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Dopant binding energies in P-doped Ge[110] nanowires using real-space pseudopotentials
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We apply a real-space pseudopotential formalism for charged one-dimensional periodic systems to examine the
binding energies of P dopants in Ge[110] nanowires with varying periodicities and diameters. Binding energies
calculated by density functional quasiparticle energies of the neutral dopant are severely underestimated whereas
those calculated by quasiparticle energies of the ionized defect are overestimated. We find the best method for
determining binding energies is to adopt a composite approach that evaluates the total energy difference between
charged and neutral systems for the ionization energy of the P dopant, but uses the quasiparticle energy for
the electron affinity of the pure Ge nanowire. Our formalism offers a simple density functional method for
calculating dopant binding energies of small nanowire systems without the use of computationally intensive
many-body perturbation theory calculations.
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I. INTRODUCTION

The dopant binding energy (alternatively referred to in the
literature as the dopant ionization or activation energy) is an
important property for understanding and evaluating semi-
conductor performance as it relates to the doping efficiency.
For nanostructures, experimental and theoretical studies have
shown that the binding energy increases with decreasing size
owing to dielectric mismatch and quantum confinement, po-
tentially moving a shallow defect into a deeper state, which can
have drastic effects on device functionality [1–5]. However,
significant discrepancies between theoretical models exist,
particularly in the magnitude of the binding energy [5,6], and a
more accurate modeling of the defect states will lead to a better
understanding of the properties that drives novel technological
devices such as functionally doped semiconductor nanowires.
Some applications for doped nanowires include biological and
chemical sensors, thermoelectrics, and photovoltaics [7–9].

For a donor in a nanowire, the binding energy Eb is defined
as the energy needed to ionize a neutral dopant and move
its electron to the conduction band edge far away, evaluated
by Eb = Id − Ap, where Id and Ap refer to the ionization
energy and electron affinity of the doped and pure (or intrinsic)
system respectively. These two quantities can be calculated
from total energy differences between the appropriate charged
and neutral systems (�SCF ). For periodic systems such as
nanowires, the energy calculation of a charged system is
problematic owing to the long-range Coulomb force, which
adds an artificial interaction via its repeated image and causes
its total energy to diverge. Typical supercell calculations of
charged systems introduce a compensating charge background
(or jellium) to screen this long-range interaction. However,
the charge background itself interacts with the system and
introduces its own artificialities. Numerous schemes have been
devised to correct for this interaction to model accurately

the energy and potential of a charged material, including the
well-known Makov-Payne scheme [10–13]. These schemes
may require very large supercells to obtain converged results,
which can be computationally intensive [14].

We will apply an alternative, computationally competitive
approach to calculate dopant binding energies in P-doped
Ge[110] nanowires. Compared to Si, Ge features a lower band
gap and a shallower defect state for P in the bulk [15]. Quantum
confinement effects are expected to differ in Ge compared to
Si owing to the larger Bohr exciton radius of 24.3 nm in Ge
compared to 4.9 nm in Si [16,17]. Thus, the properties of
doped Ge may be more flexible and easily tuned for various
electronic applications. Our theoretical approach is based
on real-space pseudopotentials constructed within density
functional theory (DFT). The charged nanowire is confined
within a one-dimensional periodic supercell along the wire
axis. Unlike a three-dimensional periodic supercell interwire
interactions are eliminated, and total energy corrections related
to such interactions can be avoided. In addition it is no
longer necessary to include a large amount of vacuum space
to converge the total energy of a charged nanowire (∼5 Å
is needed), which alleviates the computational demand. The
interaction between image cells along the wire axis can
be addressed without introducing a compensating charge
background that interacts with the system itself by defining
an appropriate electrostatic boundary condition for the Kohn-
Sham equation. This approach has been used to examine the
capacitance of metallic and semiconductor nanowires [18].
Details of the formalism are outlined in a previous paper [19].

The dopant binding energy (Eb) can also be obtained
by calculating ionization energies (Id ) and electron affinities
(Ap) as quasiparticle energies based on the highest occupied
(HOMO) and lowest unoccupied (LUMO) Kohn-Sham eigen-
values. This “quasiparticle approximation” is known to have
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issues within DFT, in part because Kohn-Sham eigenvalues
have an ambiguous physical interpretation owing to the delo-
calization of electrons, and also because DFT underestimates
the HOMO-LUMO band gap. Screening charges around the
ionized dopant are not accounted for by the HOMO eigenvalue.
Considering this shortcoming, Niquet et al. [6] proposed that
Eb with DFT using the quasiparticle approach can be better
approximated by Eb = Ad (+) − Ap(0). Here, Ad (+) is the
electron affinity of the ionized doped system obtained from
the LUMO eigenvalue after the doped system is ionized,
while Ap(0) is still obtained from the LUMO eigenvalue of
the corresponding neutral system of pure Ge. That is, Id

is approximated by Ad (+) such that the interaction effects
following ionization can be included. In this paper, both the
original quasiparticle and Niquet’s approach will be evaluated
and compared with the �SCF approach. For nanowires, while
the original quasiparticle approach does not take into account
the interaction between the screening charges and the wire
surface, we found that Niquet’s approach double-counts it. It
is best to adopt a composite approach to determine Eb using
the total energy difference to calculate Id but the quasiparticle
approach to calculate Ap.

II. COMPUTATIONAL METHODS

Electronic structure calculations were carried out using
PARSEC, a pseudopotential code for DFT calculations in
real-space without the use of an explicit basis set [20–23]. The
pseudopotential used for Ge is based on the Troullier-Martins
[24] construction with valence configuration 4s24p24d0.
Partial core corrections are included and p is adopted as the
local component [25]. This pseudopotential has been used in
previous studies on Ge nanowires and provides accurate results
for the wire’s mechanical and electronic properties [26,27].
Exchange correlation was handled using Ceperley-Alder, a
functional based on the local density approximation (LDA)
[28]. Structural relaxations were performed using the BFGS
method [29–32] with a force tolerance of ∼0.01 Ry/bohr. Only
the � point was used for k-point sampling as the nanowires
examined in the study had relatively large periodicities. Spin
polarization was included for systems with unpaired electrons.

Figure 1 illustrates one of the Ge nanowires examined in
the study. Wires were constructed along the [110] growth
direction, as that orientation was shown to be the most
energetically stable for small wires [33] and features some of
the more interesting and well-researched electronic properties.
Surface atoms were passivated with hydrogen capping atoms
[34]. Nanowires were doped by substituting one of the
innermost Ge atoms with a phosphorus atom, creating an
n-type donor. We constructed and performed calculations on
wires of diameter 1.16, 2.28, and 3.42 nm, where the diameter
was defined as the smallest cylinder that can enclose the wire.

III. INTERACTION AMONG P DOPANTS

Since our goal is to study the isolated P dopant, we first
examined the dependence of the formation energy Eform,
ionization energy Id , and electron affinity Ap on the periodicity
of the Ge nanowire. This allows us to assess the interaction
between P dopants from the periodic images along the wire

FIG. 1. (Color online) Axial view of a H-passivated P-doped
Ge[110] nanowire with D = 2.28 nm. The smaller, lighter colored
atom near the center is the P dopant. The small atoms at the surface
of the wire are hydrogen capping atoms.

axis. Understanding the behavior of Id and Ap is particularly
important since they determine the binding energy Eb. The
nanowire with a diameter D = 1.16 nm was chosen for this
study. Structural relaxation was not used to ensure trends
resulted from changes in periodicity only.

Formation energies were calculated by

Eform(P) = E(P − Ge) − E(Ge) + μ(Ge) − μ(P), (1)

where E(P − Ge) and E(Ge) refer to the total energies of
the P-doped and pure Ge wire, and μ(Ge) and μ(P) refer to
the respective atom’s chemical potential. The value for μ(Ge)
was taken to be the energy per atom of bulk Ge, and μ(P)
corresponded to the total energy of an isolated P atom. Similar
choices for the chemical potentials were used in previous
works on doped nanostructures [35,36].

In practice the chemical potentials depend on experimental
conditions, which may not correspond to the theoretical values
adopted here. However, we are only interested in the trend of
Eform, not in their absolute values. We used a grid spacing
of 0.47 a.u., which converges formation energies to within
0.05 eV. The results in Fig. 2(a) show that Eform increases with
periodicity and quickly converges at a periodicity of 23.9 Å.
The attractive interaction (∼1.3 eV) between P dopants from
adjacent image cells quickly diminishes beyond a few Ge bond
lengths. Beyond six times the length of the primitive cell, P
dopants between image cells are essentially noninteracting,
which is comparable to that in P-doped Si nanowires [36].

Figure 2(b) plots the behavior with periodicity for both
Id (�) and Ap(�), with � indicating that values were cal-
culated as total energy differences between the appropriate
charged and neutral systems. A grid spacing of 0.6 a.u. was
used, which converges both quantities to within 0.01 eV. The
Id (�) curve looks similar to that of P-doped Si nanowires
[19], which is expected since the ionization energies for Si
and Ge nanocrystals were found to be similar [37]. The
main characteristic is that Id (�) increases with decreasing
periodicity. Note that since the charged nanowire is en-
closed within a cylindrical domain, interwire interactions are
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FIG. 2. (Color online) (a) The trend of Eform of a P dopant in a Ge[110] nanowire (D = 1.16 nm) with periodicity. (b) Id (�) of the same
P-doped Ge nanowire in (a) and Ap(�) of the corresponding pure Ge nanowire calculated by total energy differences (�SCF ). The dashed
line corresponds to |εCBM|, which is the magnitude of the eigenvalue of the CBM of the pure Ge nanowire. Ap(�) should converge to |εCBM|
for large periodicities.

eliminated. Furthermore, although the nanowire repeats peri-
odically along its axis, electrostatic intrawire interactions be-
tween image cells are also removed by selecting an appropriate
reference vacuum level [19]. Therefore, the observed trend in
Fig. 2(b) corresponds to interactions between unit cells that
are nonelectrostatic in nature. According to a previous study
on P-doped Si[110] nanowires, an induced surface charge
forms when the P dopant is ionized. The repulsive interaction
between the induced charges in adjacent image cells increases
with smaller periodicity leading to a higher Id (�) [19].

Compared to Id (�), the Ap(�) decreases concurrently with
periodicity. The electron affinity corresponds to the energy
gain of a free electron placed in the conduction band minimum
(CBM) of a pure Ge nanowire. In contrast to the localized P
defect state, the CBM of the pure Ge wire is an extended state.
The calculation of Ap(�) should correspond to putting an
electron into a supercell of infinitely large periodicity. Using a
smaller periodicity for the calculation thus confines the added
electron to a finite region and consequently reduces Ap(�).
It is expected that Ap(�) trends to |εCBM|, where εCBM is the
eigenvalue of the CBM for the pure Ge nanowire. A DFT study
on a large Si nanocrystal suggests that Ap(�) converges to the
CBM of bulk Si [38].

IV. QUANTUM CONFINEMENT EFFECTS

The effect of quantum confinement on the binding energy
Eb of an isolated P dopant in a Ge[110] nanowire was
examined by studying Eb versus wire diameter D. While
the interaction between neutral P dopants diminishes beyond
∼24 Å, the interaction between ionized dopants is long ranged.
In order to minimize the effect of having a finite periodicity,
the wire periodicity is set to be 47.82 Å. At this length,
the dispersion of the dopant band is less than 15 meV.
Relaxed structures were obtained using a force tolerance of
∼0.01 Ry/bohr.

The binding energy Eb(�) = Id (�) − Ap(�) can be cal-
culated solely through total energy differences, where both
Id (�) and Ap(�) are calculated from the total energies of the

appropriate charged and neutral systems. This approach to
calculate binding energies is known as �SCF . As discussed in
the previous section, Id (�) includes the quantum mechanical
effects following the ionization of P, but these effects are ex-
pected to be slightly overestimated due to the finite periodicity
of the wire. Figure 3(b) shows that Id (�) is insensitive to
D as the curve is quite flat. A similar trend was observed in
P-doped Si nanocrystals [39,40] and nanowires [18]. The value
for Id (�) (∼4.15 eV) is similar to that of a P-doped Si nanowire
(∼4 eV) [19]. This is to be expected since the ionization
energies of Si and Ge nanocrystals are nearly identical [37].
The trend of Ap(�) decreases concurrently with D owing to
quantum confinement on the CBM of the pure Ge nanowire.
The resultant Eb(�) is plotted in Fig. 3(a), which shows an
increasing trend with smaller D. The bulk value of Eb for P in
Ge is ∼13 meV, indicating a a shallow dopant state [41]. For
the nanowires examined in the study, the dopants are no longer
shallow owing to the effects of dielectric mismatch and quan-
tum confinement as observed in various experimental and the-
oretical studies on doped semiconductor nanostructures [1–5].

Since Id (�) does not vary much with size, the variation
of Eb(�) is mainly contributed by Ap(�). Therefore, the
accuracy of Ap(�) is crucial as far as the trend of Eb(�)
is concerned. Due to the imposed periodicity, Ap(�) was
found to be underestimated in the pure Ge nanowire (see
Fig. 2). As a result, determined values for Eb(�) are too
high. It is essential to calculate the ionization energy based on
�SCF in order to capture the polarization energy following
dopant ionization. However, it is more accurate to calculate the
electron affinity using a quasiparticle approach such that the
effect of imposed periodicity is minimized. The quasiparticle
approach calculates Ap using |εCBM|. We denote the resultant
electron affinity as Ap(0) to indicate that the eigenvalue was
taken from the neutral system. For the range of D examined,
Ap(�) and Ap(0) differ by ∼0.6 eV, but Fig. 3(b) shows that
the difference narrows with larger D. We suggest a composite
approach to calculate the binding energy by Id (�) − Ap(0).
While the effect of quantum confinement is significant in Ge
nanowires with small D, the enhancement in the binding
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FIG. 3. (Color online) (a) The variation of Eb in a P-doped Ge[110] nanowire with respect to wire diameter D using various methods.
(b) The corresponding variations of Id and Ap with D. The different approaches to calculate Eb are shown in the legend. See the text for details
on the methods.

energy should not be as large as predicted by Eb(�) but
reduced by roughly half as in the composite method.

Both the �SCF and composite methods use total energies
to compute the binding energy. It is also possible to evaluate
Eb using solely a quasiparticle approach. In addition to Ap(0),
the ionization energy can be calculated using |εdefect|, where
εdefect is the eigenvalue of the P defect level within the
gap of the Ge nanowire. We denote this ionization energy
Id (0). In Fig. 3(b), Id (0) decreases with decreasing D as in
Ap(0). This behavior can be understood using the hydrogenic
model of a shallow dopant in a semiconductor [15], which
states that the trend of the defect level follows that of the
semiconductor’s CBM. The corresponding binding energy is
Eb(0) = Id (0) − Ap(0) as illustrated in Fig. 3(a). We call this
method QP0 to indicate that the ionization energy is calculated
using the quasiparticle of the neutral doped system. Eb(0)
is severely underestimated compared to the �SCF methods
owing to DFT’s self-interaction error that results in an incorrect
description of the energy levels in the conduction band. Similar
issues were observed in P-doped Si nanowires using similar
methods and functionals [5,6]. The DFT error is a relatively
minor issue in the �SCF approach since the total energies of
ground states are generally accurate when the system does not
involve highly localized electronic states. The underestimate
of Eb(0) also originates from the lack of accounting by Id (0)
for the energy associated with polarization after the dopant
is ionized. This should not be a significant concern for Ap(0)
since the CBM is not a localized state, so the energy associated
with polarization should be relatively small.

Noting the shortcomings of the QP0 approach, Niquet
et al. suggested an alternative method that uses the ionized
doped nanowire instead of the neutral system. They used the
LUMO eigenvalue of the ionized system [denoted by Ad (+)]
as the ionization energy of the neutral nanowire. This way
the polarization energy associated with screening following
dopant ionization is taken into account. The binding energy
thus becomes Eb(+) = Ad (+) − Ap(0). We call this approach
QP+ to indicate that the ionization energy is calculated by
a quasiparticle approach that uses an ionized dopant. The
calculated Ad (+) vs D in Fig. 3(b) shows that the effect of

screening is exaggerated by QP+ as Ad (+) values are too
high compared to Id (�).

We found that the Id (�) values are almost exactly the
average of Id (0) and Ad (+), or

Ad (+) ≈ Id (�) + [Id (�) − Id (0)] . (2)

If Id (�) is taken to be accurate, then Id (�) − Id (0) corre-
sponds to the error of Id (0); thus Ad (+), which was supposed
to account for this error, ends up double-counting it. Using the
expression for Ad (+) in Eq. (2), it can be shown that Eb(+) ≈
Eb(�) + [Eb(�) − Eb(0)]. Therefore, Niquet’s QP+ method,
which was devised to correct for the underestimate of Eb by
the QP0 method, turns out to overestimate the binding energies
as illustrated in Fig. 3(a).

One of the key differences between the QP0, QP+, and
�SCF methods comes from the treatment of the ionization
energy Id of the doped system. A similar comparison between
the magnitudes of Id using these methods can be found in
a study on small Na clusters [42]. In this study, ionization
energies were calculated with LDA as well as with many-
body perturbation theory (MBPT), including self-consistent
GW (scGW). In the LDA results, Id (0) calculated from
the HOMO of the neutral species were underestimated, and
Id (+) calculated from the LUMO of the ionized species were
overestimated, but Id (�) calculated as total energy differences
gave results closest to experimental values, being slightly
overestimated by a few tenths of an eV. The LDA results for
Id (�) are reasonably close to the scGW results, often within
0.1 eV. Another study on small Ge clusters that compares
ionization energies calculated by LDA and GW reports
similar findings, where the LDA results for Id (�) are slightly
overestimated and those for Id (0) are grossly underestimated
[43]. The study also computes electron affinities and finds
that those calculated by LDA with the �SCF method are
overestimated by a similar amount compared to GW and
experimental results.

The composite method Eb(composite) = Id (�) − Ap(0)
thus adopts Id (�) but continues to treat Ap(0) using the
quasiparticle approach, which is appropriate for an extended
state (the CBM of the pure Ge nanowire) in order to mitigate
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FIG. 4. (Color online) Surface contour plots for the induced charge density ρind of various Ge nanowires (D = 1.16 nm). The contour
surface corresponds to a chosen positive value of ρind. Only the atomic bonds are drawn; individual atoms are not shown. (a) Side view of
ρind(P) for the ionized P-doped wire. The ρind(P) is localized around the P atom. (b) Side view of ρind(Ge) for the negatively charged pure Ge
wire. In contrast to (a), ρind(Ge) is spread evenly throughout the wire. (c) Axial view of (b). The ρind(Ge) is spread around the surface of the
wire at r ≈ 6 Å.

the effects of imposing periodicity. The most accurate result
for the binding energy should correspond to the composite
method, where QP0 underestimates the binding energies while
�SCF and QP+ overestimate them. The differences between
the various methods become less significant for larger wires.
Ideally, the various methods should be benchmarked against
MBPT since the study of defects involves the energy band gap,
which LDA has problems reproducing; however, we could not
find a relevant MBPT study for our system.

To attain a deeper understanding of the charged nanowires,
we examined the induced charge ρind of the ionized P-doped
and the negatively charged pure Ge nanowire (D = 1.16 nm).
The induced charge density of the ionized P-doped nanowire
[ρind(P)] was obtained by taking the difference between the
charge density of the ionized (positively charged) P-doped
nanowire and that of the neutral undoped wire. The induced
charge density of the negatively charged pure Ge wire
[ρind(Ge)] was obtained by taking the difference between the
charge density that corresponds to the first N electrons of
the charged pure wire (with N + 1 electrons) and that of the
neutral pure wire (with N electrons). As spin polarization
was included for systems with unpaired electrons, the relative
contributions to the charge density of the up and down spin
states were weighted by their occupancies. In each case the
charged density has the same number of electrons (N ) such
that ρind corresponds to zero net charge. A positive (negative)
ρind indicates an excess (deficiency) of electrons compared to
the neutral system.

Surface contour plots of ρind(P) and ρind(Ge) are shown in
Fig. 4. The contour surface corresponds to a chosen positive
value of ρind. The plots show that ρind(P) is localized around

the P dopant [Fig. 4(a)] whereas ρind(Ge) is evenly spread
throughout the wire axis [Fig. 4(b)]. This originates from the
fact that the P defect state is localized whereas the CBM of the
pure Ge wire is an extended state.

The radial variation of ρind(P) and ρind(Ge) was calculated
in ∼10 Å segments along the wire axis. Figure 5(a) plots
a segment that contains the P dopant (located at x ≈ 5 Å)
whereas Fig. 5(b) plots a segment of the wire far from the
P dopant (x ≈ 19–29 Å). In the ionized P-doped wire, the
electrons that screen the positive P ion are mostly drawn from
around the surface of the nanowire, reflected in the figure as a
deficiency of electrons [negative ρind(P)] at r ≈ 6 Å. Since the
DFT eigenvalue of the defect level εdefect does not capture such
polarization effects, it is vital to calculate Id using the �SCF

approach. The electron deficiency at the wire surface extends
to the segment far from the P dopant although ρind(P) decreases
in magnitude. The ρind(P) on the nanowire surface leads to a
repulsive interaction between periodic cells that results in an
enhanced Id as described in Sec. III. For the charged pure Ge
wire, since the electron is added to an extended state, the radial
variation of ρind(Ge) is independent of the chosen segment
along the wire axis (the x ≈ 19–29 Å segment is plotted). In
this case Fig. 5(b) shows an excess of electrons around the
surface of the nanowire at r ≈ 6 Å. This is also depicted in
the surface contour plot of ρind(Ge) in Fig. 4(c). Note that
the ρind(Ge) plots correspond to a finite linear charge density
along the pure Ge nanowire. In contrast to the ionized P-doped
wire, a single electron deposited into the CBM of an infinitely
long pure Ge nanowire should not lead to a considerable ρind

as indicated. Therefore, the electron affinity should be well
approximated by εCBM.
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FIG. 5. (Color online) (a) The radial variation of ρind(P) for the ionized P-doped Ge wire in a ∼10 Å segment along the x axis that contains
the P dopant (located at x ≈ 5 Å). (b) Same as in (a) but for a segment far from the P dopant (x ≈ 19–29 Å). For the same segment, ρind(Ge)
for a charged pure Ge nanowire is also plotted for comparison.

While the effect of quantum confinement on Eb should
involve Id (�), the formation energy Eform(P) obtained from
relaxed structures can be correlated to Id (0). Figure 6 plots
Eform(P) as a function of D and shows that the magnitude
of Eform(P) decreases concurrently with D. Since |Eform(P)|
represents the energy of replacing a Ge atom with P, the
trend implies that the nanowire becomes more difficult to
dope as it becomes smaller. A similar “self-purification” effect
has also been observed in doped Si nanostructures [35,44].
The eigenvalue of the defect level εdefect [or −Id (0)] is also
plotted [it is by coincidence that the εdefect are aligned with
the Eform(P) without introducing a shift]. Its trend with D

follows that of Eform(P) quite well, which provides evidence
that the energetics of a shallow dopant in a nanostructure can
be correlated with the Kohn-Sham eigenvalues of the dopant
defect level [36].

V. CONCLUSIONS

We used our real-space DFT formalism for charged one-
dimensional periodic systems to calculate and compare the

1 1.5 2 2.5 3 3.5
Diameter (nm)

-3.8

-3.7

-3.6

-3.5

-3.4

En
er

gy
 (e

V
)

Eform(P)
εdefect

FIG. 6. The formation energy Eform(P) of doping P into a Ge[110]
nanowire as a function of wire diameter D. Relaxed structures were
used for the calculations. The eigenvalue of the dopant defect level
εdefect = −Id (0) is also shown.

results of the dopant binding energy Eb with respect to wire
diameter for a P dopant in a Ge[110] nanowire using various
methods. For all sizes of nanowire examined, dopant levels are
not shallow as in the bulk. Binding energies calculated using
quasiparticle energies (QP0) of the neutral dopant are under-
estimated owing to the lack of accounting for the polarization
energy associated with screening the ion, resulting in too
shallow dopant levels. Conversely, the quasiparticle energies
of the ionized defect (QP+) overestimate the binding energy
because the polarization energy is double counted. Binding
energies calculated by total energy differences (�SCF )
between charged and neutral systems also overestimate the
binding energy, and the error originates from the imposed
periodicity of the wire. Our proposed composite method
calculates the ionization energy Id (�) of the P dopant by total
energy differences, but calculates the electron affinity Ap(0)
of the pure Ge nanowire using a quasiparticle approach. Such
a composite approach to calculate the binding energies likely
gives the most accurate results. The study explores how our
formalism for modeling charged 1-D periodic systems without
a compensating charge background can be used to provide a
computationally efficient DFT method for determining dopant
binding energies in nanowires.
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