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Gate-defined coupled quantum dots in topological insulators
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We consider electrostatically coupled quantum dots in topological insulators, otherwise confined and gapped
by a magnetic texture. By numerically solving the (2 + 1) Dirac equation for the wave packet dynamics, we extract
the energy spectrum of the coupled dots as a function of bias-controlled coupling and an external perpendicular
magnetic field. We show that the tunneling energy can be controlled to a large extent by the electrostatic barrier

potential. Particularly interesting is the coupling via Klein tunneling through a resonant valence state of the barrier.
The effective three-level system nicely maps to a model Hamiltonian, from which we extract the Klein coupling
between the confined conduction and valence dots levels. For large enough magnetic fields Klein tunneling can
be completely blocked due to the enhanced localization of the degenerate Landau levels formed in the quantum

dots.
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In topological insulators (TIs), according to the bulk-
boundary correspondence principle [1,2], topologically pro-
tected surface states are formed, which are robust against time-
reversal (TR) elastic perturbations. In the long-wavelength
limit the two-dimensional (2D) electron states at the surfaces of
three-dimensional (3D) TIs can be described as massless Dirac
electrons with the peculiar property that the spin is locked to
the momentum, thereby forming a helical electron gas. Charge
and spin properties become strongly intertwined, opening new
opportunities for spintronic [3,4] applications [5-10].

To build functional nanostructures, such as quantum dots
(QDs) or quantum point contacts, additional confinement
of the Dirac electrons is needed. However, conventional
electrostatic confinement in a massless Dirac system is
ineffective due to Klein (interband) tunneling. In graphene
this problem could be overcome by either mechanically
cutting or etching QD islands out of graphene flakes [11-13]
or by inducing a gap by an underlying substrate, which breaks
the pseudospin symmetry [14,15]. Another promising idea to
overcome the restrictions given by Klein tunneling is to use
graphene strips or nanoribbons. An electrostatic confinement
in such a system has been proposed in Ref. [16] by employing
the transversal electron motion. Moreover, an effective spin
exchange coupling of two gate-defined quantum dots becomes
possible in a graphene nanoribbon by indirectly coupling the
dots via the tunneling to a common continuum of delocalized
states [17].

In TIs a mass gap can be created by breaking the TR
symmetry at the surface by applying a magnetic field. This
could be achieved by proximity to a magnetic material
[18,19], or by coating the surface randomly with magnetic
impurities [20-22]. By modifying the magnetic texture of the
deposited magnetic film, a spatially inhomogeneous mass term
is induced, opening the possibility to define quantum dot (QD)
regions [23], or waveguides formed along the magnetic domain
wall regions [24]. Another interesting, possibly more feasible
way of defining confinement regions, is to induce a uniform
mass gap and to define the QDs by electrostatic gates, which
are energetically shifting the band gap [25,26]. In this paper we
will focus on such gate-defined topological insulator quantum
dots.
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Single QDs confining Dirac electrons have been thoroughly
investigated in the past few years either by numerically solving
tight-binding models or be deducing analytical solutions if a
cylindrical symmetry and infinite-mass boundary conditions
are present [27]. However, the properties of coupled QDs
are much less understood and call for a detailed, inevitably
numerical study. Recently we investigated coupled graphene
QDs of small radii (R < 30 nm) utilizing the Green’s function
method to calculate the energy spectra [28]. The graphene
dots have been modeled by a tight-binding Hamiltonian, since
for very small dots the usage of an effective field model
becomes already questionable. We obtain that, beside the
strong influence of the boundary for etched graphene dots,
the main difference to TI quantum dots lies in the valley
degeneracy unavoidably present in graphene but not at a single-
sided topological surface. For instance, if one investigates the
spin precession of an Dirac electron in a single QD according
to an applied perpendicular magnetic field, in topological
insulators the total angular momentum, as the sum of the
orbital and spin momentum (J, = [, + s.), is conserved due to
[H,J.] = 0. This leads to a dynamic transformation between
orbital and a spin angular momentum during the precession in
a single TT dot, which does not occur in graphene, since the
valley degeneracy exactly cancels out this effect.

In this paper we investigate how an electrostatically tunable
coupling strength between the TI dots of typical size of about
R = 50nm and an applied external magnetic field influence the
energy spectra of the double-dot system. The tunneling time
is deduced from studying the wave packet dynamics, which
needs the numerical solution of the time-dependent (24 1)
Dirac equation. For this purpose we use a specially developed
discretization scheme, which was introduced and discussed
in detail in Ref. [29]. We study two different scenarios for
inducing a coupling between the dots: (i) by conventional
means, i.e., by electrostatically reducing the barrier height
in between the dots, and (ii) by coupling the dots via Klein
tunneling upon a hole state in the barrier, which can be shifted
by a gate voltage. Especially in the second case we find a
strong tunability of the coupling strength. We also introduce
toy one-dimensional (1D) models to study tunneling of Dirac
electrons analytically. Our numerical solutions for coupled
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2D quantum dots establish quantitatively strong and efficient
coupling between the dots. In the Klein tunneling regime we
provide a useful three-level parametric hopping Hamiltonian
to describe the conduction and valence band couplings. Our
goal is to provide the single-electron picture of the tunneling,
which could also be used as a starting point to investigate the
Coulomb blockade physics.

Our paper is organized as follows. The basic idea of a gate-
controlled coupling between QDs and qualitative analytical
solutions are introduced in Sec. I. The numerical investigation
of coupled QDs is presented and discussed in Sec. II. Summary
and conclusions are given in Sec. III.

I. 1D MODEL OF A GATE CONFINED QUANTUM DOT

If a uniform mass gap exists throughout the TI surface,
QDs can be defined by shifting the energy gap locally by
applying gate voltages as illustrated in Fig. 1. The mass barrier
height between the dots becomes electrostatically controllable,
allowing for a direct tunability of the coupling strength. The
barrier can also be shifted upwards in energy as far as a hole
state comes into resonance with the ground state of the isolated
dots. This leads to an effective strong coupling between the
dots via Klein tunneling from the electron states to the hole
state, as illustrated in Fig. 2.

In order to understand qualitatively how the coupling
strength between QDs depends on the barrier height, we first
investigate the transmission probability of a model 1D-mass
barrier. We consider two different cases: (i) a mass barrier
between leads with zero mass, as illustrated in Fig. 3(a), and
(ii) a uniform mass gap in the structure with a shiftable region
in the middle, as shown in Fig. 3(b), which directly corresponds
to the “conventional” coupling scenario of Fig. 1.

For a general 1D structure with an inhomogeneous mass
term m(x) and potential V (x) the Dirac-Hamiltonian is

H = —iad,o, + m(x)o, + V(x), (1)

where o = Avy and o, . denote the Pauli matrices. Let us
assume that we can divide the region of interest into subregions
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o

FIG. 1. (Color online) Schematic band profile of the conduction
(blue line) and valence (red line) bands of two coupled topological
insulator quantum dots. The uniform band gap AE = 2my is shifted
by applying gate voltages. For electrons a double-dot system is formed
with the barrier height being controllable by an external bias Vj,.
This is conventional coupling as found in semiconductor quantum
dots [30].
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FIG. 2. (Color online) Schematic band profile of the conduction
(blue line) and valence band (red line) for the Klein-tunneling
scenario: The coupling between the dots is realized via the Klein
tunneling upon a hole state, which can be shifted by an external gate
voltage V.

in which m and V can be assumed to be constant. For constant
m and V the eigenfunctions Y+ of left (—) and right (4)
moving plane waves of energy E are given by

wi — <:|:ly> eiiqx’ (2)
with
1
q(V,m) = SV (E—V) —m? (€)]
and
_V(E=V):—m?
N @

yielding the general solution ¥ = ¢ty +c ™. At the
boundary of neighboring subregions i and i + 1 the wave
function has to be continuous, resulting in the condition

Yi(xi) = Yip1(x;). Q)

This continuous connection of the wave functions of the
subregions allows us to calculate the transfer matrix M of the
whole system, which connects the amplitudes of the first layer
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FIG. 3. (Color online) (a) Scheme of a single mass barrier of
height my. A mass barrier (b) or a quantum well (c) of width d
is formed for electrons by applying a gate voltage V), of opposite
sign.
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C = (cT,cl_) with the last, i.e., the mostright one Cy = M C;.
From the elements of the transfer matrix the transmission
function can then be obtained by
T(E) = det M ©)
|Mp|?

Mass barrier between massless dots. In the case (i) of a
single mass barrier of height m(, which is shifted by the gate
voltage V, this procedure yields the following result for the
transmission function if the electron energies are below the
barrier, i.e., —mo+ V, < E <m0+ Vj:

—14+67° — 7" + (1 + 7%°)* cosh(2dg;,)
875

with Gy = —iqp, V= =ive, ¥» =y (Vpmo), and g, =

q(Vy,myp). For energies above the barrier, i.e., for E > mo + V,,

and E < —mg + Vj, the transmission probability is given by

1+ 92) sin(dg) ]
(1+v) 52111( Qb)i| C®
4y,

T(E) = , ()

T(E) = [cos%dqb) +

As expected one obtains an exponential and oscillatory
dependence of the transmission function for energies smaller
and greater than the barrier height, respectively, as illustrated
in Fig. 4. Applying a gate voltage allows one to shift the whole
transmission function along the energy axis, which means that
for a given fixed energy one obtains an exponential dependence
on the applied gate voltage. Note thatin contrast to Schrodinger
particles the transmission remains finite even at zero energy
due to the finite group velocity for £ = 0:

) dm(] -1 _ 2dmg

T(E =0)=| cosh” [ — ~e M. ©)
wa

Uniform mass with a gate-controlled barrier. In the case (ii)

of a uniform mass region m =my and a gate induced

single mass barrier of height V},, as shown in Fig. 3(b), the
transmission function results in

877y
2
v+ 6yt + vy — (v — i) cos2dgy)
if the electron’s energy is higher than the barrier (E>mo+V})
with ¥, = v E? — m3/(E + my). For electron energies lower
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FIG. 4. (Color online) Calculated transmission function 7'(E) of
a single 1D-mass barrier, as shown in Fig. 3(a). Applying a voltage V,,
allows to shift 7(E) along the energy axis, which strongly changes
the transmission for a fixed energy.
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FIG. 5. Calculated transmission function 7'(E) of a gate induced
1D barrier of width d = 30 nm, as illustrated in Fig. 3(b), for different
applied biases. The mass is set to my = 50 meV.

than the barrier mg < E < mg + Vj, the transmission is given
by

1 4 ~4 - h2 d~ 1
T(E)= {— [3 + cosh(2dgp) + vitv SINHZ ( 6]17)“ .
4 Yi'vp

QY

Again one obtains an exponential and oscillatory dependence
of the transmission function for energies below and above
the barrier height, as illustrated in Fig. 5 for different barrier
heights.

Energy spectrum of 1D TI dots. Finally, we calculate the
energy spectrum of a single dot of width d, as illustrated in
Fig. 3(c). By using the condition det M = 0 the eigenenergies
of the bounded states are given by

o 2

II. COUPLED 2D DOTS

A. Numerical solution of the time-dependent 2D Dirac equation

Here we provide a numerical investigation of the spectrum
of two coupled topological insulator two-dimensional quan-
tum dots depending on their coupling strength and external
perpendicular magnetic fields B. In order to calculate the
energy spectra we study the dynamics of wave packets (see
Ref. [31] for a review of the wave packet method in general).
In comparison to a direct numerical diagonalization of the
Hamiltonian, the wave packet method allows us to investigate
larger systems with a higher number of grid points in a
reasonable computation time. This is needed since the dot
systems have to be large enough to make an effective theory
actually applicable for describing the carrier dynamics of dot
systems. The energy spectrum is then obtained by a Fourier
transformation of the wave packet autocorrelation function
with the energy resolution being determined by the total
propagation time AE = 2w/ T. However, as a disadvantage
compared to exact diagonalization the wave packet method
can miss some eigenenergy values in the case that the
corresponding amplitudes of the Fourier transformation are
smaller than the numerical signal noise.
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In order to obtain the energy spectrum we calculate the
local density of states

D(E,r) = —%Im[G(r,r;E)], (13)

which is defined via the diagonal elements of the re-
tarded Green’s function G(E). Based on the dynamics of
a single wave packet initially centered at r the retarded
Green’s function can be constructed from its autocorrelation
function C(¢),

G(r,r;E) ~ i / ” dte' P C (1), (14)
ih 0
with
C@t)= / dry (r,0)* Y (r,1). (15)

Equation (14) becomes exact for a §-distributed initial state,
whereas in the numerical simulations a Gaussian shaped initial
state is used [31]. To obtain the correlation function one has
to keep track of the wave packet transient, which requires the
solution of the time dependent 2D-Dirac equation

oY (r,1)
dt

= Hpy(r,1). (16)

The single-particle Hamiltonian at the surface of TIs can be
derived within an effective field theory approach [1,2], yielding

Hp = vp{[—ihV — eA(r,1)] x Z}o +m (r)o, — ed(r,1),
(17)

where A(r,?) and ¢(r,t) denotes the space- and time-dependent
vector and electrostatic potential, respectively. The inhomo-
geneous mass term m,(r)o, is induced by breaking the TR
symmetry at the TI surface, e.g., by proximity of a magnetic
layer [18,19] or by magnetic doping [20-22]. The order of
magnitude for the mass-gap Ag,, = 2|m_| can be expected to
be tens of meV.

In order to solve numerically the (2+ 1) Dirac equation
we use a specially developed staggered-grid leap frog scheme,
which we introduced and discussed in detail in Ref. [29].
The numerical solution of the Dirac equation on a finite
grid is a more subtle issue than for the nonrelativistic
Schrodinger equation. As well known from lattice field theory,
discretization of the Dirac equation leads to the so-called
fermion-doubling problem, i.e., for large wave vectors a wrong
energy dispersion is revealed. This leads to the doubling of the
eigenstates at a fixed energy value. For a longtime propagation
it is of great importance to use an almost dispersion-preserving
finite-difference scheme, since scattering at spatiotemporal
potentials and at the boundary can introduce higher wave
vector components even when one starts with a wave packet
with its wave vector components closely centered at k = 0.
Moreover, the formulation of proper boundary conditions
is crucial to avoid spurious reflections and eventually
instability [29].
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FIG. 6. (Color online) The ground state energy Ey (solid line),
the excitation energy E. (dashed line), and the ionization energy
Ei,n (dash-dotted line) of single dot for different radii R at zero
magnetic field.

B. Energy spectra of single and coupled QDs
1. Energy spectra of single QDs

First, we investigate the confinement energy of a single
isolated QD as a function of radius R and the magnetic field B.
The circular dot potential ¢,(ry) centered at r¢ is assumed to
be described by the Fermi-Dirac function

Ga(ro) = Vada(ro) = VaFp(ro —r), (18)

with Fp(x) = [1+exp(x/B,)]"'; V,; denotes the potential
height. The potential step is smeared on the range of S, =
0.01R. In the following we set the Fermi velocity to v, =
10° m/s and the dot potential height is chosen as |V,| =
50 meV. Figure 6 shows the ground state or confinement energy
Ej of the dot, the excitation energy defined as difference of
the ground and first excited dot state Ex = E; — Ey, and the
ionization energy Ei,, = |Vy| — E|, as given by the energy
difference of the ground state energy to the continuum of the
delocalized states, as a function of different dot radii at zero
magnetic field. For radii smaller than about R < 38 nm only
a single bound state exists in the QD and, hence, E¢x = Ejop-
As expected, the weaker confinement of the Dirac electrons in
larger dot systems leads to a decreasing of both the ground state
energy Eg and the excitation energy E., as shown in Fig. 6. For
small radius (here for R < 35 nm) only a single energy level
is present and, hence, the ionization energy and the excitation
energy coincide. For increasing dot radius more energy levels
emerge successively. However, the steep slope of the in
principle continuous line of the confinement energy cannot be
resolved by our used grid of the radius R and appears therefore
as a kink in Fig. 6. Note that the typical confinement energy
of Dirac electrons is of the order of 10 meV, which is an order
of magnitude higher than in conventional semiconductor dots
of comparable size. The energy spectrum for the lowest QD
levels versus magnetic field, which is applied perpendicular to
the TI surface, is plotted in Fig. 7 assuming a fixed radius of
R = 50 nm. A detailed analytical study of the energy spectrum
of a single graphene quantum dot in a perpendicular magnetic
field is given in Ref. [27]. The eigenspectrum of the dot for
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FIG. 7. Magnetic field (B) dependent energy spectrum of a single
QD of radius R = 50 nm. The energy levels converge to Landau levels
for higher B fields.

B = 0 is obtained by solving the implicit equation
Jm(kR) = m+l(kR)7 (19)

with J,,, denoting the Bessel functions of first kind of order m
and E = hvsk. Since the total angular momentum J, =
I, 4+ (h/2)0,, with [, denoting the orbital momentum operator,
commutes with the Hamiltonian ([H,J;] = 0), m is a good
quantum number. Hence, the ground state with [ = 0 is doubly
degenerate according to its spin. For higher magnetic fields the
levels start to converge to degenerate Landau levels, which are
determined by the expression [27]

E,, = vsy/2ehB(m + 1). (20)

As can be seen in Fig. 7 at about B ~ 3.6 T the first two
levels converge numerically, which leads to a sudden kink in
the magnetic field dependence of the excitation energy Ec,
as indicated by the solid red line in Fig. 8. The magnetic field
effectively acts as an additional confinement causing an almost
linear enhancement of the confinement energy Ej.

E (meV)

FIG. 8. (Color online) Magnetic field (B) dependence of the
ground state energy E (solid line), the excitation energy E., (dashed
line), and the ionization energy E;,, (dash-dotted line) of single dot
of radius R = 50 nm.
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FIG. 9. (Color online) The double-dot potential in the TI surface.
The coupling of the two dots is controlled by shifting the barrier
potential.

2. Energy spectra of coupled QDs

Our double-dot system comprises two circular disks, which
are connected by a potential bridge, as shown in Fig. 9.
The barrier or bridge potential ¢, = V,@p is described by a
rectangular step function of width w and length d, which is
smeared at the boundaries by Fermi-Dirac function

$» = Fp(=w/2 = y)Fp(y — w/2)Fp(—d — x)Fp(x — d).
@

The total potential of the coupled QD system can then be
defined by

() = Vabaa + Vi max(dp| — |¢aal,0), (22)

with ¢z4 = max[¢,(r1),¢4(r>)] describing the potential of the
decoupled double-dot system.

For the quantitative simulations we choose the following
structure parameters: dot radius R = 50 nm, bridge length
d = 30 nm, bridge width w = 40 nm, grid resolution A, =
A, =1 nm, and an uniform mass term of mgy = 50 meV.
To ensure the stability of the discretization scheme [29] the
Courant-Friedrichs-Lewy (CFL) condition has to be fulfilled
At < min(A,,A,)/vs. We use typically N, = 1.6 x 10° time
steps for each wave packet propagation, which leads to an
energy resolution of about Ap ~ (0.1 meV in the discrete
fast Fourier transformation (FFT), where Ag = 2w h/(N; A,).
The finite energy resolution of the fixed energy grid of the
discrete FFT becomes noticeable in the following plots of the
energy spectrum as small discontinuous jumps when external
parameters, such as the barrier voltage, are changed.

The dependence of the energy spectrum on the gate-
controlled barrier height Vj, for B = 0 is shown in Fig. 10.
For V, = 0 the two dots are almost isolated. To realize the
“conventional coupling” as illustrated in Fig. 1 a negative
bias has to be applied, which reduces the barrier potential.
At around V, = —40 meV the bonding and antibonding states
start to be split in energy by A due to the increasing coupling
between the dots (Fig. 11). From the energy splitting the
tunneling time follows as t = 2w h/A.
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FIG. 10. Calculated energy spectrum of the double TI QD system
versus applied barrier gate voltage for B = 0.

If a positive bias is applied, the hole states in the barrier
region are shifted upwards in energy enabling at some point
the electrons to hop by Klein tunneling from one QD to
the other via the hole state, as illustrated in Fig. 2. The
hybridization of the two electron levels and the hole state
induces an anticrossing of the first excited electron state and
the hole state, leading to a strongly tunable excitation energy
of maximally A &~ 8 meV, giving a typical tunneling time of
T & 0.5 ps. Figure 12 shows this anticrossing as a zoom-in of
Fig. 10.

The main features of Fig. 12 can be understand by an
effective three-level model. As a starting point we assume
that the direct hopping between the left and right single dot
ground states |L) and |R), respectively, is inhibited and only
hopping via the hole state |H) is possible. Then the effective
Hamiltonian in the basis {|L),|H),|R)} reads

EL it 0
Hy=| —it* EH it |, (23)
0 —it* gL

with egr = ¢, and ¢ denotes the hopping amplitude. The
eigenenergies are given by

& =€,
e +¢ 1 (24)
£1/3 = % F EV(SL —ep)? + 812,
10'
® !
£
< 10° i

-100 -50 0 50 100 150
Vb (meV)

FIG. 11. Energy splitting A of the first bonding and antibonding
state (as extracted from Fig. 10) versus the applied bias V.
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FIG. 12. (Color online) Zoom-in of Fig. 10 in the region, where
the two dots are coupled via Klein tunneling upon approaching hole
state H;. An effective three-level model reveals that the anticrossing
should be symmetric around (¢, + €)/2.

and the (unnormalized) eigenstates result in

o = (1,0,1),

o0y = (—LE(—i F V1 +2/82),1),

with & = (¢ — eg)/2¢t. This suggests that one eigenenergy
value should remain almost unaffected and that the anticross-
ing should be symmetric around (g, + €5)/2. As illustrated
in Fig. 12 this behavior is approximately fulfilled by our
numerical simulation results.

If one introduces an additional weak direct coupling
between the dots as described by the Hamiltonian

(25)

0 0 iy
H=|0 o o] (26)
—ih 0 0

perturbation theory yields that the eigenergies of Hj are not
changed in first order. However, now a small component of the
hole state of the order of #;/(¢; — 1) mixes to the eigenstate
of & = ¢

© _ 2il1 1)(0) _ 2it1

— €1 &) — &3

l92) = ¢2) ). @D

From our numerical data we can extract the voltage
dependence of the hopping parameter ¢. Therefore, we redefine
the origin of the coordinate system as the crossing point in
which ¢, = ey, i.e., at the point ¢, = 7.5 meV and V, =
100.82 meV. Then ¢, = 0 by definition and the bias-dependent
hole state is described by the asymptotic linear function
en(Viy) = ky(V, — Vo) = ky V, shown as dashed (red) line in
Fig. 12, with ki = 0.77 being obtained by linear regression.
From the numerical results for the lowest eigenvalue ¢ (V) we
calculate the hopping parameter, which is given by

2 _
(V) =,/ % (28)

Figure 13 shows the obtained voltage dependence of the hop-
ping parameter. Since the coupling between the electron and
hole state vanishes for large voltages, i.e., limy_, . (V) = 0,
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FIG. 13. (Color online) Voltage dependence of the hopping pa-
rameter ¢t of the effective three-level model as extracted from the
numerical data of the first eigenvalue ¢;.

we fit our numerical results to an Gaussian, as shown in Fig. 13.
For comparison also a parabolic fit is provided. The effective
model is most suitable in the region for V between 0 and
10 meV, where t & 1 meV is roughly constant. Otherwise the
model is to be treated as a convenient parametric fit.

A qualitatively different dependence of the energy spectrum
on the applied barrier bias V}, is found if a strong enough mag-
netic field is applied, which induces the formation of Landau
levels of magnetic quantum numbers m corresponding to the
total angular momentum J, = I, 4+ h/20,, with [, denoting
the orbital momentum. As shown in Fig. 14 (for B = 4 T) the
first hole level almost does not couple to the energy levels of
the first Landau niveaus with m = 0. This follows from the
fact that due to the B field the states are more localized, so
that their overlap, on which the hopping parameter essentially
depends, is exponentially smaller. This is most pronounced
for the lowest state for m = 0 but can be also seen for the
first excited states (m = 1), where the effect of anticrossing
is smaller than for the case of a vanishing magnetic field.
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50 100 150

FIG. 14. (Color online) Energy spectrum of the double-dot
system versus applied barrier gate voltage for B =4 T.

III. CONCLUSIONS

We have shown that the coupling between two quantum
dots, which are geometrically defined by gate electrodes,
can be strongly modulated and controlled by both a gate
bias, which brings a hole level into resonance with the
electron states, and a perpendicular magnetic field, which
changes the symmetry properties of the confined states. The
anticrossing of the hole state and the dot ground states can be
qualitatively understood within a three-level model, in which
only hopping to the hole state is assumed. The Klein-tunneling
assisted coupling leads to energy splittings of the order of
10 meV, which corresponds to typical tunneling times of
several hundreds of femtoseconds.
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