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Phase-sensitive transport at a normal metal–superconductor interface close to a Josephson junction
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Phase- and voltage bias-sensitive quasiparticle transport at a double NIS1IS2 interface is considered. The
barriers I range from tunnel to transparent, and the intermediate region S1 has a width comparable to the super-
conducting coherence length. A phase difference ϕ is applied to the Josephson junction S1IS2. The normal and
Andreev reflections at the NIS1 interface become ϕ sensitive, and transport is governed by interferences within the
narrow S1 region in both the normal and the anomalous channels. The subgap conductance is separately (energy E)
and (phase ϕ) symmetric. Above the superconducting gap, the conductance is, in general, not symmetric even
if (E,ϕ) is changed in (−E,−ϕ), but the symmetry is restored by averaging Fermi oscillations. The Tomasch
oscillations are amplified by the phase difference. The subgap conductance exhibits a resonant structure at the
energy of the Andreev bound states (ABSs) of the S1IS2 junction, providing a side spectroscopy of such states.
Depending on the relative transparencies of the junctions, the resonance can increase or reduce the conductance,
and it can even vanish for ϕ = π , featuring total reflection of quasiparticles at NS1 by the ABS at S1S2.
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I. INTRODUCTION

Transport in hybrid setups involving interfaces between
superconductors (S) and normal metals (N ) is governed by
Andreev reflection, where an incoming electron with energy
μ + E is transformed into a hole with opposite energy μ − E

in the metal (μ is the chemical potential) [1,2] and a Cooper
pair enters the superconducting condensate. Conversely, an
incoming hole may be reflected as an electron while a pair is
taken from S. Andreev scattering dominates subgap transport
and it also plays a role at energies on the order of a few
times the superconducting gap. Using the Bogoliubov-De
Gennes equations and writing the scattering equations for the
electron and hole wave functions, De Gennes and Saint-James
found subgap bound states in a thin metallic layer in contact
with a superconductor [2]. Rowell and McMillan [3] showed
that conductance oscillations occur as well above the gap.
Tomasch [4] discovered oscillations in the conductance above
the gap in a NSIN structure, which were explained by
McMillan and Anderson [5] as an interference effect due to
the wave-vector mismatch between the electron and holelike
quasiparticle branches propagating in a narrow S layer of
thickness L on the order of the superconducting coherence
length ξ .

Using the scattering approach, Blonder, Tinkham, and
Klapwijk [6] were able to bridge the gap between a Giaever
tunneling barrier (NIS) and a perfectly transparent NS

interface, where the conductance is doubled below the gap,
with respect to the normal case. The scattering approach had
been used previously for a double SNS interface by Kulik [7]
in the transparent case, then in many subsequent works, to
obtain a complete description of a clean SINIS Josephson
junction. It is characterized by the formation of Andreev
bound states (ABSs), as resonant states formed by multiple
electron-electron and electron-hole scattering at each SIN

interface. The phase dispersion of the ABS is responsible for
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the Josephson current flowing through the junction. Recently,
a tunnel spectroscopy of the ABS was performed by attaching
a third contact to the normal bridge of a long junction [8]. A
microwave spectroscopy of the ABS was recently obtained
in an atomic point contact [9,10] and a diffusive metallic
junction [11].

These effects have been probed experimentally in two-
terminal transport geometries. In addition, tunnel spectroscopy
of the ABS involves a third reservoir, weakly coupled directly
to the junction [8,12]. Coupling a SNS Josephson junction
to a normal wire has also been proposed and achieved [13].
Recently, new three-terminal hybrid configurations exploiting
the mesoscopic size of Cooper pairs have been explored. For
instance, consider a NISIN geometry where two normal leads
(or quantum dots) are connected by a narrow superconducting
region of size comparable to the superconducting coherence
length ξ . Then a mechanism denoted as crossed (or nonlocal)
Andreev reflection allows a hole incoming on one side to be
transmitted as an electron on the other, effectively splitting a
Cooper pair from the superconductor into a pair of correlated
quasiparticles [14]. Those carry opposite energies and spins
(for an s-wave superconductor), and this mechanism has
been proposed as a source of entangled fermions in the solid
state [15]. A three-terminal all-superconducting SISIS setup,
called a Josephson bijunction, has been more recently consid-
ered [16–21]. It was shown that the two independent phase
degrees of freedom (or voltages) lead to coherent multipair dc
channels which coexist with dissipative quasiparticle transport
for some combinations of applied voltages.

In what follows, we investigate a hybrid structure where
Andreev reflection interferes with Josephson transport at a
neighboring junction. It is controlled by one voltage and one
phase as independent variables. More specifically, we explore
the properties of a hybrid bijunction NIS1IS2, made of a
NIS1 interface, in close proximity with a Josephson junction
S1IS2. The transparencies of the two interfaces are arbitrary.
The Josephson junction is biased with a phase difference
ϕ. A possible experimental device is sketched on Fig. 1.
Alternatively, the phase difference can also be imposed by
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GOSSELIN, HORNECKER, MÉLIN, AND FEINBERG PHYSICAL REVIEW B 89, 075415 (2014)

Φ

FIG. 1. (Color online) Schematics of a hybrid NS loop setup. A
superconducting loop at zero voltage, cut by a Josephson junction,
is connected on the left to a normal metal lead, at a voltage V ,
at a distance from the junction comparable to the coherence length
(in practice, the loop thickness is larger than pictured). The flux �

imposes a phase difference ϕ at the junction. The total current IN

splits into a Josephson current IJ and a current IS1 flowing in the
upper branch of the loop. The scattering model is one-dimensional
and involves a double NS1S2 interface, where S1 and S2 are the parts
of the (same) superconductor, set at phases 0 and ϕ by convention. The
incident electron and scattered hole waves are represented, together
with Andreev reflection processes within S1 and those within S2, close
to the junction that generates the ABSs.

an applied current, in a three-terminal geometry, but accessing
only the range ϕ = [−π/2,π/2].

To modelize such a structure, we consider a one-
dimensional scattering model with two interfaces in series. As
a consequence, the currents at the interfaces NIS1 et S1IS2

are not necessarily equal. The quasiparticle current in N is
converted into a Cooper pair current flowing partly through
the junction and partly in the upper branch of the loop. In spite
of the presence of interferences in this setup, the geometry
is very different from the usual Andreev interferometer
containing two NS interfaces in parallel [22]. The conductance
through the NIS1 interface is calculated within the scattering
approach. The phase difference between S1 and S2, as a new
control variable, brings quantitative and qualitative changes as
compared to previous calculations including scattering within
a single superconductor [23]. Resonant tunneling in a NSNSN

double barrier geometry was also investigated in Ref. [24],
focusing on the case of ideal NS interfaces. Conversely,
we consider here an asymmetric NS1S2 structure where, in
addition, the transparencies of the NS1 and S1S2 junctions are
arbitrary.

In this work, we calculate the conductance G(E,ϕ) as
a function of the voltage energy E = eV and the phase ϕ.
This conductance is the derivative of the current through the
NIS1 interface with respect to the voltage V on N , the two
superconducting regions S1 and S2 being grounded but phase
biased. A first result is that the energy and phase symmetries
of the Andreev reflection probability are broken above the
gap. Second, the Tomasch conductance oscillations become
phase sensitive and they are amplified. Third, the subgap
conductance displays a resonant behavior close to the ABS
state energies, yielding an ABS spectroscopy tool. Changing
the interface parameters, this resonance crosses over between
a conductance maximum, featuring “transmission” tunnel-
ing spectroscopy, and a conductance minimum, featuring

“reflection” spectroscopy. The first situation is encountered
when the NIS1 barrier is a tunnel barrier or at least less
transparent than the S1IS2 one, while the second case, less
conventional, corresponds to the converse where the NIS1

barrier is more transparent than the S1IS2 one. The perfect
cancellation of the conductance at ϕ = π at the ABS energy
is a striking property, due to the suppression of the Andreev
reflection by interference between the two interfaces.

Section II presents the model and an analytical solution for
the simple limiting case of perfectly transparent interfaces.
Section III focuses on the conductance above the gap.
Section IV details the subgap conductance. Section V provides
a general discussion.

II. THE MODEL

A. Matching equations

A double NIS1IS2 interface is considered. For the sake
of simplicity, we assume that the Fermi energy and velocity
are the same in all materials and that the superconductors S1

and S2 have the same gaps (this corresponds to the scheme
of Fig. 1, where the superconducting loop is made of the
same material). The barrier transparencies are defined as
Z1,2 = H1/�vF where H1,2 are the amplitudes of δ-function
barriers at the interfaces [6]. The phases are ϕ1 = 0 and
ϕ2 = ϕ. This one-dimensional model can be extended to more
realistic interfaces, as discussed at the end of the paper. In the
case of N and S having different electronic parameters, this
is known to quantitatively modify the scattering equations,
making the NS1 barrier less transparent. For instance, for
a transparent interface, a wave-vector mismatch kF /kS �= 1
is exactly equivalent to an effective barrier Zeff . The main
conclusions of the work will thus not be qualitatively modified,
and the present calculation can be easily extended to take into
account a parameter mismatch. Following Ref. [6] (BTK), a
right-moving electron wave function in N is incoming onto
the interface. The quasiparticle wave functions in N , S1, and
S2 can then be written as

�e
N (x) =

(
1

0

)
(eiq+x + b e−iq+x) +

(
0

1

)
a eiq−x,

�e
S1

(x) =
(

u0

v0

)
(αn eik+x + βn e−ik+x)

+
(

v0

u0

)
(αa eik−x + βa e−ik−x),

�e
S2

(x) =
(

u0e
iϕ

v0

)
c eik+x +

(
v0e

iϕ

u0

)
d e−ik−x,

(1)

where a, b, αn, βn, αa , βa , c, d are amplitude probabilities:
a (b) for Andreev (normal) reflection to the left in N , αn (βa)
for electronlike (holelike) right-moving waves in S1, βn (αa)
for electronlike (holelike) left-moving waves in S1, c (d) for
electronlike (holelike) right-moving waves in S2 (see Fig. 2).
Here

�q± =
√

2m(μ ± E), �k± =
√

2m[μ ±
√

E2 − 
2]1/2,

u2
0 = 1

2

(
1 +

√
E2 − 
2

E

)
= 1 − v2

0, (2)
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FIG. 2. Semiconductor diagram for an incident electron at the
double NIS1IS2 interface.

with the relation u0(−E) = v0(E) and v0(−E) = −u0(E). As
shown below, generically, here for a nonzero phase difference,
the conductance is not symmetric in energy, e.g., the standard
BTK relation A(E) = A(−E) for a single interface does not
hold any longer in the considered setup (see Table I). It is
therefore convenient to use Eq. (1) for E > 0, and to use
instead for E < 0 similar equations for an incoming hole with
amplitudes ā,b̄, etc. (see Fig. 3),

�h
N (x) =

(
0

1

)
(e−iq−x + b̄ eiq−x) +

(
1

0

)
ā e−iq+x,

�h
S1

(x) =
(

u0

v0

)
(ᾱn eik−x + β̄n e−ik−x)

+
(

v0

u0

)
(ᾱa eik+x + β̄a e−ik+x),

�h
S2

(x) =
(

u0e
iϕ

v0

)
c̄ e−ik−x +

(
v0e

iϕ

u0

)
d̄ eik+x.

(3)

Denoting as Bee(E) = b(E)b∗(E) and Aeh(E) = ā(E)ā∗(E)
the normally reflected probability and the Andreev reflected
one, respectively (from a hole at energy E to an electron at
energy −E), the quasiparticle current entering S1 is given
by [6]

I = 2N (0)eνFA
∫ ∞

−∞
[f0(E − eV ) − f0(E)]

× [1 + Aeh(E) − Bee(E)]dE, (4)

where N (0) is the Fermi density of states in N , νF the
Fermi velocity, and A the junction area. f0(E) is the equi-
librium Fermi distribution. Thus, the differential conductance
is at zero temperature [N = N (0)νFA is the number of
channels]:

G(E) = dI

dV
= 2e2N

h
[1 + Aeh(E) − Bee(E)]. (5)

FIG. 3. Semiconductor diagram for an incident hole at the double
NIS1IS2 interface. The amplitudes a,b, . . . are related to those of
Fig. 2 by symmetry.

The reference chemical potential is the one of S1,2. The
solutions to Eqs. (1) and (3) are obtained by matching the
wave function and its derivative at the interface in a standard
procedure [6]. Following the Andreev approximation, the
wave vectors k+ ≈ k− ≈ q+ ≈ q− ≈ kF as factors in the
derivatives of the wave functions, but their full expressions
are kept in the exponentials. A complete analytical solution
can be obtained, but it is too lengthy to be reported here.
Yet it can be used to check certain symmetry properties. For
instance, the time-reversal symmetry is obeyed, manifesting
here in the relation Aeh(E,ϕ,k+,−) = Ahe(−E,−ϕ,−k+,−)
and Bee(E,ϕ,k+,−) = Bee(E,−ϕ,−k+,−). The sign change
in the phase reflects that of the (orbital) magnetic field, and
time symmetry also inverts momenta, as apparent from the
matching equations (1) and (3).

B. Analytical results in limiting cases

An analytical solution can be written for perfectly transpar-
ent contacts (Z1 = Z2 = 0). Such perfect contacts are an ideal
limiting regime that can be approached with quantum point
contacts. For an incoming electron, the solution reads

a = v

u

u2(eiϕ − 1) − (u2eiϕ − v2)e−iκL

v2(eiϕ − 1) − (u2eiϕ − v2)e−iκL
, (6)

c = 1

u

(v2 − u2)e−iκL

v2(eiϕ − 1) − (u2eiϕ − v2)e−iκL
, (7)

and b = d = 0, where κ = k+ − k− = kF

μ

√
E2 − 
2.

For energies larger than 
, e−iκL is, in general, a complex
number, whereas for energies lower than 
, e−iκL is always a
real number. One verifies easily that A(E) = 1 for E < 
, a
result thus insensitive to ϕ (see Fig. 4).

TABLE I. Summary of the different symmetries for the conductance.

Figure No. (E → −E) (ϕ → −ϕ) (E,ϕ) → (−E,−ϕ)

Z1 or Z2 = 0, E < 
 4, 5, 7(a) Yes Yes Yes
Z1 or Z2 = 0, E > 
 4, 5, 7(a) No No Yes

Z1 and Z2 �= 0, E < 
 6, 7(b) Yes Yes Yes
Z1 and Z2 �= 0, E > 
 6, 7(b) No No No
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FIG. 4. (Color online) Map of the conductance G(E,ϕ). Case
of fully transparent interfaces, Z1 = Z2 = 0, L/ξ = 1. 
/μ =
0.002, as in all other figures. No phase sensitivity is obtained
below the gap. A phase-sensitive conductance enhancement is
obtained above the gap, with a symmetry in the transformation
(E,ϕ → −E,−ϕ).

The situation is different for E > 
. The condition κL =
2nπ expresses the occurrence of constructive interferences
between the two waves k+ and k− within the width of S1. This
leads to the BTK-like scattering amplitudes a = v

u
e−iϕ,c =

1
u
e−iϕ,b = d = 0.

The condition κL = 2nπ reads

E2 = 
2 + 4n2π2μ2

L2k2
F

, (8)

which indicates the maxima in the Tomasch oscillations.
Another interesting limiting case is that of high energies

E � 
, with u2 	 1 and v2 	 0. Then

a 	 v

u
[(e−iϕ − 1)eiκL + 1]; (9)

thus,

A 	
∣∣∣∣vu

∣∣∣∣
2

[3 − 2 cos(ϕ) − 2 cos(κL) + 2 cos(ϕ − κL)].

(10)
Equation (10) leads to A(ϕ = π,κL)/A(ϕ = 0,κL) propor-
tional to 5 − 4 cos(κL) � 1 for all κL. Thus, the conductance
at ϕ = π is larger than the conductance at ϕ = 0 if E � 
.
(see Fig. 4). This trend helps to understand the more general
results presented later on.

On the other hand, in the case of an incoming hole, one
finds that

ā = u

v

v2(eiϕ − 1) − (u2eiϕ − v2)e−iκL

u2(eiϕ − 1) − (u2eiϕ − v2)e−iκL
, (11)

c̄ = 1

v

(v2 − u2)e−iκL

u2(eiϕ − 1) − (u2eiϕ − v2)e−iκL
, (12)

and b̄ = d̄ = 0. Then the question of changing sign of both
(E,ϕ) arises. Indeed, if one changes u → v, v → −u, and
ϕ → −ϕ in Eqs. (6) and (7), one finds that the moduli of a and
c in Eqs. (6) and (7), and of ā and c̄ in Eqs. (11) and (12) are
respectively equal. There is no symmetry under inversion of
E or ϕ separately, but there is symmetry under simultaneous

FIG. 5. (Color online) One interface only is transparent. Phase
and energy symmetry is obtained below the gap, and phase-
sensitive Tomasch oscillations above the gap, being symmetric in the
transformation (E,ϕ → −E,−ϕ). (a) Z1 = 0, Z2 = 0.5, L/ξ = 1;
(b) Z1 = 0, Z2 = 0.5, L/ξ = 3; (c) Z1 = 0.5, Z2 = 0, L/ξ = 1;
(d) Z1 = 0.5, Z2 = 0, L/ξ = 3. In (b), (d), the conductance anomaly
at the gap edge is shifted by the phase towards E > 
, and the
Tomasch oscillations are amplified.

inversion of (E,ϕ) (see Fig. 4). As shown below, this does not
hold any longer if Z1 and Z2 are both nonzero.

III. CONDUCTANCE ABOVE THE GAP

Let us first discuss how the excess conductance due
to Andreev reflections above the gap is modified by the
phase difference ϕ. As shown above for perfectly transparent
interfaces, the conductance at ϕ = π can be much larger than
at ϕ = 0. This behavior holds also for arbitrary Z1, Z2, as seen
from the forthcoming discussion.

First, taking either (Z1 = 0, Z2 �= 0) or (Z1 �= 0, Z2 = 0),
Fig. 5 shows maps of the conductance as a function of energy
E and phase ϕ for several values of L/ξ . Symmetry of the
conductance between (E,ϕ) and (−E,−ϕ) is obtained in
each case. Second, the distinguishing features of Tomasch
interferences appear as fringes in Fig. 5. Their enhancement
by a phase difference is visible and culminates at ϕ = π .
Moreover, the conductance just above the gap is markedly
modified by the phase ϕ: The gap edge anomaly is shifted
to higher energies, with a maximum for ϕ = π , instead of
a gap edge anomaly exactly at E = 
 for a single NS

interface [6].
If none of the barriers is perfectly transparent, e.g., generi-

cally Z1 �= 0 and Z2 �= 0, then no symmetry exists in energy
and phase [see Figs. 6(a) and 7(b)]. As mentioned above, this
is not contradictory with the existence of a time-inversion
symmetry, but should be traced back to the combination of
several relevant phase shifts: those at the interfaces, related
to Z1 and Z2, the wave-vector phase shifts (k+L,k−L), and
the ϕ-dependent Andreev phase shifts at each of the two
interfaces. Careful examination of the analytical solution of
Eqs. (1) and (3) shows that the probabilities A and B are
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FIG. 6. (Color online) (a) Symmetric barrier case, with Z1 =
Z2 = 1, L/ξ = 3. (b) Same parameters, but averaging L on an interval
comparable to ξ .

formed by two kinds of terms. Those involving the phase
shift (k+ − k−)L happen to be even in Z1 and Z2, and they
are symmetric in E,ϕ → −E,−ϕ. When Z1 and Z2 are
both different, new terms containing (k+ + k−)L ∼ 2kF L also
appear, which are no more even in Z1 and Z2, and lead to
breaking of the symmetry, e.g., G(E,ϕ) �= G(−E,−ϕ). This
differences oscillates as cos 2kF L, and is expected to disappear
with disorder, interface roughness, or simply two-dimensional
character of the interfaces.

On the other hand, when Z1 and Z2 are comparable, the
behavior for |E| � 
 features a Fabry-Pérot-like cavity, with
quasiperiodic fringes extending at high energy [see Fig. 6(a)].
Since in a real experiment with extended interfaces, the
length L is expected to fluctuate at the scale of the Fermi
wavelength λF = 2π

kF
, those fringes are expected to partially

average out, as seen on Fig. 6(b).

IV. SUBGAP CONDUCTANCE

A. Small L � ξ case

The subgap conductance exhibits very interesting struc-
tures. First, if L � ξ , and with a transparent NS1 interface,
most of the subgap conductance is suppressed for phases close
to π , as for instance for Z1 = 0,Z2 = 0.5 [see Fig. 7(a)].
This is an interference phenomenon, culminating at ϕ = π ,
where the amplitudes of Andreev reflections at S1 and S2 are
just opposite to each other. For small L/ξ , this destructive
interference holds in most of the subgap domain. For L = ξ

[see Fig. 5(a)] or larger, it concentrates on a narrow energy
interval, a phenomenon that we discuss below.

FIG. 7. (Color online) (a) Asymmetric barrier case, with Z1 = 0,
Z2 = 0.5, L/ξ = 0.2. For a length L shorter than ξ , interferences
strongly decrease the subgap conductance. (b) Both nonzero barriers,
Z1 = 0.5, Z2 = 0.5, L/ξ = 1, no symmetry in energy, and phase is
obeyed above the gap for a fixed kF L.

On the other hand, if the first interface is less transparent,
for instance Z1 = 0.5,Z2 = 0, the behavior for L � ξ displays
a pinching of the Andreev resonance anomaly [see Fig. 5(c)],
shifted at energies lower than the gap, with a minimum at
ϕ = π , going to zero energy if L is large compared to ξ .

B. Large L � ξ case

1. Numerical results

For small Z1, together with the shift of the Andreev
maximum towards above the gap [see Fig. 5(b)], there
appears a conductance dip inside the subgap region with
high conductance. Conversely, in the opposite case where
Z1 > Z2 [see Fig. 5(d)], the anomaly follows a similar
energy and phase variation but is dominated by a conductance
excess.

2. Analytical results for the conductance maxima and minima

Those trends are better understood by plotting the subgap
conductance as a function of energy, for instance at ϕ = π

and L/ξ = 3. Fixing Z2 = 1 and varying Z1 from Z1 = 0
to Z1 = 2 shows a drastic evolution (see Fig. 8). For Z1 =
0, a sharp conductance minimum appears, reaching zero. As
Z1 increases, a conductance maximum develops in addition,
and it dominates the anomaly for Z1 = 2. The conductance
at the minimum is equal to zero only if ϕ = π . For other
values of the phase, the conductance minimum does not reach
zero.

An analytical insight of both the minimum and the maxi-
mum of the conductance can be obtained. Let us first set Z2 =
0. Then one looks for zeros of the normal reflection coefficient
b, meaning that Andreev reflection is total at the NS1 interface,
in spite of Z1 �= 0. One gets an energy-phase condition

FIG. 8. (Color online) Conductance curve for Z2 = 1, L/ξ = 3,
ϕ = π and different values of Z1. Red (continuous line): the
conductance of the NSS structure. Blue (dotted line): Conductance
of the NS junction alone (Z1 barrier). The zero of G signals the
ABS energy for a barrier Z2. (a) Z1 = 0; (b) Z1 = 0.5; (c) Z1 = 1;
(d) Z1 = 2.
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GOSSELIN, HORNECKER, MÉLIN, AND FEINBERG PHYSICAL REVIEW B 89, 075415 (2014)

(here x = v2
0/u

2
0):

ϕ = −i ln

{
e4κL(x2 + 1) − 2x ±

√
e4κL(x2 − 1)[(x2 + 1)e4κL − 4x]

2x(e4κL − 1)

}
. (13)

If L is large compared to ξ , Eq. (13) simplifies into ϕ =
∓i ln(e−2i arccos(E/
)), and one obtains

EABS = ±
 cos

(
ϕ

2

)
, (14)

corresponding to the ABS energy for a transparent single-
channel S1S2 contact (or many degenerate channels for a planar
interface). If the interface between N and S1 is not perfectly
transparent and if L is large compared to ξ , the normal
metal electrode N can act like a side tunneling probe, with a
conductance maximum at the the energy of the ABS localized
at the S1S2 interface [see Figs. 5(d) and 8(d)]. Otherwise, if
L � ξ, the barrier at the NS1 interface perturbs more strongly
the reflections involved in the ABS, and an energy gap opens
between negative- and positive-energy ABS, as observed in
Fig. 5(c), together with substantial broadening.

An unexpected behavior is encountered if the barrier NS1

is more transparent than the Josephson barrier S1S2. As shown
in Figs. 8(a) and 8(b), the spectroscopic signature of the ABS
is a conductance minimum. Again, an analytical solution can
be obtained for Z1 = 0, looking for maxima (instead of zeros)
in the reflection coefficient b(E). This yields

eiϕ
(
Z2

2 + 1
)
(x2 + 1) − x

[
2eiϕ

(
Z2

2 + 1
) + (1 − eiϕ)2

] = 0,

(15)
where x = u2

0/v
2
0. Solving this equation, one finds

EABS = ±

√

1 − T sin2(ϕ/2), (16)

where T = 1/(1 + Z2
2) is the Josephson junction transparency.

Equation (16) is the ABS energy for a single channel with
barrier Z2.

V. DISCUSSION AND CONCLUSION

A. Discussion of the results

The above results show that Andreev scattering at a NS1S2

interface displays a rich behavior if the width of S1 is
comparable to the coherence length and a phase difference
can be applied at the junction S1S2. Above the gap, the
interferences between quasiparticle modes propagating within
S1 become phase-sensitive, which enhances the Tomasch
oscillations with a maximum at ϕ = π .

An interference occurs between the Andreev scattering
amplitudes at the two interfaces for subgap voltage. At large
L/ξ , a sharp resonance appears at the energy of the ABS.
To be observable, the transparency of the Josephson junction
should be large enough, so that the ABS extends inside the
superconducting gap. The structure of this resonance displays
a maximum and a minimum of conductance, separated by
a small energy difference (see Fig. 8). The relative weight
of the maximum and minimum depends on the respective
transparencies of the two interfaces. When Z1 > Z2, it is
dominated by an enhanced transmission, in a way similar

to tunnel spectroscopy. The normal reflection amplitude has
a minimum and the Andreev reflection amplitude a maxi-
mum. Conversely, when Z1 < Z2, a destructive interference
occurs in the Andreev channel. For ϕ = π , this interference
completely cancels Andreev reflection; thus the conductance
becomes zero, and this is even true for any value of Z1, Z2,
and L, except for very small values L � ξ (see Fig. 8). This
spectacular result means that the superconductor becomes
opaque to quasiparticles coming from the normal metal.
Symmetrically, quasiparticles involved in ABS at the S1S2

Josephson junction are completely reflected at the NS1

interface. For phases different from π , reflection is partial,
but a sharp minimum occurs and this is enough to detect the
ABS. Let us stress that the larger L, the sharper the resonance,
which exists even for L � ξ . This is is due to the divergence
of the effective scattering length at the resonance, in a way
similar to the usual Andreev resonance at the gap edge in the
case of a single NS interface.

It is possible to interpret the conductance maximum
and minimum by diagrams in the corresponding limiting
cases. Figure 9(a) show a constructive interference between
Andreev reflections at NS1 and S1S2, where multiple Andreev
reflections builds the ABS. On the other hand, Fig. 9(b) shows
a constructive interference between normal reflections at NS1

and multiple Andreev reflections at S1S2. The perfect reflection
at NS1 implies the formation of a resonant state within the
superconductor, which involves a Cooper pair crossing S1S2

and a crossed Andreev reflection (e-h line in Fig. 10). This
three-body process can also be viewed as an exchange process
between a single quasiparticle and one member of a Cooper
pair, accompanied by a pair crossing the junction.

The situation Z1 � Z2, where the spectroscopic signature
of the Andreev states is a conductance minimum, is especially
interesting. Then the quasiparticle current flowing at the NS1

interface can be larger than the critical current at the S1S2

junction. The scattering approach does not ensure conservation

FIG. 9. (a) Scattering diagram showing the cooperative Andreev
reflections at the NS1 interface and at the Josephson S1S2 junction,
dominating in the large Z1 case, and responsible for the conductance
maximum [Figs. 8(c) and 8(d)]. (b) Scattering diagram showing
the normal reflection resulting from the combination of Andreev
scattering at S1S2 and crossed Andreev process, dominating in the
small Z1 case, and responsible for the conductance minimum of
Figs. 8(a) and 8(b).
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FIG. 10. Diagram showing the resonant state formed with a
Cooper pair crossing the S1S2 junction and a quasiparticle trapped
in S1 (small Z1) [Figs. 8(a) and 8(b)]. Steps 1–3 achieve exchange
between a single quasiparticle and a Cooper pair crossing the junction.
First, an electron (in black) at the NS1 interface propagates and is
reflected into a hole at S1S2, while a Cooper pair is transferred at the
junction. Second, the reflected hole propagates back to NS1 into the
original electron, in a crossed Andreev process.

of the quasiparticle current, since quasiparticles are converted
into Cooper pairs. The excess current in NS1 compared to S1S2

should flow in the upper branch of the setup (Fig. 1).

B. Multichannel or two-dimensional contacts and
effects of disorder

The above analysis considers the most simplified one-
dimensional model, at zero temperature. It can describe
parallel interfaces with the same number of (nondispersive)
channels. Or in the spirit of BTK [6], it can be taken as a
phenomenological approach to a few-channel point contact
probed by a tunneling tip in its close vicinity (or a Sharvin
contact). Yet, the general trends of the considered model
should be revealed in a more realistic set-up. First, at nonzero
temperature, Fermi broadening of the electronic distribution in
N will smear the conductance anomalies reported in this work.
Second, a multichannel generalization of the scattering method
is possible. If the S1S2 junction has many dispersive or diffu-
sive channels, it defines ABSs, extending in energy above some
minigap δ(ϕ), and one expects that the anomaly of the conduc-
tance will reveal the phase dependence of this minigap (this
also holds if the junction is a diffusive SNS junction). Depend-
ing on temperature and ABS level spacing, peaks or dips in the
conductance can be resolved or, on the contrary, merge into a
shoulder (or trough) extending between δ(ϕ) and the gap 
.

Disorder such as point disorder in S or interface roughness
is expected to have very different effects, depending on
whether the voltage is larger or smaller than the gap. In the
former case, disorder in the superconductor can easily blur
the Tomasch oscillations, unless the elastic mean-free path is
larger than L (clean superconductor). In addition, it is expected
to restore the symmetry G(E,ϕ) = G(−E,−ϕ). In the subgap
regime, on the contrary, the spectroscopic signatures of the
ABS are pinned to the ABS energy and should be quite
robust, as suggested by averaging out fluctuations in kF L

in the present calculation. Last but not least, disorder in the
normal metal N can amplify the Andreev reflection at low
energy and give rise to subgap anomalies, by “reflectionless
tunneling.” To treat all these effects and perform more realistic
calculations, in terms of geometry and disorder, one requires
more advanced methods using nonequilibrium Green’s
functions. Such methods also make it possible to calculate the
dependence with V of the Josephson current, not addressed in
this work. In the case of large transparency and many channels
at the NS1 interface, one should include self-consistency of
the gap, and also possible nonequilibrium effects.

In the case of the three-terminal geometry with different
superconductors S1 and S2, those might have different gaps

1 < 
2. One expects that the structure of the ABS below the
smallest gap is revealed in G(E,ϕ) and that a more complex
behavior is obtained between 
1 and 
2.

On the other hand, on the more classic tunnel spectroscopy
case Z1 � Z2, where the probe little perturbs the junction, the
present configuration is advantageous in terms of spectroscopy
of the ABS. This work suggests a “side spectroscopy” by
letting a scanning tunneling tip or narrow contact come at a
distance of order ξ from the junction (see Fig. 1).

In conclusion, we have revealed the rich behavior a double
NSS interface, when the independent control parameters
are a voltage bias and a superconducting phase difference,
respectively applied to the two interfaces. Phase-sensitive
Tomasch oscillations, together with various spectroscopic
probes of the ABS, are predictions that could be tested in
a realistic device.
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[14] J. M. Byers and M. E. Flatté, Phys. Rev. Lett. 74, 306 (1995);
T. Martin, Phys. Lett. A 220, 137 (1996); G. Deutscher andlabe
D. Feinberg, Appl. Phys. Lett. 76, 487 (2000); D. Beckmann,
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D. Estève, and M. H. Devoret, ibid. 73, 2488 (1994).

[23] P. F. Bagwell, Phys. Rev. B 46, 12573 (1992).
[24] A. F. Morpurgo and F. Beltram, Phys. Rev. B 50, 1325

(1994).

075415-8

http://dx.doi.org/10.1103/PhysRevB.84.214514
http://dx.doi.org/10.1103/PhysRevB.84.214514
http://dx.doi.org/10.1103/PhysRevB.84.214514
http://dx.doi.org/10.1103/PhysRevB.84.214514
http://dx.doi.org/10.1088/0953-8984/6/16/001
http://dx.doi.org/10.1088/0953-8984/6/16/001
http://dx.doi.org/10.1088/0953-8984/6/16/001
http://dx.doi.org/10.1088/0953-8984/6/16/001
http://dx.doi.org/10.1103/PhysRevLett.79.4010
http://dx.doi.org/10.1103/PhysRevLett.79.4010
http://dx.doi.org/10.1103/PhysRevLett.79.4010
http://dx.doi.org/10.1103/PhysRevLett.79.4010
http://dx.doi.org/10.1063/1.120612
http://dx.doi.org/10.1063/1.120612
http://dx.doi.org/10.1063/1.120612
http://dx.doi.org/10.1063/1.120612
http://dx.doi.org/10.1063/1.369004
http://dx.doi.org/10.1063/1.369004
http://dx.doi.org/10.1063/1.369004
http://dx.doi.org/10.1063/1.369004
http://dx.doi.org/10.1103/PhysRevLett.74.306
http://dx.doi.org/10.1103/PhysRevLett.74.306
http://dx.doi.org/10.1103/PhysRevLett.74.306
http://dx.doi.org/10.1103/PhysRevLett.74.306
http://dx.doi.org/10.1016/0375-9601(96)00484-7
http://dx.doi.org/10.1016/0375-9601(96)00484-7
http://dx.doi.org/10.1016/0375-9601(96)00484-7
http://dx.doi.org/10.1016/0375-9601(96)00484-7
http://dx.doi.org/10.1063/1.125796
http://dx.doi.org/10.1063/1.125796
http://dx.doi.org/10.1063/1.125796
http://dx.doi.org/10.1063/1.125796
http://dx.doi.org/10.1103/PhysRevLett.93.197003
http://dx.doi.org/10.1103/PhysRevLett.93.197003
http://dx.doi.org/10.1103/PhysRevLett.93.197003
http://dx.doi.org/10.1103/PhysRevLett.93.197003
http://dx.doi.org/10.1103/PhysRevLett.95.027002
http://dx.doi.org/10.1103/PhysRevLett.95.027002
http://dx.doi.org/10.1103/PhysRevLett.95.027002
http://dx.doi.org/10.1103/PhysRevLett.95.027002
http://dx.doi.org/10.1103/PhysRevLett.97.237003
http://dx.doi.org/10.1103/PhysRevLett.97.237003
http://dx.doi.org/10.1103/PhysRevLett.97.237003
http://dx.doi.org/10.1103/PhysRevLett.97.237003
http://dx.doi.org/10.1103/PhysRevB.63.165314
http://dx.doi.org/10.1103/PhysRevB.63.165314
http://dx.doi.org/10.1103/PhysRevB.63.165314
http://dx.doi.org/10.1103/PhysRevB.63.165314
http://dx.doi.org/10.1103/PhysRevB.75.174513
http://dx.doi.org/10.1103/PhysRevB.75.174513
http://dx.doi.org/10.1103/PhysRevB.75.174513
http://dx.doi.org/10.1103/PhysRevB.75.174513
http://dx.doi.org/10.1103/PhysRevB.82.060517
http://dx.doi.org/10.1103/PhysRevB.82.060517
http://dx.doi.org/10.1103/PhysRevB.82.060517
http://dx.doi.org/10.1103/PhysRevB.82.060517
http://dx.doi.org/10.1103/PhysRevLett.106.257005
http://dx.doi.org/10.1103/PhysRevLett.106.257005
http://dx.doi.org/10.1103/PhysRevLett.106.257005
http://dx.doi.org/10.1103/PhysRevLett.106.257005
http://dx.doi.org/10.1103/PhysRevB.87.214501
http://dx.doi.org/10.1103/PhysRevB.87.214501
http://dx.doi.org/10.1103/PhysRevB.87.214501
http://dx.doi.org/10.1103/PhysRevB.87.214501
http://dx.doi.org/10.1103/PhysRevLett.107.077005
http://dx.doi.org/10.1103/PhysRevLett.107.077005
http://dx.doi.org/10.1103/PhysRevLett.107.077005
http://dx.doi.org/10.1103/PhysRevLett.107.077005
http://arxiv.org/abs/arXiv:1307.4862
http://dx.doi.org/10.1103/PhysRevLett.73.1416
http://dx.doi.org/10.1103/PhysRevLett.73.1416
http://dx.doi.org/10.1103/PhysRevLett.73.1416
http://dx.doi.org/10.1103/PhysRevLett.73.1416
http://dx.doi.org/10.1103/PhysRevLett.73.2488
http://dx.doi.org/10.1103/PhysRevLett.73.2488
http://dx.doi.org/10.1103/PhysRevLett.73.2488
http://dx.doi.org/10.1103/PhysRevLett.73.2488
http://dx.doi.org/10.1103/PhysRevB.46.12573
http://dx.doi.org/10.1103/PhysRevB.46.12573
http://dx.doi.org/10.1103/PhysRevB.46.12573
http://dx.doi.org/10.1103/PhysRevB.46.12573
http://dx.doi.org/10.1103/PhysRevB.50.1325
http://dx.doi.org/10.1103/PhysRevB.50.1325
http://dx.doi.org/10.1103/PhysRevB.50.1325
http://dx.doi.org/10.1103/PhysRevB.50.1325



