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Spin-orbit splitting of valence subbands in semiconductor nanostructures
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We propose a 14-band k · p model to calculate spin-orbit splittings of the valence subbands in semiconductor
quantum wells. The reduced symmetry of quantum well interfaces is incorporated by means of additional terms
in the boundary conditions which mix the �15 conduction and valence Bloch functions at the interfaces. It
is demonstrated that the interface-induced effect makes the dominating contribution to the heavy-hole spin
splitting. A simple analytical expression for the interface contribution is derived. In contrast to the 4 × 4 effective
Hamiltonian model, where the problem of treating the Vzk

3
z term seems to be unsolvable, the 14-band model

naturally avoids and overcomes this problem. Our results are in agreement with the recent atomistic calculations
[Luo et al., Phys. Rev. Lett. 104, 066405 (2010)].

DOI: 10.1103/PhysRevB.89.075430 PACS number(s): 73.21.Fg, 78.55.Cr, 71.70.Ej

I. INTRODUCTION

As follows from the time inversion symmetry and the
Kramers theorem, the electronic states in centrosymmetric
systems are at least doubly degenerate. On the other hand,
in the three-, two-, and one-dimensional systems lacking
a center of space inversion, the degeneracy of free Bloch
single-electron states is removed with exception of particular
points and directions of the Brillouin zone. The removal of
spin degeneracy occurs due to the spatially antisymmetric
part of the single-particle periodic Hamiltonian H(r, p̂) with
allowance for the spin-orbit interaction. In terms of the
effective Hamiltonian H(k), the interaction appears as a
spin-dependent contribution odd in the electron wave vector
k. This contribution is responsible for a number of fascinating
and important effects being actively studied nowadays, see,
e.g., Refs. [1–8].

In nano- and heterostructures, the quantum confinement
strongly modifies free-carrier dispersion. Particularly, in quan-
tum wells (QWs), the parabolic conduction band turns into
series of two-dimensional subbands shifted, in parallel, along
the energy axis. In the absence of inversion center, the
spin-orbit interaction splits each subband with the splitting
described by linear and, sometimes, cubic k terms in the 2 × 2
effective Hamiltonian [9,10]. Because of the more complex
valence-band structure, the dispersion of holes is also much
more complicated than that in the conduction band. Rashba and
Sherman [11] were the first to calculate the spin splitting of the
topmost heavy- and light-hole subbands in QWs grown along
z ‖ [001] from zinc-blende lattice semiconductors by using the
bulk effective Hamiltonian (four-by-four matrix) consisting of
the conventional Luttinger Hamiltonian and spin-dependent
terms of the order of k3. They imposed the simplest conditions
for the four-component hole envelope wave function, ψ = 0,
on the boundaries of the QW and obtained k-linear terms in
the effective Hamiltonians of two-dimensional hole subbands.
Direct extension of the procedure developed in Ref. [11] for
the realistic models of quantum confinement, particularly,
including the effects of finite barrier, deems impossible
owing to the presence of k3

z spin-dependent term in the bulk
4 × 4 Hamiltonian. This term makes consistent matching of
the valence-band wave functions really challenging, since
it leads to a k2

z contribution to the velocity operator v̂z

and, therefore, to a singularity of the flux ∝v̂zψ at the
interface.

Here, we develop the 14-band k · p model to calculate
spin splittings of hole subbands in QWs, which allows us to
avoid the k3

z -term problem. Moreover, we propose additional
terms in the boundary conditions for the 14-component
envelope, which naturally describe the interface heavy-light
hole mixing arising due to anisotropy of chemical bonds at
the interfaces [12–17]. The developed k · p approach presents
an independent alternative to atomistic calculations of the
spin-orbit splittings in QWs [18,19].

The paper is organized as follows. Section II presents
the symmetry analysis of the spin-dependent terms in the
valence-band Hamiltonian, Sec. III outlines the 14-band k · p
model and the spin-orbit splittings in the bulk semiconductor as
well as boundary conditions for the QW structures; numerical
results and analytical approximations are presented in Sec. IV
and Sec. V contains brief conclusions.

II. SYMMETRY CONSIDERATIONS

A. Bulk zinc-blende-lattice crystals

We begin the symmetry analysis by reminding that, in a
bulk zinc-blende-lattice semiconductor, the expansion of spin-
dependent part H(3)

c of the electron effective Hamiltonian in
the conduction band �6 starts from the nonzero cubic term

H(3)
c = γc(σ�), (1)

where γc is the band parameter, σ and � are pseudovectors
composed of the Pauli matrices in the coordinate system x ‖
[100], y ‖ [010], z ‖ [001] and the cubic combinations �x =
kx(k2

y − k2
z ), etc. The expansion of the 4 × 4 effective Hamil-

tonian in the �8 valence band starts from the first-order term
H(1)

v = (4k0/
√

3)V k, where Vx = {Jx,J
2
y − J 2

z }s , {A,B}s =
(AB + BA)/2, Jα are the angular momentum matrices in the
basis of spherical harmonics Y3/2,m [20,21]. Although the Td

point symmetry allows this term, the coefficient k0 is nonzero
only due to the k · p mixing between the valence states and
the remote �3 states, it is quite small and may be neglected for
the GaAs-based systems [20,21]. In the �8 band, the cubic-k
term contains three linearly independent contributions as
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follows:

H(3)
v = γv( J�)

+ 1

2
δγv

[
a2

∑
α

J 3
α�α + a3

∑
α

Vαkα

(
k2
α − 1

3
k2

)]
,

(2)

where, for further convenience, two of the three coefficients
are presented as products of the parameter δγv , which has the
dimension of γc,γv and dimensionless factors a2/2 and a3/2
[20]. It is noteworthy that the first term is nonrelativistic in
its origin, it is symmetry-allowed for the �15 band. Two terms
in the second line of Eq. (2) are relativistic and one can see
that the last summand contains the “dangerous” contribution
proportional to k3

z .

B. Quantum well structures

In the following symmetry analysis, we consider only
symmetrical QW structures grown along the crystallographic
axes [001], [110], or [111] and having the point symmetries
(i) D2d , (ii) C2v , and (iii) C3v , respectively. The Cartesian
coordinates are conveniently chosen along the axes
(i) x ‖ [100], y ‖ [010], z ‖ [001] or x1 ‖ [11̄0], y1 ‖
[110], z1 ‖ [001], (ii) x2 ‖ [11̄0], y2 ‖ [001], z2 ‖ [110], and
(iii) x3 ‖ [112̄], y3 ‖ [1̄10],z3 ‖ [111]. In a QW structure, the
�8 valence band is split into the heavy- and light-hole-like
states. In the following, we choose the basic states at the
� point (kxj

= kyj
= 0) transforming under the symmetry

operations as the Bloch functions:

ψ
(1)
hh ≡ |�8, −3/2〉 = ↓(Xj − iYj )/

√
2,

(3)
ψ

(2)
hh ≡ |�8,3/2〉 = −↑(Xj + iYj )/

√
2,

or

ψ
(1)
lh ≡ |�8,1/2〉 = [2↑Zj − ↓(Xj + iYj )]/

√
6,

(4)
ψ

(2)
lh ≡ |�8, −1/2〉 = [2↓Zj + ↑(Xj − iYj )]/

√
6.

Here, ↑,↓ are the spin-up and spin-down two-component
columns, Xj ,Yj , and Zj are the periodic orbital Bloch func-
tions in the chosen coordinate system xj ,yj ,zj (j = 1,2,3),
and for simplicity we omit the index j in the spin columns.

1. Growth direction [001]

The states in the heavy-hole subbands hh1,hh3, . . . and
light-hole subbands lh2,lh4, . . . transform according to the
�6 spinor representation of the point group D2d , whereas the
eigenstates lh1,lh3, . . . and hh2,hh4, . . . form the bases for
the �7 representation. In the method of invariants [21], the
2 × 2 matrix effective Hamiltonian in each hole subband is
decomposed into a linear combination of four basis matrices.
Since both direct products �6 × �6 and �7 × �7 reduce to the
same direct sum of irreducible representations �1 + �2 + �5,
the basis matrices can be chosen common for the subbands
of �6 and �7 symmetries. If the basic functions of the spinor
representations are chosen in the form (3), (4), then the set of
basic matrices includes the identity matrix (�1 representation),
pseudospin matrix σz1 (�2 representation) and two pseudospin

matrices σx1 ,σy1 transforming as the pair of wave vector
components ky1 ,kx1 (�5 representation). This allows one to
write the linear-k term in the effective Hamiltonian as

H[001]
n = β

(n)
1

(
σx1ky1 + σy1kx1

) = β
(n)
1 (σxkx − σyky), (5)

where n = hhν or lhν, ν = 1,2, . . . , and β
(n)
1 are the subband

parameters. In Eq. (5), the effective Hamiltonian is presented in
the two coordinate systems x,y,z and x1,y1,z1 relevant for the
(001) structures. We stress that the same form of the effective
Hamiltonian for the heavy-hole and light-hole subbands
results from the special order of the Bloch functions in
Eqs. (3) and (4).

2. Growth direction [110]

Both heavy- and light-hole states transform according to
the same spinor representation �5 of the group C2v . Among
components kx2 , ky2 , and σαj

only kx2 and σz2 transform
according to equivalent representations. As a result, the linear-
k term has the form

H[110]
n = β

(n)
2 σz2kx2 , (6)

with β
(n)
2 being the subband parameters.

3. Growth direction [111]

The pair of functions (3) and the states hhν transform
according to the reducible representation �5 + �6 of the
C3v point group. The direct product (�5 + �6) × (�5 + �6) =
2�1 + 2�2 does not contain the �3 representation, which
means that the k-linear splitting of the heavy-hole states is
symmetry forbidden. The first nonvanishing spin-dependent
contribution to the heavy-hole effective Hamiltonian is cubic
in k and has the form [22]

H[111]
hhν = γ

(ν)
1 σx3ky3

(
k2
y3

− 3k2
x3

) + γ
(ν)
2 σy3kx3

(
k2
x3

− 3k2
y3

)
+ γ

(ν)
3 σz3ky3

(
k2
y3

− 3k2
x3

)
(7)

with three independent parameters γ
(ν)
1 , γ

(ν)
2 , and γ

(ν)
3 .

By contrast, k-linear terms are allowed in the dispersion of
light-hole subbands. Indeed, the functions (4) and the light-
hole states lhν transform according to the two-dimensional
representation �4. The product �4 × �4 = �1 + �2 + �3 con-
tains a �3 representation meaning that the k-linear light-hole
splitting is described by

H[111]
lhν = β

(ν)
3

(
σx3ky3 − σy3kx3

)
, (8)

with a single parameter β
(ν)
3 .

III. 14-BAND MODEL

A. Energy spectrum and spin splittings in bulk semiconductor

The 14-band k · p model, called sometimes five-level
k · p model or the 14 × 14 extended Kane model, displays the
full symmetry of a zinc-blende-lattice crystal and describes
in detail the electron dispersion in the vicinity of the � point
in materials [9,20,23–26]. The model includes the �8v and
�7v valence bands formed from the orbital Bloch functions
X , Y , Z (�15 representation in the coordinate system x,y,z),
the lowest conduction band �6c formed from the invariant
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TABLE I. Analytic expressions for the effective mass of an
electron in the �6 conduction band and the Luttinger parameters
γ1, γ2, and γ3 for the �8v band [9].

m0
me

= 2m0P 2

�2Eg

(
1 − 1

3
�

Eg+�

) − 2m0P ′2
�2E′

g

(
1 − 2

3
�′

E′
g+�′

)
γ1 = 2m0

3�2

(
P 2

Eg
+ Q2

Eg+E′
g

+ Q2

Eg+E′
g+�′

)
γ2 = m0

3�2

(
P 2

Eg
− Q2

Eg+E′
g

)
γ3 = m0

3�2

(
P 2

Eg
+ Q2

Eg+E′
g

)

orbital function S (�1 symmetry) and the higher conduction
bands �8c and �7c originating from the �15-symmetry orbital
functions X ′, Y ′, Z ′. For the spinor �-point Bloch functions
|N〉 (N = 1, . . . ,14), we use the notations

|�6c,m〉, |�8v,m
′〉, |�7v,m〉, |�8c,m

′〉, |�7c,m〉, (9)

where m = ±1/2 and m′ = ±1/2,±3/2, the �6 basis is taken
in the form ↑S, ↓S, the �8 basis is given by Eqs. (3) and
(4), and the �7 basic functions are also taken in the canonical
form [10]. The model contains eight parameters of the 14-
band model, namely, the band gap Eg , the energy distance E′

g

between the �7c and �6 states, spin-orbit splittings � and �′
of the valence and higher conduction bands, interband matrix
elements of the momentum operator

P = i
�

m0
〈S|p̂x |X 〉,

P ′ = i
�

m0
〈S|p̂x |X ′〉, (10)

Q = i
�

m0
〈X ′|p̂y |Z〉,

and, finally, the interband matrix element of the spin-orbit
interaction between the valence and higher conduction bands
defined by

�− = 3〈�8c,m
′|Hso|�8v,m

′〉 = − 3
2 〈�7c,m|Hso|�7v,m〉,

(11)

where Hso = �
2([σ × ∇U (r)] p)/4m2

0c
2 is the spin-orbit

Hamiltonian, U (r) is the spin-independent single-electron
periodic potential, c is the speed of light, and m0 is the
free-electron mass. We stress that the matrix elements P ′ and
�− are responsible for the removal of the space inversion
symmetry in this model and lead to the bulk inversion asym-
metry spin-orbit splittings of conduction and valence bands
[20]. Note that hereafter we ignore the difference between
the generalized momentum operator π and the operator p =
−i�∇ because the k · (π − p) correction is usually negligibly
small [27]. The 14 × 14 Hamiltonian matrix H(14)

N ′N is a sum of

the diagonal matrix elements E0
NδN ′N and off-diagonal matrix

elements linear either in �− or in k. As frequently used
in the simplified multiband k · p models [9], we ignore the
free-electron term (�2k2/2m0)δN ′N , which in the case of QW
structures reduces the number of boundary conditions at an
interface from 28 to 14 and simplifies numerical calculations.

The diagonalization of the 14-band Hamiltonian yields
the electron energy spectrum in the bulk material. Table I
summarizes four fundamental band parameters, the electron
effective mass in the �6 conduction band and the three
Luttinger parameters for the �8v band, calculated in the
second order of the k · p perturbation theory. Table II shows
three different parametrizations of the 14-band model used
in Refs. [20,25,28]. One can see that these parametrizations
provide close values of the conduction-band effective mass
and Luttinger parameters but as demonstrated below, quite
different values of k-dependent spin-orbit splittings.

Following Ref. [20], we present the coefficients γc and
γv in Eqs. (1) and (2) as sums γc = γc0 + δγc and γv =
γv0 + a1δγv/2, respectively, which allows one to separate the
k · p third-order contributions (γc0,γv0) from the fourth-order
contributions (δγc,δγv), which include one order in �−. The
third-order contributions were found in Ref. [20] with the result

γc0 = −4

3
PP ′Q

�(E′
g + �′) + �′Eg

EgE′
g(Eg + �)(E′

g + �′)
, (12)

γv0 = 4

3
PP ′Q

Eg + E′
g + �′/2

Eg(Eg + E′
g)(Eg + E′

g + �′)
. (13)

Note that, as compared with Eqs. (18) and (20) of Ref. [20],
we use here the different sign for Q, include the factor i�/m0

in our definition of P and P ′, and refer E′
g not to the �8c but

to �7c band. The fourth-order correction to γc reads

δγc = 4

9
�−Q

P 2(3E′
g + 2�′) + P ′2(3Eg + �)

EgE′
g(Eg + �)(E′

g + �′)
. (14)

The fourth-order corrections δγvai/2 in the �8 valence band
are conveniently written as (a(0)

i + δai)δγv/2 (i = 1,2,3),
where

δγv = −4

9

�−P 2Q[� + 2�′ + 3(Eg + E′
g)]

�Eg(Eg + E′
g + �)(�′ + Eg + E′

g)
(15)

and

a
(0)
1 = 13

4 , a
(0)
2 = −1, a

(0)
3 = 1. (16)

The terms proportional to a
(0)
i represent the �−P 2Q contri-

bution; they were derived in Ref. [20]. Equation (15) differs
from Eq. (21a) in Ref. [20] by extra � in the numerator and
denominator. In addition to a

(0)
i , there are other contributions

TABLE II. Three parametrizations of k · p model for GaAs used in the literature. Energy gaps are given in eV, matrix elements P , P ′, and
Q are given in eVÅ. Conduction band effective mass and Luttinger parameters are calculated after expressions given in Table I.

Parametrization Eg � E′
g �′ �− P P ′ Q me/m0 γ1 γ2 γ3

Ref. [28] (I) 1.52 0.341 3.02 0.2 − 0.17 9.88 0.41 8.68 0.063 8.51 2.08 3.53
Ref. [20] (II) 1.52 0.34 2.93 0.17 − 0.1 10.3 3.3 6 0.062 7.51 2.7 3.4
Ref. [25] (III) 1.52 0.341 2.97 0.17 − 0.061 10.31 3 7.7 0.061 8.42 2.48 3.63
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TABLE III. The constants of spin-orbit splitting calculated after Eqs. (12)–(15) (in eVÅ3), corrections to the parameters aj calculated after
Eq. (17), and spin-orbit constants for k ‖ [110] calculated after Eq. (18) (in eVÅ3) for three different parametrizations introduced in Table II.

Parametrization γc0 δγc γc γv0 δγv δa1 δa2 δa3 γlh γhh

(I) −2.39 −22.0 −24.4 6.65 76.7 0.883 −0.431 −0.258 96.4 13.2
(II) −13.9 −10.6 −24.5 39.5 34.7 0.396 −0.193 −0.116 79.3 5.84
(III) −16.0 −8.13 −24.1 45.7 26.9 0.645 −0.315 −0.189 80.5 8.79

proportional to �−Q3, which are disregarded in Ref. [20] and
can be presented in the form

δai = ci

Q2Eg

P 2(Eg + E′
g)

, c1 = 41

12
, c2 = −5

3
, c3 = −1.

(17)

These contributions may play an important role because P and
Q are of the same order of magnitude. It is worth to mention
that additional contributions ∝�−P ′2Q are negligibly small
as compared to those in Eq. (17).

For completeness, below we write down the expressions for
the coefficients of the k3 splittings �hh(k) = γhhk

3, �lh(k) =
γlhk

3 of the heavy- and light-hole subbands for the particular
direction k ‖ [110]:

γhh = 1

2

∣∣∣∣γv

(
1 − 3ξ − 1√

1 + 3ξ 2

)
+ δγv

[(
1 − 2ξ√

1 + 3ξ 2

)

+ 1

2
δa1

(
1 − 3ξ − 1√

1 + 3ξ 2

)
+ 1

8
δa2

(
7 − 21ξ − 13√

1 + 3ξ 2

)

+ 1

4
δa3

(
1 + ξ√

1 + 3ξ 2

)]∣∣∣∣, (18a)

γlh = 1

2

∣∣∣∣γv

(
1 + 3ξ − 1√

1 + 3ξ 2

)
+ δγv

[(
1 + 2ξ√

1 + 3ξ 2

)

+ 1

2
δa1

(
1 + 3ξ − 1√

1 + 3ξ 2

)
+ 1

8
δa2

(
7 + 21ξ − 13√

1 + 3ξ 2

)

+ 1

4
δa3

(
1 − ξ√

1 + 3ξ 2

)]∣∣∣∣, (18b)

where the ratio ξ = γ3/γ2 characterizes the valence-band
warping. Table III summarizes the values of spin-orbit splitting
constants for the conduction and valence bands calculated,
again for different parametrizations of the k · p model. It is
seen that the fourth-order contributions are comparable with
and can be even larger than the third-order ones. Moreover,
the inclusion of the corrections δai in Eq. (18) significantly
increases the spin splitting of heavy-hole states. For example,
in the parametrization (I) (Ref. [28]), the omission of δai terms
yields γhh ≈ 4.6 eVÅ3, while the corrected value is larger by
almost a factor of 3.

B. Boundary conditions and electronic states in QWs

Let us now apply the 14-band model to calculate the energy
spectrum in a symmetric QW grown along the z ‖ [001] direc-
tion. In addition to the basis (9), we use another set of basic
functions |l,s〉 (l = 1, . . . ,7,s = ±1/2), where |l,1/2〉 = ↑Rl

for the spin s = 1/2 and |l,−1/2〉 = ↓Rl for s = −1/2, and

Rl are the orbital Bloch functions S,X ,Y,Z,X ′,Y ′,Z ′. This
basis consisting of products of the up- and down-spinors and
the orbital functions is more convenient for the formulation
and analysis of boundary conditions at the interfaces. Within
the 14-band approach, each electron state 
n,j in a QW is
described by 14 envelope functions fnj,ls in the expansion


nj = eik‖ρ
√

S

∑
ls

fnj,ls(z)|l,s〉. (19)

Here, z is the growth axis, k‖ is the in-plane wave vector
with two components kx,ky , S is the normalization area, the
subscript n denotes the subband, e.g., n = e1,hh1,lh1, etc.,
and j is a pseudospin index enumerating two states in each
subband n degenerated in the � point (k‖ = 0). The energy
spectrum Enj (k‖) in the nth electronic subband in k space
is obtained from the numeric solution of the Schrödinger
equation,

H(14)(k‖,k̂z)
nj = Enj (k‖)
nj , (20)

where kz is replaced by a differential operator k̂z = −i∂/∂z

acting on the envelopes fnj,ls(z).
Equation (20) should be supplemented with the boundary

conditions. The key requirement is associated with the conser-
vation of the particle flux z component. For a 14-component
envelope fls , the flux is given by

S = 1

�

∑
l′s ′ls

f ∗
l′s ′

∂H(14)
l′s ′,ls(k)

∂k
fls, (21)

or explicitly one has, e.g., for the flux z component

Sz = i

�

[
P

(
f̂

†
Z f̂S − f̂

†
S f̂Z

) + P ′(f̂ †
Z ′ f̂S − f̂

†
S f̂Z ′

)
+Q

(
f̂

†
X ′ f̂Y − f̂

†
Y f̂X ′ + f̂

†
Y ′ f̂X − f̂

†
X f̂Y ′

)]
, (22)

where two-component spinor envelopes

f̂l =
[

fl,1/2

fl,−1/2

]

are introduced for brevity.
Since the k · p Hamiltonian contains kz terms only of

the first order, it is enough to impose one condition per
envelope fnj,ls . In what follows, we assume for simplicity
that the interband matrix elements P , P ′, Q, and �− are the
same in the QW and barrier materials, so that solely the
diagonal elements E0

N , i.e., the positions of bands at k = 0,
experience discontinuities at heterointerfaces. In this case, the
simplest and intuitively natural set of boundary conditions con-
serving the flux could be merely the continuity of all envelopes
at the interface, see Eq. (22). However, such boundary condi-
tions do not account for the reduced microscopic symmetry of
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a single interface described by the C2v point group and caused
by the anisotropy of chemical bonds in the (001) plane [12–
14,29]. Therefore we are interested in boundary conditions as
simple as possible but those which conserve the flux and make
allowance for the interface heavy-light hole mixing. We recall
that in calculations based on 4 × 4 Luttinger Hamiltonian
and four-component envelope � this kind of state mixing is
described by an extra term in the boundary conditions [13]:

�A = �B,
(23)

M̂−1
A

(
∂�

∂z

)
A

= M̂−1
B

(
∂�

∂z

)
B

+ 2√
3

tl-h

a0m0
{JxJy}s�,

where the matrix M is diagonal and comprises the values
of heavy-hole, mhh = m0/(γ1 − 2γ2), and light-hole, mlh =
m0/(γ1 + 2γ2), effective masses in the [001] direction, tl-h is a
real coefficient, and a0 is the lattice constant. In order to include
the hole mixing effect into the 14-band k · p model, we provide
the minimal generalization of natural boundary conditions for
envelopes fnj,ls as the requirement of continuity of the five en-
velopes fnj,ls corresponding toRl = S,X ,Y,Z andZ ′ and the
following discontinuity of the remaining envelopes as follows:

(f̂nj,X ′)A = (f̂nj,X ′)B + t̃(f̂nj,X )B,
(24)

(f̂nj,Y ′)A = (f̂nj,Y ′)B + t̃(f̂nj,Y )B,

where t̃ is a real dimensionless interface-mixing parameter.
One can readily see that the proposed conditions (24) are in
agreement with the flux continuity. The boundary conditions
for the 4 × 4 model can be obtained from Eq. (24) taking into
account that the Qk̂z off-diagonal matrix elements in the 14 ×
14 Hamiltonian couple f̂nj,X ′ with f̂nj,Y and f̂nj,Y ′ with f̂nj,X as

f̂nj,X ′ = − Q

Ec′ − Enj

∂f̂nj,Y
∂z

, (25a)

f̂nj,Y ′ = − Q

Ec′ − Enj

∂f̂nj,X
∂z

. (25b)

Here, Ec′ is the energy position of �′
15 conduction band and we

replaced k̂z by −i∂/∂z acting on the smooth envelopes. Substi-
tuting f̂nj,X ′ , f̂nj,Y ′ from Eq. (25) into Eq. (24), transforming it
into �8 basis and making use of the explicit forms of Luttinger
parameters γ1 and γ2 presented in Table I we arrive in the
linear-kz approximation at the second boundary condition (23)
with the heavy-light hole mixing coefficient

tl-h ≡ 2m0a0√
3�2

Qt̃. (26)

In what follows, we use tl-h as an independent parameter of our
theory. It is worthwhile to stress that an inclusion of other extra
terms in the 14-band boundary conditions modifies Eq. (23) to
a more complicated form of Ref. [30].

IV. RESULTS AND DISCUSSION

Figures 1 and 2 display the main results of our 14-
band model calculation, with the generalized boundary con-
ditions (24), of valence-band structure in a 100-Å-thick
GaAs/Al0.35Ga0.65As QW. The energy dispersion of three
topmost valence subbands is obtained neglecting, Fig. 1, and

taking into account, Fig. 2, the heavy-light hole interface
mixing. Each figure contains four panels. Panels (a) and
(b) are calculated for the parametrization (I), see Table II,
panels (c) and (d) represent the parametrization (II). Solid
and dashed lines in panels (a) and (c) show the subband
dispersion, while the wave vector dependence of the spin
splittings is depicted in panels (b) and (d). As mentioned
above we assume the same values of P , P ′, Q, �, �′,
and �− for the well and barrier materials, the band gap of
AlxGa1−xAs solid solution is taken from the quadratic equation
[31] Eg(x) = Eg(0) + 1.04x + 0.46x2. The standard ratio 2/3
is used for the �8v and �6c bands off-sets, �Ev and �Ec. The
off-set �Ec′ for the higher conduction band is chosen to equal
−�Ev since all proposed parametrizations give practically the
same value for the sum Eg + E′

g in GaAs and AlAs.
We begin the discussion from comparison of the �-point

positions of the valence subbands calculated by using the
14-band model and 4 × 4 Luttinger Hamiltonian in the absence
of interface mixing, tl-h = 0. In the four-band Luttinger model,
the heavy- and light-hole envelope functions and �-point
energies Ehhν , Elhν (ν = 1,2, . . . ) are found from

[
−�

2

2

d

dz

1

mhh

d

dz
+ V (z)

]
�hhν = Ehhν�hhν,

(27)[
−�

2

2

d

dz

1

mlh

d

dz
+ V (z)

]
�lhν = Elhν�lhν,

where V (z) is the confinement potential determined by the
valence-band offsets, and functions �(z) satisfy the Bastard
boundary conditions given by the Eq. (24) at tl-h = 0. It turns
out that the �-point energies calculated in the 14-band and
Luttinger models agree with each other within 5% accuracy.
It is seen from Figs. 1(a) and 1(c) that the two sets of
parameters result in significantly different positions of the two
lower subbands at k‖ = 0 despite the relatively small (�30%)
difference of the Luttinger parameters. For the parameter
set (II), these subbands are much closer in energy than for
the set (I). Moreover, the calculation carried out within the
Luttinger Hamiltonian model for the parametrization (II) gives
the crossing between the hh2 and lh1 states at a ≈ 95 Å, see
Ref. [36] for details. For the 100-Å-thick QW, the pure-state
energies still lie very close to each other, the mixing is
remarkable and we use for these � states in Figs. 1 and 2
the notation h+,h− instead of lh1 and hh2, respectively.

The heavy-light hole mixing is crucial both for the h±
states and the spin-orbit splitting of the valence subbands. In
the 4 × 4 effective Hamiltonian approach, one could expect
to get the hh2-lh1 mixing by including the Vzk̂

3
z term of

Eq. (2). The matrix Vz indeed mixes the |�8,3/2〉 state with
the |�8,−1/2〉 state as well as |�8,−3/2〉 with |�8,1/2〉.
The inclusion of the last term in Eq. (2) into the effective
Hamiltonian makes however the problem unsolvable, neither
rigorously nor approximately, even for the infinitely high
barriers in which case the boundary conditions reduce to
vanishing of the envelopes at the both interfaces. Firstly,
strictly speaking, the order of differential equations increases,
and additional unphysical solutions appear. Secondly, an
attempt to take the operator Vzk̂

3
z into account as a perturbation

encounters the problem of a nonhermitian nature of the k̂3
z
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FIG. 1. (Color online) Dispersion [(a) and (c)] and absolute values of spin splitting [(b) and (d)] of valence subbands for
GaAs/Al0.35Ga0.65As QW. The calculations are done for two parametrizations (see Table II): (I) [(a) and (b)] and (II) [(c) and (d)]. Solid
and dashed curves in (a) and (c) present the energy dispersion of two spin-orbit-split branches degenerated at k = 0. The spin splitting of
conduction subband e1 is presented in (b) and (d) for comparison.

operator, 〈hh2|k̂3
z |lh1〉 �= 〈lh1|k̂3

z |hh2〉∗, defined on the space
of envelopes satisfying Eq. (27) and vanishing at the interfaces.
It is worth to mention that, due to the special reason [40],
the linear-k terms in the valence subbands hhν,lhν related to
the Vzk̂

3
z operator and found as a first-order correction to the

energy spectrum in Ref. [11] are finite and can be compared
with the 14-band calculations, see below. For barriers of finite
height, the inconsistency related to the Vzk̂

3
z operator seems

insurmountable for finding both the �-point energies and the
linear-k dispersion. On the other hand, the 14-band k · p
model under study allows one to derive the cubic terms of
Eq. (2) for bulk materials and to compute the QW valence
eigenstates comprising an admixture of the Bloch functions
|�8,3/2〉 and |�8,−1/2〉 or |�8,−3/2〉 with |�8,1/2〉 at the
point kx = ky = 0.

The curves in Fig. 2 are calculated for the same set of
parameters as in the previous figure, with one exception: now
the interface mixing parameter t̃ in the boundary conditions
(24) is nonzero and corresponds to a reasonable value of the
parameter tl-h = 0.5 related with t̃ by Eq. (26) [39]. Comparing
Figs. 1 and 2 we observe striking effects of the interface
mixing. The splitting between the h+ and h− states in Fig. 2(c)

tremendously increases. Furthermore, all the spin splittings in
Fig. 2 are enhanced by about an order of magnitude. The
positions of the h+ and h− states at the � point can perfectly
be evaluated in the framework of Luttinger Hamiltonian and
generalized boundary conditions (23). In the first order in tl-h,
the role of extra term in the boundary conditions (23) can be
reduced to an effective matrix element

�l-h = tl-h�
2

m0a0
�hh2(zi)�lh1(zi) (28)

that mixes the lh1 and hh2 states at k‖ = 0. Here, zi is the
coordinate of the right-hand interface. The mixed state energies
are given by

Eh± = Ehh2 + Elh1

2
±

√(
Ehh2 − Elh1

2

)2

+ �2
l-h. (29)

At the crossing point, where Ehh2 = Elh1, the splitting between
the h+ and h− eigenstates equals 2|�l-h| and each of them
is an equal admixture of the hh2 and lh1 pure states. The
comparison of Figs. 1(c) and 2(c) shows that, in parametriza-
tion II, the “bulk” hh2-lh1 mixing inside the QW layer is by
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FIG. 2. (Color online) Dispersion [(a) and (c)] and absolute values of spin splitting [(b) and (d)] of valence subbands for
GaAs/Al0.35Ga0.65As QW with account for the interface mixing of heavy and light holes [tl-h = 0.5 corresponding to t̃ ≈ 0.07 for the set
(I) and t̃ ≈ 0.1 for the set (II), see Eq. (26)]. Solid and dashed curves in (a) and (c) present the energy dispersion of two spin-orbit-split branches
degenerated at k = 0. The calculations are done for two parametrizations (see Table II): (I) [(a) and (b)] and (II) [(c) and (d)].

an order of magnitude smaller than that due to the interface
effect.

The 14-band model developed here automatically provides
the spin-orbit splitting of conduction and valence subbands
for k‖ �= 0. Like the energy dispersion presented in panels
(a), (c), the spin splittings are given for two directions of
the in-plane wave vector k‖ ‖ [100] and k‖ ‖ [110]. It is
noteworthy that the anisotropy of spin splittings becomes
pronounced at k‖ ∼ 106 cm−1. One can see in Figs. 1(b)
and 1(d) that, even in the absence of interface mixing, the
k-linear spin splitting of hh1 subband is comparable with that
for e1 conduction subband also shown (by triangles). The
other notable feature is a huge linear-in-k spin splitting of
hh2 and lh1 (or h+ and h−) subbands, which is particularly
pronounced for the set of parameters (II) where these states
are close in energy. For this set of parameters, the linear
terms for h± states markedly exceed those for e1 electron
and hh1 valence subbands. Such a behavior was uncovered by
Rashba and Sherman [11] in the model of infinite barriers: it is
caused by (i) the heavy-light-hole mixing by the off-diagonal
elements of Luttinger Hamiltonian proportional to k̂z(kx ± iky)
and (ii) Vzk̂

3
z term in the bulk spin-orbit Hamiltonian (2). The

heavy-light-hole interface mixing results in the considerable
enhancement of spin splittings of the valence subbands, while
the modification of the conduction-band spin splitting is less
pronounced. The detailed analysis of the heavy-light hole
mixing on the interface inversion asymmetry contributions to
the conduction-band spin splitting is beyond the scope of the
present paper [32–34].

To analyze further the effect of interface mixing, we present
in Fig. 3 the absolute value |β(hh1)

1 | as a function of tl-h for a
85-Å-thick GaAs/AlAs QW. The spin splitting constant β

(hh1)
1

in Eq. (5) vanishes at a particular value of tl-h ≈ 0.2 either 0.5
for the parametrizations (II) and (I), respectively, where the
bulk-inversion asymmetry and interface-inversion asymmetry
contributions to the splitting cancel each other. Here, it is
worth to remark that the cancellation takes place for positive
values of tl-h, while for tl−h < 0, the absolute value of the
splitting monotonously increases with an increase of |tl−h|.
The analysis of the sign of this parameter lies beyond the
limits of this work. Atomistic calculation of the spin-orbit
splitting performed in Ref. [19] predicts huge values of β

(hh1)
1

for the hh1 subband reaching 115 meVÅ for a GaAs/AlAs
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FIG. 3. (Color online) The results of calculations of heavy-hole
(hh1) spin splitting as a function of the interface mixing strength for a
GaAs/AlAs 85-Å well. The dashed line indicates the result of pseudo
potential calculations obtained for the same QW in Ref. [19].

structure with the GaAs layer thickness of 85 Å, as shown
in Fig. 3 by the horizontal dashed line. For this particular
structure, the 14-band model yields the same value of hh1
spin-orbit splitting assuming tl-h = 1.2 ÷ 1.6. Relatively high
values of interface-mixing parameter meet the expectation of a
monotonous increase of tl-h with the content x of the heteropair
GaAs/AlxGa1−xAs. The dependence of β

(hh1)
1 on the QW

width a is shown in Fig. 4(a). One can see that for the both sets
of parameters the interface mixing dominantly contributes to
the spin splitting. In the selected well-width range, β

(hh1)
1 is

a monotonous function of a. For smaller values of the width,
this coefficient reaches a maximum and then decreases with the
increasing penetration of the wave function into the barriers.
For completeness, the variation of spin-splitting coefficients

β
(h±)
1 with a in the h± subbands is included in Fig. 4(a),

see the inset.
The numerical results presented above can be interpreted

in terms of three independent contributions to the spin-orbit
splitting of the valence subbands. The first one is similar to that
in the conduction band and, for the heavy-hole subband hh1,
originates from the

∑
α J 3

α�α and (Vxkx + Vyky)k2
z terms in the

spin-orbit Hamiltonian for the �8 band, Eq. (2), averaged over
the size-quantization wave function. The second contribution
results from the interference of the ∝Vzk

3
z term in Eq. (2)

and off-diagonal elements H of the Luttinger Hamiltonian.
In evaluation of this second contribution, one encounters the
“dangerous” k3

z matrix element, which can be calculated only
in the limit of infinite barriers. In this limit, the sum of two
contributions is given by Eq. (8) of Ref. [11]. The third
contribution to the k-linear splitting of the heavy-hole subband
arises from the interface-induced heavy-light-hole mixing
and becomes dominant for |tl-h| � 1. It can be evaluated
within the four-band model using the Luttinger Hamiltonian
and the boundary conditions (23) taking into account that
for tl-h = 0 the heavy-hole wave functions can be presented
as [35]


±3/2 = �hh1(z)|�8,±3/2〉 ± i(kx ± iky)Slh(z)|�8,±1/2〉.
Here, the admixture of |�8, ± 1/2〉 states is considered in the
first order in k‖, and the function Slh is found from [36][

−�
2

2

d

dz

1

mlh

d

dz
+ V (z) − Ehh1

]
Slh(z)

= −
√

3�
2

m0a0

{
γ3

d

dz

}
s

�hh1(z). (30)

Here, Ehh1 is the energy of hh1 subband in the �-point,
Eq. (27), and as before the curly brackets assume symmetriza-
tion of operators. Allowance for the tl-h �= 0 in Eq. (23) gives
rise to the interface inversion asymmetry contribution to the

tl-h = 0.5
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FIG. 4. (Color online) Spin-orbit k-linear term β
(n)
1 for the hh1 subband in a GaAs/Al0.35Ga0.65As QW. (a) 14-band numerical calculation

is shown for two sets of parameters (solid and dashed lines) and for two values of interface mixing parameter: tl-h = 0 and 0.5. The inset
represents the results for h+ and h− subbands at tl-h = 0 for the parametrization (I). (b) Analytical calculation of β

(hh1)
1 . Three bottom curves

are obtained in the limit of infinitely-high barriers from Eq. (8) of Ref. [11]: the solid curve represents the parametrization (I), the dotted and
dashed curves are calculated for the parametrization (II) neglecting and taking into account the corrections δai in Eq. (17), respectively. Two
top curves demonstrate the interface-induced spin splitting according to Eq. (31) with tl-h = 0.5.
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hh1 subband, which in the first order in heavy-light hole
interface mixing reads [15,37]

β
(hh1)
1;int = 2tl-h�

2

m0a0
a�hh1(zi)Slh(zi). (31)

The results of analytical calculations of the above contri-
butions to the hh1 spin splitting are presented in Fig. 4(b).
The two sets of curves are depicted: the set of three bottom
curves corresponds to the “bulk” contribution calculated in
the limit of infinite-barrier well, Ref. [11], and the set of
two top curves represents the interface-induced contribution
calculated after Eq. (31), for tl-h = 0.5 and the finite barriers
corresponding to a GaAs/Al0.35Ga0.65As QW. For calculation
of the “bulk” contribution, bottom dashed and solid curves,
we used parameters ai with inclusion of corrections Eq. (17).
For comparison, the dotted curve in Fig. 4(b) is calculated
for ai = a

(0)
i according to Eq. (8) of Ref. [11] for the set of

parameters (II). From the bottom curves in Figs. 4(a) and
4(b), it is clearly seen that the infinite-barrier model strongly
overestimates the “bulk” contribution to the spin splitting
found within the 14-band model for tl-h = 0. This can be
attributed mainly to (i) significantly larger values of the k̂2

z

operator averaged over the heavy-hole envelope �hh1 found in
the infinite-barrier well compared to the case of finite barriers
and (ii) the overestimation of Vzk

3
z effect.

A similar analytical procedure can also be used to calculate
the interface induced k-linear spin-orbit splitting of the h±
subbands. The detailed discussion of the energy spectrum
for this pair of subbands will be presented elsewhere, here
we resort to a simple resonant approximation which neglects
all energy bands but h+ and h−. In this case, the dominant
contribution results from the interface-induced mixing of the
heavy- and light- hole states and reads [17]

β
(h±)
1 = ±2

√
3�

2

m0

�l-h|〈lh1|{γ3k̂z}s |hh2〉|√
(Ehh2 − Elh1)2 + 4�2

l-h

,

(32)

〈lh1|{γ3k̂z}s |hh2〉 =
∫

�lh1(z){γ3k̂z}s�hh2(z)dz.

Equation (32) closely reproduces the results of numerical
calculation of β

(h±)
1 for parametrization (II) where the subbands

h± are particularly close in energy.
Above we have paid the main attention to the k-linear spin

splitting of valence subbands. However, it follows from the
14-band calculations presented in Figs. 1(b), 1(d), 2(b), and
2(d) that, at k‖ ∼ 106 cm−1, cubic in k terms begin to play
essential role resulting in the anisotropy of the spin splitting.
The k3 contribution of nth hole subband in [001]-grown QWs

TABLE IV. Valence-band spin splittings for a 100 Å
GaAs/Al0.35Ga0.65As QW.

n β
(n)
1 (meVÅ) γ

(n)
1 (eVÅ3) γ

(n)
2 (eVÅ3)

tl-h = 0 hh1 12.2 −82 −31
h+ 13.5 −153 54
h− 67 −140 −78

tl-h = 0.5 hh1 36 55 29
h+ 186 −412 −677
h− 230 −475 −475

is described by two independent parameters γ
(n)
1 and γ

(n)
2 [38]:

H[001]
n = γ

(n)
1

(
σx1k

3
y1

+ σy1k
3
x1

) + γ
(n)
2

(
σx1k

2
x1

ky1 + σy1k
2
y1

kx1

)
.

(33)

The parameters of Hamiltonian (33) extracted from numerical
simulation of a 100Å-GaAs/Al0.35Ga0.65As QW are listed in
Table IV. It is worth to stress that (i) interface mixing makes
a significant contribution both to k-linear and k3 terms in the
valence-band effective Hamiltonian and (ii) the k-linear terms
given by β

(n)
1 , indeed, exceed by far the k-linear terms in the

bulk valence-band Hamiltonian.

V. CONCLUSIONS

To conclude, we have presented here the 14-band k · p
model extended to allow for the reduced microscopic symme-
try of QW interfaces, which makes it possible to calculate the
spin-orbit splitting of hole subbands in QWs. We proposed a
simple boundary condition, Eq. (24), which takes into account
heavy-light hole mixing at the interface due to anisotropic
orientation of interface chemical bonds. Main contributions
to the hole spin splitting are identified. The developed model
has been applied to calculate the valence-band spin splittings
in symmetric (001) QWs, but it can be used as well for QWs
of any crystallographic orientation including the (110) and
(111) orientations as well as in asymmetric structures. The
results of numerical calculations are well described by the
developed analytical theory. Moreover, we have demonstrated
that the large values of the spin splitting for the topmost
heavy-hole subband predicted in Ref. [19] on the basis of
atomistic calculations can be ascribed to the relatively strong
interface-induced mixing of heavy- and light-hole states.
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