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We show that the features of Klein tunneling make graphene a unique interface for implementing low control
quantum gates between static and mobile qubits. A ballistic electron spin is considered as the mobile qubit, while
the static qubit is the electronic spin of a quantum dot fixed in a graphene nanoribbon. Scattering is the low
control mechanism of the gate, which in other systems is very difficult to exploit because of both backscattering
and the momentum dependence of transmission. We find that the unique features of Klein tunneling enable
quasideterministic quantum gates between the spin of a ballistic electron and a static spin held in a dot, regardless
of the momenta or the shape of the incident electron wave function. The Dirac equation is used to describe the
system in the one particle approximation, with the interaction between the static and the mobile spins modeled
by a Heisenberg Hamiltonian. Furthermore, we discuss an application of this model to generate entanglement
between two well-separated static qubits.
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I. INTRODUCTION

Quantum gates between static and mobile spins can impart
scalability to various solid-state quantum information process-
ing (QIP) architectures by effectively enabling gates between
distant static qubits. At present, the spin of ballistic electrons is
a promising mobile qubit in view of the development of quan-
tum electron optics [1–4]. With such a development, ballistic
electron scattering would perhaps be the most effective and
the least controlled way to enact a gate between a mobile and a
static spin, and it has been suggested recently [5,6] following
several schemes for entangling static spins in solid-state struc-
tures by scattering [7–12]. Such schemes can be implemented
with quantum Hall edge states [1,2], carbon nanotubes [13,14],
or a graphene nanoribbon, as we will show here.

While scattering is a unitary process in the combined
Hilbert space of the spin and spatial degrees of freedom, it
is generically not so when solely the spin degree of freedom is
considered. However, a quantum gate between two spins is a
unitary operation solely in the spin space. Thus, employing
scattering for a quantum gate is very tricky and proposed
solutions require postselection [5] or resonant conditions valid
only for monochromatic electrons [6]. Here we show how
graphene nanoribbons, already proposed to host static spin
qubits [15,16], can help to overcome all the above problems.

Graphene is a monolayer of carbon atoms packed into a
hexagonal crystal structure [17]. It has extraordinary elec-
tronic properties [17–19] and presents a high spin coherence
time [16]. The last is due to the low spin-orbit coupling in
carbon-based materials and because natural carbon consists
predominantly of zero-spin isotope 12C, for which the hy-
perfine interaction is absent [15,20]. Additionally, wrinkles
in graphene can be reduced by growing on an appropriate
substrate [21], so that spin-orbit interactions are minimal. All
this makes graphene a very interesting option to implement
spintronic systems.

Electronic transport in graphene is governed by the Dirac-
like Hamiltonian [17,18], with electrons behaving as massless

Dirac fermions. The relativistic analogy extends to the electron
wave function, which is a two-component vector discriminat-
ing between the contribution of the two sublattices present in
graphene. This degree of freedom is known as pseudospin and
its states have a defined chirality: the pseudospin is parallel
(antiparallel) to the electron (hole) momentum [18]. If the
pseudospin is conserved, and a graphene electron is scattered
by a potential barrier in one direction, a hole state moving in the
opposite direction is created inside the potential, to preserve
the pseudospin direction. This allows a perfect electronic
transmission through a potential barrier by means of a hole
state, analogous to a relativistic phenomena known as Klein
tunneling [15,18,22,23]. Additionally, graphene nanoribbons
with semiconducting armchair boundaries have a gap between
conduction and valence bands [22,24,25] due to transverse
confinement, which can be used to localize electrons in a region
through electric gating [15].

In this paper we show the conditions required to implement
a scattering based two-qubit gate, and we show how this gate
can be implemented on a graphene nanoribbon. An application
of this model to generate entanglement between two distant
quantum dots using a ballistic electron as a mediator is also
discussed.

II. GENERAL SETUP

We consider a graphene nanoribbon of width W and
with semiconducting armchair boundaries in the y axis.
The transverse confinement produces a quantization of the
transverse wave vector ky [15,24]:

kny =
(

n ± 1

3

)
π

W
, n ∈ Z. (1)

The band gap is Egap = 2�vF k0y , with vF the graphene Fermi
velocity (vF ≈ 106 m s−1 [22]), which can be used to make
a one-electron quantum dot (QD) with a square potential
well [15]. Suppose that the QD has rectangular shape, with

1098-0121/2014/89(7)/075426(6) 075426-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.89.075426


G. CORDOURIER-MARURI, Y. OMAR, R. DE COSS, AND S. BOSE PHYSICAL REVIEW B 89, 075426 (2014)

FIG. 1. (Color online) Schematic diagram of an electron elastic
scattering with an incident angle θ , on a rectangular QD of �x length.

the same width as the graphene nanoribbon and with a length
�x. Then, a ballistic electron moving along on the graphene
nanoribbon is scattered by the QD, with incident angle θ and
energy εb, as shown in Fig. 1. The transverse confinement is
a constraint to the incident angle θ , as the quantization of ky

limits the accessible wave vectors with a fixed energy εb as

θ = tan−1

⎡
⎣ kny√

ε2
b/�2v2

F − k2
ny

⎤
⎦ . (2)

Thus, frontal scattering (θ ≈ 0) is asymptotically obtained
when εb � �vF kny . This is a constraint in the use of Klein tun-
nelling in semiconducting armchair graphene nanoribbons, as
the total transmission is only present in frontal scattering [22].
Nevertheless, in the following we will show how variations in
θ produce only small changes in transmission.

Working in a regime where there is always one static and
one ballistic electron, we will approximate the system by a one
particle Dirac-like Hamiltonian:

Ĥ = −i�vF σ · ∇ + J Ŝe · Ŝiδ(x), (3)

where σ = {σx,σy} are the Pauli matrices for the ballistic
electron spin and Ŝe and Ŝi are the electronic and impurity spin
operators, respectively (the QD is located at x = 0). Note that
here we have assumed that the scattering process is elastic, so
that the wave vectors of the incoming and the outgoing electron
are the same. This is indeed well within the parameter scale of
our problem, as theoretical studies have estimated the inelastic
length and time scales for hot ballistic electrons in graphene
to be 100 nm and 0.1 ps, respectively [26]. The elasticity also
guarantees that the configuration of one electron confined to
the dot and one electron moving remains fixed even after the
scattering, if εb − εqd < Egap, where εqd is the QD energy.
Thus, treating the QD spin in a manner similar to an Anderson
impurity, an effective Heisenberg term has been written in
Eq. (3) to reduce the two electron problem to a one electron
problem. The Heisenberg interaction is taken to be of delta
function form in space with coupling J ≈ 4�xT 2/U where

T = εb

∫
ψb(r)ψd (r)d r (4)

and

U = e2

4πε0

∫∫ |ψd (r1)|2|ψb(r2)|2
|r1 − r2| + δ

d r1d r2, (5)

in which δ = 0.0814 nm is the radial extent of a π orbital in
graphene [27] and ψb and ψd are the ballistic electron and QD
wave functions, respectively. Thus, the parameters w, �x, and
εb can be controlled to reach a desired J value. In principle, the
ballistic electron Fermi wavelength λF � �x makes the delta
potential a good approximation, but it is still valid for small
incidence angles and wider �x, as we will discuss in the next
section. The advantage of the delta potential approximation is
that it efficiently reduces the complexity of the problem in a
region where resonant behaviors of the wave function are not
predominant.

The eigenstates of the Hamiltonian Eq. (3) must include the
pseudospin, electron, and QD spin contributions. We consider
the QD as a static 1/2-spin particle, with the wave function

ψsd = Aχ1/2 + Bχ−1/2 = A

(
1

0

)
+ B

(
0

1

)
, (6)

in terms of the Pauli vectors χ±1/2. The ballistic electron wave
function is modeled as a two-dimensional monochromatic
wave moving with a wave vector k = εb/�vF with k2 =
k2
x + k2

y . Then, the ballistic electron wave function in the region
x < 0 is a four-component vector:

ψb =
(

1
seiθ

)
⊗ (aχ1/2 + bχ−1/2)ei(kxx+kyy)

+
(

1
−se−iθ

)
⊗ (cχ1/2 + dχ−1/2)rei(−kxx+kyy). (7)

The first term in the right side of Eq. (7) represents the incident
electron, while the second term describes the reflected electron
with a probability amplitude r . The transmitted electron wave
function has the form

ψb =
(

1
seiθ

)
⊗ (f χ1/2 + gχ−1/2)tei(kxx+kyy), (8)

for x > 0 with a transmission probability amplitude t . Here, s

= sgn(εb) generalizes the wave function for the case of a hole.
The incident angle θ = tan−1(ky/kx) depicts the pseudospin
direction. In the one particle approximation the entire system
wave function can be written as � = ψb ⊗ ψsd . The proposed
wave function contains 12 probability amplitudes to find
with boundary and initial conditions. To obtain the boundary
conditions, we act similarly to the well-known nonrelativistic
delta barrier problem and we have to integrate the Hamiltonian
Eq. (3) on an infinitesimally small interval around x = 0 as

lim
�x→0

∫ �x

−�x

Ĥ�(x,y)dx = lim
�x→0

∫ �x

−�x

εb�(x,y)dx. (9)

A special problem for this limit evaluation is that in a Dirac-
like Hamiltonian the inclusion of a delta potential produces a
discontinuity in the wave function. To solve the problem, we
allow the components of �(x,y) to have a finite discontinuity
at x = 0 and extend the definition of the delta function by
writing

lim
�x→0

∫ �x

−�x

�(x,y)δ(x)dx = �(0+,y) + �(0−,y)

2
. (10)
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After applying Eq. (10) in Eq. (9), we arrive to the boundary
condition:

0 = −ı�vF σx[�(0+,y) − �(0−,y)]

+ J

2
Ŝe · Ŝi[�(0+,y) − �(0−,y)]. (11)

Assuming that we know the initial spinor state of the electron
and quantum dot, we can solve the 12-variable equation system
with Eq. (11). Now we focus on the probability amplitude of
the scattered wave function if spin flip takes place (ts) and if it
does not (tn):

tn = 64v2
F �

2 − 3J 2

64v2
F �2 − 16ivF �J + 3J 2

+ O(θ2) (12)

and

ts = 32ivF �J

64v2
F �2 − 16ivF �J + 3J 2

+ O(θ2). (13)

Notice that the Klein tunneling (|tn|2 + |ts |2 = 1) is present
independently of the value of J when θ = 0. The dependence
of tn and ts on the incident angle θ reveals the resilience of
the transmitted wave function in a region near to θ = 0, where
resonances are avoided. In the next section we will show how
this is also the case for any other potential shape.

III. VALIDITY OF DELTA POTENTIAL APPROXIMATION

In order to prove the validity of the delta potential
approximation, in this section we analyze the case in which
the interaction potential has a square shape; any other potential
shape can be built from square potentials with an infinitesimal
length. The situation is depicted by the Hamiltonian:

Ĥ = −i�vF σ · ∇ + V Ŝe · Ŝi�

(
x − �x

2

)
�

(
x + �x

2

)
,

(14)

where �(x) is the Heaviside function and V and �x are the
constant height and the length of the barrier, respectively. To
obtain the spinor-dependent transmittivity of the system, we
express the ballistic electron-QD spinor in a singlet-triplet (ψ−,
ψ+) basis. In these subspaces the dynamics are decoupled and
the potential in Hamiltonian Eq. (14) can be considered as a
spinless potential. The wave function describes the QD and
the incident and reflected electron as

�sq =
(

1
seiθ

)
⊗ (aψ+ + bψ−)ei(kxx+kyy)

+
(

1
−se−iθ

)
⊗ (cψ+ + dψ−)rei(−kxx+kyy), (15)

for x � −�x/2, with εb = �vF

√
k2
x + k2

y and

θ = tan−1(ky/kx). In the region −�x/2 < x < �x/2,
the wave function has a similar form:

�sq =
(

1
seiα

)
⊗ (f ψ+ + gψ−)ei(qxx+kyy)

+
(

1
−se−iα

)
⊗ (hψ+ + jψ−)rei(−qxx+kyy), (16)

FIG. 2. (Color online) Difference between the square potential
transmittivity (Tsquare) and the delta potential transmittivity (Tδ =
|tn|2 + |ts |2) as a function of small incident angles for different
�x values (10, 20, 50, and 200 nm). In all cases εb = 60 meV,
J = 10 eV Å, and V = J/�x.

where εb − V = �vF

√
q2

x + k2
y and α = tan−1(ky/qx), impos-

ing continuity in ky . Finally, the transmitted wave function is

�sq =
(

1
seiθ

)
⊗ (τ+ψ+ + τ−ψ−) ei(kxx+kyy). (17)

We evaluate the continuity of the wave function in the QD
borders x = −�x/2 and �x/2, to obtain the probability
amplitudes if spin flip takes place (τs) and if it does not (τn):

τn = τ+ + τ−√
2

= 1√
2

(e− iV
4�vF

�x + e
3iV

4�vF
�x) + O(θ2) (18)

and

τs = τ+ − τ−√
2

= 1√
2

(e− iV
4�vF

�x − e
3iV

4�vF
�x) + O(θ2). (19)

The total transmittivity Tsquare = |τn|2 + |τs |2 will remain
approximately constant for small incident angles θ .To compare
the effect of the potential shape, we plot in Fig. 2 the difference
between the total transmittivity in the square potential (Tsquare)
and delta potential (Tδ = |tn|2 + |ts |2) cases, as a function of
small incident angles and for different �x values (10, 20, 50,
and 200 nm). The square barrier height is set to be the average
of the delta interaction as V = J/�x, with J = 10 eV Å. The
ballistic electron energy (εb) is 60 meV, which corresponds
to a de Broglie wavelength of 70 nm, approximately. The
difference is more pronounced as the incident angle becomes
larger, which is due to the resonance present in nonfrontal
injection. However, the difference is negligible for small angles
(< π/6) even when the barrier length �x is larger than the
de Broglie wavelength. This allows us to validate the delta
potential approach for a range of small incidence angles.

IV. A SCATTERING-BASED TWO-QUBIT GATE

We can now state the nontrivial conditions needed for
a unitary quantum gate between a static and a scattered
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qubit dependent on the founded probability amplitude trans-
mission [5]. Usually, only the whole scattering process is
unitary in the space and spin combined degree of freedom. If
spin-flipped and no spin-flipped states of the mobile spin have
different probabilities for transmission, then, by measuring
the transmission, some information about the spin state can be
acquired. This transformation is then clearly not unitary in the
spin degree of freedom. The general transformation acting on
the spin-density matrix ρ of the two qubits on transmission of
the mobile spin is

ρ ′ = TρT†

Tr [TρT†]
, (20)

where T is the probability amplitude matrix acting in a
nonlinear way on ρ. The condition needed to assure unitarity
and linearity of T is |tn + ts | = |tnts |, with ts and tn the
probability amplitudes defined in Sec. II. This is the condition
to implement an electron-scattering quantum gate [5]. Not only
it is very intricate to satisfy the gate condition for particles with
Schrodinger dispersion, but the total transmission |tn|2 + |ts |2
in such cases is significantly lower than unity for useful
two-qubit gates, making the gates nondeterministic.

It is straightforward to see in Eqs. (12) and (13) that the gate
condition (|tn + ts | = |tn − ts |) is fulfilled independently of J

in frontal scattering (θ = 0), and the implemented gates will
be deterministic. The cause of this behavior can be seen clearly
if we express the system spinor in terms of the singlet-triplets
basis ({ψ−, |↑↑〉 ,ψ+, |↓↓〉}), which are eigenfunctions of the
Heisenberg operator; then the dynamics of the singlet and
triplet subspaces are decoupled. In each of these subspaces,
the Heisenberg interaction term of Eq. (3) reduces to a spinless
potential barrier (similarly to what was done in the previous
section) [5,28] so the effective Hamiltonian describes a particle
scattering from two spin-independent potentials as

ĤS = −i�vF σ · ∇ + VS δ(x), (21)

where

VS = J

2
[S(S + 1) − 3/2] (22)

is an effective potential and S is the quantum number
associated with Ŝ2 and S =0 (S =1) in the case of the singlet
(triplet). The ballistic electron, as a massless pseudo-Dirac
fermion, can be perfectly transmitted through these potentials
due to the Klein tunneling [15,18,22,23], and we expect that
|tn + ts | = |tn − ts | for any value of J .

In Eqs. (12) and (13) we can see that the angular dependence
of the probability amplitudes in frontal insertion is resilient to
small angular changes. Also, in frontal scattering the Klein
tunneling is independent of k, and thereby it is present when
the ballistic electron is in an arbitrary wave packet. In Fig. 3(a)
we show the evolution of the probabilities of detecting a
transmitted electron, or the success probability of the gate,
|tn|2 + |ts |2 as a function of the incident angle θ and the
coupling factor J . Notice that the gate success probability
changes by only approximately 5% when θ changes from 0 to
±π/16 and remains almost constant as J evolves.

FIG. 3. (Color online) Evolution (a) of the gate probability of
success (|tn|2 + |ts |2) and (b) of the gate condition |tn + ts | − |tn − ts |
as a function of the electron incident angle (θ ) and the coupling factor
(J ).

We show |tn + ts | − |tn − ts | as a function of variations
in θ and J in Fig. 3(b); whenever |tn + ts | − |tn − ts | = 0,
the gate condition is fulfilled [5]. Notice that this is satisfied
in J = 8

√
1/3�vF ≈ 30 eV Å, independently of the angle

of incidence. The gates implemented here will be of SWAP
type, which interchange the state of the two qubits. However,
unless θ = 0, there will be backscattering (gates will be
nondeterministic). The implementation of this kind of gate
can be useful to initialize and to read out the QD spin state,
injecting a polarized ballistic electron, the final state of which
can be measured directly.

In Fig. 4 we show the transmittivity or probability of a
no-spin flip (|tn|2) and a spin flip (|ts |2) taking place after a
frontal scattering, as a function of J . Notice that |tn|2 = |ts |2
for J = 8�vF

√
11 − 4

√
7/3 ≈ 11.2 eV Å. At this point we

expect to implement a
√

SWAP gate, generating maximum
entanglement between the electron and QD spins.

The order of magnitude of J values we require is achievable.
For example, for a w = 30-nm nanoribbon, a QD of �x = 21
nm, an angle of θ ≈ 22 deg (a probability of success of 90%
is obtained for 20 deg), and εb = 60 meV, we obtain t = 32
meV, U = 52 meV, and thereby J ≈ 16.5 eV Å. Although
we have U ∼ 1.63t , which would normally—for nonchiral
particles—give a low but finite double occupancy (i.e., two
mobile or two static electrons after scattering) probability of
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FIG. 4. (Color online) Transmittivity or probability of no spin
flip (|tn|2 blue line) and a spin flip (|ts |2 reed line) after a frontal
scattering, as a function of the coupling factor J .

about 27 %, here such processes should be suppressed by the
conservation of pseudospin. Other parameter regimes may also
be useful, as we show in the next section.

V. TWO QUANTUM DOT ENTANGLEMENT GENERATION

An application of this model is to use the ballistic electron
spin as a mediator to relate two fixed and distant QDs. The
separation between the two QDs can be in the micrometer
range due to the graphene spin coherence length [29]. We can
set the probability amplitudes of the electron scattering with
the first (second) QD to be tn1 (tn2) and ts1 (ts2). If we inject
a ballistic electron with a known spin state, for instance |↑〉e,
the transformation is represented in the computational basis of
the two QD spins (|↑〉1 |↑〉2, |↑〉1 |↓〉2, |↓〉1 |↑〉2, |↓〉1 |↓〉2) as

T2 =

⎛
⎜⎜⎜⎝

1 ts2 ts1tn2 0

0 tn2 ts1ts2 ts1

0 0 tn1 tn1ts2

0 0 0 tn1tn2

⎞
⎟⎟⎟⎠ . (23)

The triangular form of this matrix is due to the total
transmission in the scattering events, so that the result on
the second QD has no effect on the first one and no
resonant behavior is expected. If we set the J factor of
the second QD to be SWAP (|ts2| = 1 and |tn2| = 0), it is
straightforward to see that after scattering with both QDs
we obtain a superposition in the QD spin states of the form
�12 = ts1 |↑〉1 |↓〉2 + ts2 |↓〉1 |↑〉2. Thus, with this process we
can control the level of entanglement generated. If we set
the first QD J coefficient to implement a

√
SWAP gate, or

|ts1| = 1/
√

2 and |tn1| = 1/
√

2, we expect a total entangled
final state between QD spins. It is not necessary to perform a
postselection of any kind after the electron scattering.

Here let us point out that it is possible to choose different
parameter regimes to obtain the values of J required above
for the

√
SWAP and SWAP. For example, for W = 30,

εb = 65 meV, and �x = 11 nm, one obtains an angle of
incidence of ∼21 deg (90% reflection occurs at 20 deg),

U = 66 meV, t = 25 meV, and thereby J ∼ 4.1 eV Å. For
this value, the spin-flip probability on transmission is ∼0.1,
and thereby the entangled state of impurity 1 and the ballistic
spin that is generated is ∼0.95 |↑〉e |↓〉1 + 0.31 |↓〉e |↑〉1. This
is still an entangled state, and the fact that this is a result of a
unitary operation makes the gate an entangling gate—which
is still very useful for QIP, though not as readily useful as
the maximally entangling

√
SWAP gate. For example, taking

the scenario of two static quantum dot based spins 1 and 2
mentioned above, but with the ballistic electron, initially in
the |↑〉e state, undergoing the same gate with both spins 1
and 2 (as opposed to the above case) in the parameter set
of this paragraph, one can create the highly entangled state
0.69 |↓〉1 |↑〉2 + 0.73 |↑〉1 |↓〉2 with a 0.18 success probability
conditional on detecting the ballistic electron in the state |↓〉e
(say, by a spin filter).

VI. SUMMARY

In summary, in this work we have shown how the Klein
tunneling, present in the graphene electrons scattering off a
rectangular QD, is useful to implement quasideterministic (i.e.,
without backscattering) two-qubit quantum gates between the
ballistic electron spin and the QD spin, and we have shown that
this mechanism works for arbitrary electronic wave packets.
The transversal confinement limits the incident angle in the
scattering process, due to the quantization of the transverse
wave vector ky . This problem can be overcome tuning the
ballistic electron energy to reach the frontal scattering (θ = 0)
angle asymptotically. We show that, when J = 8

√
1/3�vF ≈

30 eV Å, a SWAP gate is obtained. In a frontal scattering, the
Klein tunneling is present and we will always find quantum
gates. The gates implemented in these conditions are quaside-
terministic, because the gate success depends on how approxi-
mately frontal the scattering is. However, we see that a change
in the incident angle of ±π/16 from the ideal frontal angle
produces only small changes (of about 5%) in the gate success
probability. It has also been shown how this model can be used
to generate and control the entanglement between two fixed
and distant QD spins, taking a ballistic electron spin as a media-
tor. Some of this work could be adaptable to a setting of carbon
nanotubes, where a presence of backscattering is also absent.
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