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Zitterbewegung and quantum revivals in monolayer graphene quantum dots in magnetic fields
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The wave-packet evolution in graphene quantum dots in magnetic fields has been theoretically studied. By
analyzing an effective Hamiltonian model we show the wave-packet dynamics exhibits three types of periodicities
(Zitterbewegung, classical, and revival times). The influence of the size of the quantum dot and the strength of
the external magnetic field in these periodicities has been considered. In addition, we have found that valley
degeneracy breaking is shown by both classical and revival times.
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I. INTRODUCTION

In recent years there has been a growing interest in the study
of the phenomenon introduced by Schrödinger in 1930 known
as Zitterbewegung (ZB) [1]. This phenomenon appears in a
Dirac particle as a rapid trembling motion around its rectilinear
average trajectory, and it is a consequence of the interference
between negative and positive energy eigenvalues. ZB has
been studied theoretically, but has yet to be experimentally
observed because its large oscillatory frequency and its small
amplitude are not accessible experimentally at present [2].
Gerritsma et al. [3] have simulated experimentally the electron
ZB by adjusting some parameters of the Dirac equation using
trapped ions and lasers. In 2005 Zawadski [4] studied ZB in a
semiconductor and Schliemann et al. [5] have studied the ZB
in a semiconductor quantum well (QW). After these studies
great interest emerged in the study of ZB in semiconductors
(see Ref. [2] and references therein). Birwas and Ghosh [6]
considered ZB of electrons in semiconductor QWs and quan-
tum dots (QDs) in an in-plane magnetic field. Additionally,
ZB has also been analyzed in detail in monolayer and bilayer
graphene and in carbon nanotubes in recent years [2,7–14].

On the other hand, the quantum evolution of wave packets
shows interesting revival phenomena. They have been studied
over the past decades theoretically [15–17] and observed
experimentally [18] in, for example, atoms, molecules, or
Bose-Einstein condensates. Additionally, quantum revivals
have been studied theoretically in low-dimensional quantum
structures such as graphene, graphene quantum dots, and
graphene quantum rings in perpendicular magnetic fields
[2,12,13,19–25]. Revivals appear when a wave packet returns
to a shape that is approximately the same as the initial one in the
temporal evolution, and the time at which the revivals appear is
called the revival time (TRe). This type of periodicity depends
on the energy eigenvalue spectrum. Assuming an initial wave
packet as a superposition of eigenstates sharply peaked around
some level n0, this wave packet initially will evolve with
a semiclassical periodicity TCl, and then it will spread and
delocalize (collapse). At later times (integer multiples of
the time TRe/2) it will recover its initial shape, oscillating
semiclassically.

In this paper we will analyze the quantum revival and ZB
phenomena in a monolayer graphene quantum dot in terms of

the size of the dot and by considering an external perpendicular
magnetic field.

II. ZITTERBEWEGUNG AND REVIVALS IN GRAPHENE
QUANTUM DOTS

A. Effective Hamiltonian

Let us consider a monolayer graphene quantum dot in a uni-
form perpendicular magnetic field. The effective Hamiltonian
of this system can be written as [26]

H = vF ( �p + e �A)�σ + τV (r)σz, (1)

where τ = ±1 corresponds to the inequivalent corners K and
K ′ of the Brillouin zone (respectively), �p is the momentum,
�A = B/2(−y,x,0) = B/2(−r sin φ,r cos φ,0) is the vector

potential in Cartesian and polar coordinates (respectively),
vF ≈ 106 m/s is the Fermi velocity, �σ the Pauli matrices vector,
and where the potential V (r) is defined as [26]

V (r) =
{

0, r < R,

∞, r � R.
(2)

We can solve the Dirac equation H�(r,φ) = E�(r,φ)
analytically as in Ref. [26]. The wave function is given by

�(r,φ) = eimφ

(
χ1(r)

eiφχ2(r)

)
, (3)

due to the fact that we can construct simultaneously eigen-
spinors for H and Jz ≡ lz + 1

2σz because [H,Jz] = (m + 1/2),
where m is the eigenvalue of the third component of the angular
momentum lz, with m the angular momentum label. Now,
introducing the spinor into the Dirac equation H�(r,φ) =
E�(r,φ), the following set of uncoupled differential equations
are straightforwardly obtained:

χ̇1(r) − mχ1(r)/r − rχ1(r)/2l2
B − ε2χ2(r) = 0, (4)

χ̇2(r) + (m + 1)χ2(r)/r + rχ2(r)/2l2
B + ε1χ1(r) = 0. (5)

In Eqs. (4) and (5) we have introduced the magnetic length
lB = 1/

√
eB (we use � = 1 throughout the paper) and εi =

τ Ṽ + Ẽ, where Ṽ and Ẽ correspond to V/(−ivF ) and
E/(−ivF ), respectively. Using the procedure described in
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FIG. 1. (Color online) Time dependence of the autocorrelation function |A(t)|2 in a graphene monolayer quantum dot for B = 4 T, n0 = 7,
σ = 1, and R = 70 nm in the K valley. ZB of the electrons with TZb � 9.37 fs (top). First classical periods of motion with TCl � 0.157 ps
(middle). Long-time dependence with TRe � 8.74 ps (bottom). The Zitterbewegung, classical, and main fractional revival periods are indicated
by vertical dotted lines.

Ref. [26], the solutions are given by the confluent hypergeo-
metric function of the second kind, U (a,b,z), and the Laguerre
polynomial L(a,c,z). The eigenfunctions can be written as

�1(r,φ) = ceimφrme−r2/4l2
B

×L
(
k2l2

B/2 − (m + 1),m,r2/2l2
B

)
, (6)

�2(r,φ) = ciei(m+1)φrme−r2/4l2
B r/kl2

B

× [
L

(
k2l2

B/2 − (m + 2),m + 1,r2/2l2
B

)

+L
(
k2l2

B/2 − (m + 1),m,r2/2l2
B

)]
, (7)

with the wave vector given by E = vF k. Taking into account
the boundary condition, the characteristic equation is obtained,
and then the energy spectrum:(

1 − τ
kl2

B

R

)
L

(
k2l2

B/2 − (m + 1),m,
R2

2l2
B

)

+L

(
k2l2

B − 2(m + 2)

2
,m + 1,

R2

2l2
B

)
= 0. (8)

B. Wave-packet revivals and ZB

The ZB of mobile charge carriers has been study in
graphene during the past years (see the review in Ref. [2]).
It has been studied in monolayer graphene, bilayer graphene,
and carbon nanotubes.

Now, we will consider the wave-packet evolution in a
monolayer graphene quantum dot in an external magnetic
field. For this purpose we will construct an initial wave packet
as a superposition of eigenstates of the Hamiltonian sharply
concentrated around a large central value of the energy. As the
initial localized wave packet is excited with an energy spectrum
sharply peaked around n0, we can consider the different time

scales from the coefficients of the Taylor expansion of the
energy spectrum En around the energy En0 :

En ≈ En0 + E′
n0

(n − n0) + E′′
n0

2
(n − n0)2 + · · · . (9)

The temporal evolution of the localized bound state � for a
time independent Hamiltonian can be written in terms of the
eigenfunctions un and eigenvalues En as

� =
∞∑

n=0

anune
−iEnt , (10)

with an = 〈un,�〉, so taking into account (9),

e−iEnt = e
−i(En0 +E′

n0
(n−n0)+E′′

n0
(n−n0)2/2+···)t

= e−iω0t−2πi(n−n0)t/TCl−2πi(n−n0)2t/TRe+···, (11)

where each term in this exponential (except the first one which
is a global phase) defines an important characteristic time
scale, that is, TRe ≡ 4π

|E′′
n0

| and TCl ≡ 2π
|E′

n0
| (see Ref. [27] for

more details). Besides analyzing revivals and quasiclassical
periodicity, another important property, the ZB, has been
studied. For this purpose we will take the Fermi energy
as the energy origin and consider the population of both
positive and negative energy levels. Let us denote the positive
eigenvalues and the corresponding eigenfunctions as E(+)

n and
u(+)

n , respectively, and the negative ones as E(−)
n and u(−)

n . Now
let us consider an initial wave packet,

ψ = 1√
2

(ψ+ + ψ−) with ψ+ =
∞∑

n=0

anu
(+)
n ,

ψ− =
∞∑

n=0

anu
(−)
n , (12)
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FIG. 2. (Color online) Time dependence of electric current jφ and jr (in pAm) in a graphene monolayer quantum dot for B = 4 T, n0 = 7,
σ = 1, and R = 70 nm in the K valley. (a), (b) ZB of the electrons with TZb � 9.37 fs. (c), (d) First classical periods of motion with TCl � 0.157
ps. (e), (f) Long-time dependence with TRe � 8.74 ps. The Zitterbewegung, classical, and main fractional revival periods are indicated by
vertical dotted lines.

where the coefficients are Gaussianly distributed as

an = 1√
π

√
σ

e−(n−n0)2/2σ , (13)

and where we will take n0 and n′
0 such that

E(+)
n0

� −E
(−)
n′

0
. (14)

So, the time evolution of the wave packet is given by

ψ(t) =
∞∑

n=0

anu
(+)
n e−iE

(+)
n t +

∞∑
n=0

anu
(−)
n e−iE

(−)
n t . (15)

In order to visualize the time evolution of the wave packets we
will use the autocorrelation function

A(t) = 〈�(t)|�(0)〉, (16)

that is, the overlap of the initial state |�(0)〉 and its temporal
evolution |�(t)〉. Taking into account Eqs. (12) and (15), A(t)

is given by

A(t) =
∞∑

n=0

|an|2eiE
(+)
n t +

∞∑
n=0

|an|2eiE
(−)
n t . (17)

By defining En0 ≡ E(+)
n0

� −E(−)
n0

and using Eq. (11), we
obtain

A(t) =
∞∑

n=0

|an|2eiEn0 t+iE′
n0

(n−n0)t+iE′′
n0

(n−n0)2t/2+···

+
∞∑

n=0

|an|2e−iEn0 t−iE′
n0

(n−n0)t−iE′′
n0

(n−n0)2t/2+···
. (18)

Since En0 is independent of n, A(t) can be written up to order
zero in the Taylor expansion as

A(t) =
∞∑

n=0

|an|2eiEn0 t+··· +
∞∑

n=0

|an|2e−iEn0 t+···. (19)

So, there is a global factor in A(t) given by 2 cos (En0 t) =
e−iEn0 t + eiEn0 t which defines another characteristic time
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scale, the ZB time, given by TZb � 2π
|En0 | . So A(t) exhibits

the three characteristic periodicities, the ZB, the classical, and
the revival times.

In the case of an infinite graphene monolayer in a magnetic
field it has been shown that the ZB period, the classical period,
and the revival time are given respectively by [13]

TZb = π√
2eBvF n

1/2
0

, TCl = 4πn
1/2
0√

2eBvF

, TRe = 16πn
3/2
0√

2eBvF

,

(20)

where B is the strength of the magnetic field, vF is the Fermi
velocity, and e is the electron charge. Additionally, the time
evolution of localized wave packets in graphene quantum
dots in a perpendicular magnetic field has been studied [20],
showing that the quasiclassical and revival periodicities appear
for different values of the magnetic field intensities for a fixed
value of the radius, and that the revival time is an observable
sign of valley degeneracy breaking.

In this section, we will study the physical picture of
wave-packet evolution in monolayer graphene quantum dots
in an external magnetic field B for different values of the
quantum dot radius R, focusing on the influence of this radius
in quasiclassical and revival periodicities. We will also study
ZB periodicity for different values of B and R in this system.

C. Numerical study

We have analyzed the time evolution of the wave packet as
in Eq. (12) by using the autocorrelation function A(t). We
present in Fig. 1 the autocorrelation function for the time
evolution in the K valley of a wave packet with n0 = 7 and
σ = 1 in a graphene monolayer quantum dot with R = 70 nm
in a perpendicular magnetic field B = 4 T. As Jz commutes
with H , we can choose a value m and we will take m = 0 for
all the wave packets. Three different time scales are shown in
the different panels. The top panel depicts the Zitterbewegung
seen in the hundredth-of-a-picosecond scale, the middle panel
shows the classical oscillation in the tenth-of-a-picosecond
scale, while the revival of the wave function in the picosecond
scale can be seen in the lower panel.

The middle panel displays how the regeneration of the wave
packet is not perfect for each multiple of the classical time.
It is necessary to wait for the revival time in order for the
autocorrelation to recover a value close to unity, i.e., for a
nearly perfect regeneration of the wave packet. This implies
that, in particular, the Zitterbewegung amplitude regenerates
at the revival time.

To investigate the behavior of electron currents we have
calculated the r and φ components of them, given by

jφ = evF 〈σφ〉, jr = evF 〈σr〉, (21)

where σφ = ξ (φ)σy and σr = ξ (φ)σx , with

ξ (φ) =
(

e−iφ 0
0 eiφ

)
. (22)

Figure 2 presents jφ and jr for the same initial wave packet
and quantum dot as that in Fig. 1. It is clear from Figs. 2(a) and
2(b) that the electronic current is affected by ZB. At medium
times there are quasiclassical oscillations [Figs. 2(c) and 2(d)].

FIG. 3. (Color online) Time dependence of 〈r〉 in a graphene
monolayer quantum dot for B = 4 T, n0 = 7, σ = 1, and R = 70 nm
in the K valley. (a) ZB of the electrons with TZb � 9.37 fs. (b)
First classical periods of motion with TCl � 0.157 ps. (c) Long-time
dependence with TRe � 8.74 ps. The Zitterbewegung, classical, and
main fractional revival periods are indicated by vertical dotted lines.

Revivals can be identified clearly for jr in Fig. 2(f), but they
are not clear for jφ in Fig. 2(e). We have also calculated the
evolution of 〈r〉 and the results presented in Fig. 3 exhibit
periodicities in the three time scales.

In order to study the effect of the magnetic field on
the Zitterbewegung, classical, and revival times, we have
calculated these three quantities for a graphene monolayer
quantum dot with R = 70 nm in perpendicular magnetic fields
ranging from 0 to 15 T. The results are presented in Fig. 4. The
left panel in this figure shows that TZb is the same for K and
K ′ valleys and decreases monotonically as B increases. The
behavior is different for TCl, as can be seen in the central panel.
First, the behavior is not monotonic. As the field grows, the
semiclassical time first increases for low fields, then reaches
a maximum, and finally decreases for strong fields. Second,
for null or very intense perpendicular magnetic fields, there is
no valley degeneracy breaking but the presence of moderate
magnetic fields (0 T < B � 11 T) leads to higher classical
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FIG. 4. (Color online) Wave-packet regeneration times for a graphene monolayer quantum dot with R = 70 nm in a perpendicular magnetic
field as a function of the field intensity. The Zitterbewegung time is shown in the left panel, the classical time in the central panel, and the
revival time in the right panel.

times in the K valley. The maximum for the K valley is located
around 8 T while the maximum for the K ′ valley is around
9 T. Finally, the right panel shows the field dependence of
the revival time. In this case there is first a decrease for low
fields, then a sharp (note the logarithmic scale in the vertical
axis) increase for intermediate fields, and finally a decrease for
intense fields. Again, there is no valley degeneracy breaking for
weak or strong fields, but this breaking appears for moderate
fields (between 2 and 11 T). The maximum for the K valley
is located around 8 T while the maximum for the K ′ valley is
around 9 T.

We have also plotted the results for the three regeneration
times obtained by using Eqs. (20), i.e., with the regeneration
times for monolayer graphene (that can be seen as a quantum
dot with an infinite radius). The agreement is excellent

for strong fields, poor for moderate fields, and disappears
completely for weak fields. This means the behavior of these
three times for a finite quantum dot is very different from that
corresponding to an infinity graphene monolayer for weak
fields, but tends to that of monolayer graphene as the field
grows. This is a consequence of the dominant role played
by the magnetic field in Eq. (1) that makes the size of the
system not so important. This tendency is monotonic for the
Zitterbewegung time but it is not so simple for the other two
regeneration times. Interestingly, the minimum value of B for
which Eqs. (20) are valid for a quantum dot with R = 70
nm is the same one at which the valley degeneracy breaking
disappears.

We have also studied the effect of the magnetic field on
the Zitterbewegung, classical, and revival times for a graphene
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FIG. 5. (Color online) Same as Fig. 4 but for a graphene monolayer quantum dot with a radius R = 140 nm.
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FIG. 6. (Color online) Wave-packet regeneration times for a graphene monolayer quantum dot in a perpendicular magnetic field B = 10 T
as a function of the dot radius. The Zitterbewegung time is shown in the left panel, the classical time in the central panel, and the revival time
in the right panel.

monolayer quantum dot with R = 140 nm in perpendicular
magnetic fields ranging from 0 to 7 T. The results are presented
in Fig. 5. They are qualitatively similar to those for the R =
70 nm case, but some quantitative differences arise. First, the
peaks in both the classical and the revival times appear at
lower fields (around 2 T for the K valley and around 2.2 T
for the K ′ valley) and the separation between them decreases
with respect to the R = 70 nm case. Second, the range of
magnetic fields for which there is valley degeneracy breaking is
smaller (0 T < B � 3 T). Third, the minimum value for which
Eqs. (20) are valid for a quantum dot with R = 140 nm is lower
than for R = 70 nm. This is easy to understand. The bigger
the radius of the quantum dot, the better the approximation of
considering the infinite radius case works. Nevertheless, once
again, the minimum value of B for which Eqs. (20) are valid
for a quantum dot with R = 140 nm is the same one at which
the valley degeneracy breaking disappears.

We have performed similar calculations for other values
of the radius and we have obtained analogous results. The
dependence on the magnetic field is the following. The bigger
the radius, (i) the narrower the peaks, the smaller their central
values, and the smaller the separation between them, (ii) the
smaller the range of magnetic fields for which there is valley
degeneracy breaking, and (iii) as expected, the closer the
results are to those of a graphene monolayer given by Eqs. (20).

In order to test if these general trends are valid for a wide
range of dot sizes, we have calculated the three regeneration
times for monolayer graphene quantum dots with several
radii for different fixed perpendicular magnetic fields. As an
example we present in Fig. 6 these times for quantum dots with
radii between 20 and 90 nm in a perpendicular magnetic field
B = 10 T. For small radii both Zitterbewegung and classical
times grow with increasing radius while the revival time
decreases. There is never valley degeneracy breaking for the
Zitterbewegung time, but this breaking shows for both classical
and revival times up to a certain radius (around 75 nm for the

B = 10 T case). This radius corresponds to the minimum size
for the infinite radius approximation given by Eqs. (20) to
become valid.

III. CONCLUSIONS

We have used an effective Hamiltonian in which a mono-
layer graphene quantum dot is described via an infinite
cylindrical well. It is a simple model that allows to calculate
analytically the wave function and that has been checked
experimentally [26]. We have studied the regeneration of a
wave packet built as a superposition of eigenstates sharply
peaked around some energy level for a graphene monolayer
quantum dot in a perpendicular magnetic field. Three different
regeneration times (Zitterbewegung, classical, and revival)
corresponding to three different time scales have been shown.
We have analyzed quantum dots with different radii and in
different magnetic fields. A common feature in this kind
of system is that the revival time is always bigger than
the classical time and the classical time is bigger than the
Zitterbewegung time. Zitterbewegung time never shows valley
degeneracy breaking while classical and revival times display
this breaking for nonzero magnetic fields up to a radius
that depends on the field but that always coincides with
the minimum dot size for the infinite radius approximation
(i.e., considering a graphene monolayer) to be valid. The
behavior of both classical and revival times as a function
of the field strength exhibits some common features: As the
dot radius grows, the peaks get narrower, their central values
become smaller and the peaks get closer, the valley degeneracy
breaking magnetic field range gets smaller and, evidently, the
times get closer to those for an infinite graphene monolayer
sheet. We plan to make atomistic calculations using density
functional theory methods [28] to test if all these conclusions
hold with a more realistic model.
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