a)], although all
electronic states of the first AA chain are delocalized (W1 = t),
consistent with a previous study in which the system composed
of one disordered chain and another completely ordered
chain is localized [25]. This is attributed to the fact that
when an electron is injected into the first chain, it will be
continuously scattered from larger (localized) potentials of
the second chain, owing to the interchain hopping integral.
The longer the system is, the more the scattering the elec-
tron suffers. Accordingly, G will be exponentially declined
to zero with increasing L, a typical feature of Anderson
localization.

While in the presence of td that could lead to electron-
hole asymmetry, the two subbands become asymmetric and
opposite behaviors could be observed with increasing td .
For the left subband, its bandwidth decreases monotonically
from 8.6t at td = 0 to 6.4t at td = 0.6t and ξ is gradually
declined by increasing td , and hence the electronic states
become more localized. In contrast, the bandwidth of the
right subband is enhanced from 8.6t at td = 0 to 10.8t at
td = 0.6t and ξ increases with td , and nonzero conductance
could emerge in the region of large td [see the insets of
Figs. 2(b) and 2(c)]. This phenomenon can be explained as
follows. In fact, the NNN hopping integral could produce
an additional two propagating channels with opposite sign
of hopping integrals [Eq. (10)] and thus affect the transport
properties of the two-leg ladder by mixing these channels with
the original ones at td = 0. When the hopping integrals of the
additional and original propagating channels are of different
signs, the effective hopping integral will be reduced and leads
to the shrinkage of both the bandwidth and the localization
length. Contrarily, when they have identical signs, the effective
hopping integral can be enhanced and both the bandwidth and
the localization length can be increased, leading to a possible
MIT in the two-leg ladder. Actually, the electronic states of
finite conductance observed in the insets of Figs. 2(b) and
2(c) are delocalized even in the thermodynamic limit because
the conductance of the localized states presents exponential
dependence on the system length and should be zero when
L = 105. This statement can be further verified in Fig. 2(d),
where the averaged conductance 〈G〉 is plotted for several
typical energies as a function of L with other parameters
identical to those in Fig. 2(c). It clearly appears that 〈G〉
fluctuates around a certain value with increasing L and does
not tend to zero. Therefore, we conclude that these electronic
states are truly delocalized and an MIT could be driven in the
two-leg ladder by increasing td .

To further substantiate the NNN hopping-induced MIT and
the stability of the extended states in the region of large td ,
we then investigate the localization properties of the two-leg
ladder with various model parameters, as illustrated in Figs. 3
and 4. First, we consider other values of Wj ’s, small λ, and
large α. Figure 3(a) shows the conductance G versus E by
coupling two localized AA chains with W1 = 2.2t and W2 =
3t , while Fig. 3(b) plots G versus E for large irrational number

FIG. 3. (Color online) Energy-dependent G of the two-leg ladder
by coupling two distinct AA chains with td = 0 (solid line) and
td = 0.6t (dotted line). (a) W1 = 2.2t , W2 = 3t , and α = 1/(10π ).
(b) W1 = t , W2 = 4t , and α = (1 + √

5)/2. Other parameters are
S = 2, L = 105, and λ = t . The results are calculated from a single
QP sample.

FIG. 4. (Color online) (a) Eigenvalue spectrum of the two-leg
ladder by varying the irrational number α within (0,1). (b) 2D plot
of Pr vs the eigenvalue number k [see the horizontal coordinate Ek

in (a)] and α. Larger k refers to higher Ek . Here, L = 400 and other
parameters are the same as those in Fig. 2(c). All of these results are
performed for a single QP sample and are similar when other QP
samples are considered or by coupling two identical AA chains with
W1 = W2.
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α = (1 + √
5)/2, with the small interchain hopping integral

λ = t . It can be seen that all electronic states are localized with
G = 0 in the absence of td [see the solid lines in Figs. 3(a)
and 3(b)] and the extended states of nonzero conductance could
emerge when td becomes large [see the dotted lines in Figs. 3(a)
and 3(b)]. Since the band structure of the two-leg ladder is
sensitive to both α and Wj ’s, the position of the extended
states is distinct from each other when α or Wj is different.

Second, we consider the irrational number α within a wide
range. Figure 4(a) plots the eigenvalue spectrum of the two-leg
ladder by changing α from 0 to 1. It clearly appears that there
exist two Hofstadter-like butterflies in the energy spectrum,
although the system is composed of two distinct AA chains
with different Wj ’s. The left subband exhibits the compressed
configuration of the Hofstadter’s butterfly due to the small
width 6.7t (the original Hofstadter’s butterfly was reported at
W = 2t with width 8t) [44], and the right subband shows the
expanded version with width 11.2t .

To illustrate the localization properties at different α, it is
convenient to calculate the participation ratio Pr [5]:

Pr = 1

SL
∑S

j=1

∑L
n=1 |ψj,n|4

, (12)

which measures the extension of the wave function. Figure 4(b)
shows the corresponding 2D plot of Pr versus the eigenvalue
number k and α. It can be seen that Pr is very small in the left
subband (1 � k � 400) and the wave functions are confined
within a small region. Our further calculations reveal that Pr

decreases with increasing L, indicating that all electronic states
are localized in the left subband [26]. In contrast, Pr is usually
very large in the right subband (401 � k � 800) and the wave
functions can spread over the entire system for all investigated
values of α, except for some electronic states which locate at
the band edge and the corresponding Pr remains quite small
[see the four corners of the right subband in Fig. 4(b)]. The
small Pr in these corners may originate from the fact that
(1) the QP character of the system is not obvious for short
system length L = 400 when α is very close to an integer
and (2) the electronic states in the band edge are isolated
from others and cannot form a band, and thus become fragile.
However, we find that the large Pr is independent on L (data
not shown), implying that the corresponding electronic states
are delocalized in the right subband. Besides, one can see
that Pr exhibits clustering patterns in the right subband and
is extremely large within these regions, owing to the highly
degenerate energy levels. Therefore, our results demonstrate
that the extended states still exist in the case of large td for all
investigated values of Wj , λ, and α, and thus the NNN hopping-
induced MIT is general. Since the localization properties of
the system do not depend upon λ, in the following we fix the
interchain hopping integral as λ = t without loss of generality.

B. Delocalization induced by the dimensionality

Besides the NNN hopping, it can be seen from Eq. (10)
that the hopping integrals of some decoupled chains can be
enhanced with increasing the system width S in the presence
of td and the extended states can emerge in the case of
large S when W < Wc. Figure 5(a) displays the conductance
G versus E for several quasi-1D QP systems which are

FIG. 5. (Color online) G vs E of several quasi-1D QP systems
with different width S. (a) Wj = 2.4t for all j ’s. (b) Wj = t when j

is odd and Wj = 4t when j is even. Other parameters are L = 105,
λ = t , and td = 0.2t . The results are performed for a single QP
sample.

composed of identical AA chains with all Wj = 2.4t and
L = 105. One notices that G is zero within the numerical
accuracy for S = 2 [see the solid line of Fig. 5(a)] and is
progressively increased with increasing S as expected [see
the dotted and dash-dotted lines of Fig. 5(a)], implying
the occurrence of MIT in the quasi-1D QP systems. The
underlying physics for the extended states observed in large S

can be ascribed to the dimensionality effects together with the
NNN hopping. Just like the two-leg ladder model, the NNN
hopping integral could also generate additional propagating
channels with various hopping integrals in the quasi-1D
systems [Eq. (10)]. These additional propagating channels
will interact with the original ones at td = 0 and change
the transport properties of the quasi-1D system with both
localized and delocalized channels. Since both the number of
the delocalized channels and the conductance of the original
ones increase with S, the system’s conductance can become
larger with increasing S. The dimensionality-effects-induced
MIT is a general phenomenon and can still take place in the
QP systems by coupling distinct AA chains of different Wj ’s,
as illustrated in Fig. 5(b), where the conductance G is shown
for several quasi-1D QP systems by coupling two kinds of AA
chains. Besides, the conductance profiles exhibit several gaps
for small S [see the dotted lines of Figs. 5(a) and 5(b)] and these
gaps tend to disappear for large S because the energy spectra of
the delocalized channels are different and can distribute over a
wide energy range with increasing S. Therefore, we conclude
that an MIT could also be driven in the quasi-1D QP systems
by increasing the system width.

C. Localization properties of the 2D QP system
and the phase diagram

We then study the localization phase transition and the
scaling properties of the 2D QP system with L = S. For the
purpose of scaling, the contact resistance is subtracted from
G to yield the Thouless conductance g, which is expressed
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FIG. 6. (Color online) Scaling properties of 〈ln g〉 for the 2D QP
system with S = L and all Wj = W . (a) 〈ln g〉 vs E for different L and
(b) 〈ln g〉 vs L for several values of E with W = 2.4t and td = 0.2t .
(c) 〈ln g〉 vs td for distinct L, (d) 〈ln g〉 vs L for various td which is
very close to the critical value t c

d (see text), and (e) 〈ln g〉 vs L for
several td which is distant from t c

d , by fixing W = 3t and E = 1.8t .
(d) The squares, circles, down triangles, diamonds, and left triangles
denote td = 0.2508t , 0.251t , 0.252t , 0.253t , and 0.255t , respectively.
(e) The circles and down triangles represent, respectively, td = 0.3t

and 0.5t with their vertical axis on the left side, while the squares
correspond to td = 0.24t with its vertical axis on the right side (as
indicated by the arrow). (b),(e) The solid lines are the linear fitting
curves 〈ln g〉 ∝ β0 ln L with β0 being about 1. The results are averaged
over 104 QP samples.

as [38,41]

1

g
= G0

2G
− 1

2N
. (13)

Here, N is the number of propagating channels in the leads at
Fermi energy E with 1/(2N ) the contact resistance. Then, the
scaling function [2,41],

β = d〈ln g〉
d ln L

, (14)

is numerically evaluated and is used to determine the local-
ization and scaling properties. β < 0 and β > 0 correspond to
the insulator and the metal, respectively.

Figure 6(a) shows the energy-dependent 〈ln g〉 for the 2D
QP system with several values of L. It can be seen that 〈ln g〉
increases with L in a wide energy range and exhibits strong
fluctuations in the band edge, owing to the fractal energy
spectrum of the AA model. The scaling behavior of 〈ln g〉
on L is plotted in Fig. 6(b) for several typical energies. It

clearly appears that 〈ln g〉 increases monotonically with L and
the dependence of 〈ln g〉 on L can be well fitted by a simple
function 〈ln g〉 ∝ β0 ln L, with the exponent β0 being about
1. This implies that the 2D QP system presents truly metallic
behavior in the thermodynamic limit.

Figure 6(c) displays 〈ln g〉 versus td for several L. One can
see that 〈ln g〉 increases with td , which is due to the emergence
of additional delocalized channels and the enhancement of the
conductance of the original ones in the 2D system. Besides,
the curves 〈ln g〉-td for different L intersect at a critical value
t cd of the NNN hopping integral. For td < tcd , 〈ln g〉 decreases
with L and corresponds to the localized regime; whereas for
td > tcd , 〈ln g〉 increases with L and the system is in the metallic
regime. This feature can be further observed in Figs. 6(d) and
6(e), where 〈ln g〉 is shown as a function of L with td close
to and distant from the critical value t cd , respectively. It can
be seen that there exist fluctuations in the curve 〈ln g〉-L in
the region of small conductance [see the squares, circles, and
down triangles in Fig. 6(d)]. The curve 〈ln g〉-L is smooth in the
region of large conductance [see the left triangles in Fig. 6(d)]
and can also be fitted well by the function 〈ln g〉 ∝ β0 ln L with
β0 ≈ 1 when 〈ln g〉 becomes larger [see the circles and down
triangles in Fig. 6(e)].

Figure 7 plots the scaling function β versus 〈ln g〉 and the
bottom inset shows the dependence of 〈ln g〉 on the sample
number NS for typical parameters. It clearly appears that the
oscillating amplitude of 〈ln g〉 declines quickly with increasing
NS and 〈ln g〉 saturates when NS > 300 (see the bottom inset of
Fig. 7). For instance, the ratio of the difference between 〈ln g〉
at NS = 294 and its saturated value to the saturated value is
0.08%, where the saturated value of 〈ln g〉 is prescribed at
NS = 105. Here, β is calculated from 104 samples to avoid
spurious effects and the length is taken as L > 102 to capture

FIG. 7. (Color online) Scaling function β vs 〈ln g〉 for the 2D
QP system. β is calculated from a wide range of W , td , and E.
Here, the length is taken as L > 102 to capture the QP character
of the system, the step of the length is chosen as d ln L = 0.2, and
104 QP samples are considered. The oblique line is the fitting curve
of β ∝ 1.02〈ln g〉 for 〈ln g〉 < 0 and the horizontal line is β = 1.
The top inset displays the MIT phase diagram in the W -td space
(black symbols), which is extracted from Fig. 6(c), and the solid line
denotes the curve W = 2(t + 2td ). The bottom inset shows 〈ln g〉 as
a function of the sample number NS with E = 1.8t , L = 102, and
other parameters being identical to those in Fig. 6(a).
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the QP character of the system. It can be seen from Fig. 7 that
all data points tend to construct a single curve of β − 〈ln g〉. For
small conductance, the scaling function can be linearly fitted by
a simple function β ∝ 1.02〈ln g〉 (see the oblique line), in good
agreement with the scaling theory of localization [2], implying
that the conductance falls off exponentially with increasing L

in the localized regime. For large conductance, the scaling
function is approximately 1 (see the horizontal line of β = 1),
indicating that the conductance increases linearly with L. This
point is contrary to the scaling theory of localization that the
scaling function should be less than 0 for the 2D disordered
systems [2]. The underlying physics can be attributed to the
fact that the system we studied is QP, but not disordered.
In this situation, the delocalized channels as well as their
conductances will be increased by increasing L.

However, there exist fluctuations in the curve β − 〈ln g〉,
especially in the regime of small conductance. This phe-
nomenon is mainly due to the highly fractal energy spectrum of
the QP system. One can see from Fig. 6(a) that 〈ln g〉 fluctuates
very strongly for small 〈ln g〉, in sharp contrast to the situation
where it is smooth for large 〈ln g〉, for whatever the system
size is. These fluctuations can also be identified in Fig. 6(d),
as discussed above. The top inset of Fig. 7 displays the MIT
phase diagram in the W -td space (see the black symbols),
which is subtracted from Fig. 6(c). It can be seen that the
critical NNN hopping integral td to observe metallic states
increases monotonically with W and the curve of td -W can be
fitted by W = 2(t + 2td ).

D. Statistical properties of the 2D system

Finally, we investigate the statistical properties of the
Thouless conductance of the 2D QP system. Figures 8(a)
and 8(b) show, respectively, the distribution of g for typical
parameters and the energy-dependent standard deviation σg =

FIG. 8. (Color online) Statistical properties of the Thouless con-
ductance for the 2D QP system. (a) Distribution of g and
(b) energy-dependent standard deviation σg = √〈g2〉 − 〈g〉2. The
results are obtained from 105 QP samples and other parameters are
identical to those in Fig. 6(a).

√
〈g2〉 − 〈g〉2 for three system sizes with NS = 105. It can be

seen from Fig. 8(a) that the distribution of g is extremely com-
plicated and is not normal, which is different from previous
studies in disordered systems [40,45]. Because of the cosine
modulation of the on-site energies and the quasiperiodicity, we
find that the conductance presents oscillating behavior with
various amplitudes when the sample is successively chosen
from an infinite AA chain by using the sliding window strategy
(data not shown). Besides, we can see that the probability is
quite large or small when the conductance is around specific
values. As a result, the distribution of g will deviate from the
normal one.

By inspecting Fig. 8(b), one notices the following features:
(1) The magnitude of σg is comparable to 〈g〉 [see Fig. 6(a)
and exp(〈ln g〉) can be viewed as an approximation of 〈g〉],
where σg is large around the band center and becomes very
small within the band edge. It can also be observed that
σg becomes greater when 〈g〉 is larger, indicating that the
fluctuation of the conductance will be stronger for larger
conductance. (2) σg is enhanced by increasing L around the
band center, where the conductance increases with L [see
Fig. 6(a)] and the system presents metallic behavior. This is
different from the universal conductance fluctuation theory
that σg should be independent of the system size. (3) There are
several dips in the profile of σg − E, similar to that observed
in Fig. 6(a).

IV. CONCLUSIONS

In summary, we investigate the localization phase transition
and the scaling properties of both quasi-one-dimensional and
two-dimensional quasiperiodic systems, which are constructed
by coupling several Aubry-André chains along the transverse
direction. By employing the Landauer-Büttiker formula and
the recursive Green’s-function method, the two-terminal con-
ductance is calculated for the quasiperiodic systems with
next-nearest-neighbor hopping. The numerical results indicate
that a metal-insulator transition could be produced in these
quasiperiodic systems in parameter space by adjusting the
next-nearest-neighbor hopping integral and the number of
chains. These results are general and hold by coupling distinct
AA chains with different strengths of the on-site potentials
and other model parameters. We find that the energy spectrum
of the two-leg ladder model exhibits two Hofstadter-like
butterflies. Besides, we show from the finite-size scaling that
the transport properties of the two-dimensional quasiperiodic
system can be described by the single Thouless conductance
and the scaling function can reach the value 1, contrary to the
scaling theory of localization.
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