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Relaxation of optically excited carriers in graphene: Anomalous diffusion and Lévy flights
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We present a theoretical analysis of the relaxation cascade of a photoexcited electron in graphene in the presence
of screened electron-electron interaction in the random phase approximation. We calculate the relaxation rate of
high energy electrons and the jump-size distribution of the random walk constituting the cascade which exhibits
fat tails. We find that the statistics of the entire cascade are described by Lévy flights with constant drift instead of
standard drift diffusion in energy space. The Lévy flight manifests nontrivial scaling relations of the fluctuations
in the cascade time, which is related to the problem of the first passage time of Lévy processes. Furthermore
we determine the transient differential transmission of graphene after an excitation by a laser pulse taking into
account the fractional kinetics of the relaxation dynamics.
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I. INTRODUCTION

The fabrication of graphene [1] launched a new era of
two-dimensional (2D) materials in condensed matter physics,
giving access to fundamentally different phenomena and
systems realized for the first time in a solid state environment
[2–5]. Graphene promises to be an attractive platform for elec-
tronic [6] and in particular optoelectronic applications [7–9],
where research reaches from lasing [10] to energy conversion
[11,12]. The nature of interactions and their interplay will limit
the intrinsic properties of graphene devices and has therefore
attracted interest from the application oriented as well as
fundamental standpoint. For the latter, neutral or intrinsic
graphene embodies the paradigm of a marginal Fermi liquid
(FL) [13–15]. While graphene in the presence of electron-
electron interactions (EEI) establishes a finite Fermi surface
at high doping, it crosses over to a relativistic Dirac liquid at
lower densities and manifests non-FL relaxation rates [16–18]
and transport characteristics [6,15,19]. Another interesting
interaction-dominated transport phenomenon is Coulomb drag
in graphene double layer systems [20–22] which is deter-
mined by the peculiar interaction-induced interlayer relaxation
[23–28]. In the last years it became feasible to examine the
interactions even on very short time scales by means of ultrafast
pump-probe measurements [29–31]. They revealed that EEI in
graphene dominates over phonon interaction at an early stage
of relaxation processes making graphene a highly efficient
material for thermoelectric applications [32,33]. On the other
hand the relaxation of high energy electrons follows again a
non-FL scheme as electrons relax via a cascade of small steps
in energy space [34].

So far theoretical work focused on the relaxation rates
of thermal electrons using static screening or dynami-
cal screening in the random phase approximation (RPA)
[14–19,35–38]. Comprehensive numerical studies elucidated
the interplay of EEI and phonon interactions [39,40] as well
as the importance of different scattering channels in particular
in the context of carrier multiplication via Auger processes

[41]. The influence of flexural phonons [42,43] in free-standing
graphene and combined effects of phonons and disorder [44]
have been studied in detail. The relaxation of optically excited
carriers in doped graphene [34,45] was theoretically studied
[46] at zero temperature and is consistent with the cascade
picture.

In this work we present an analysis of the relaxation cascade
at finite temperature. We consider the first stage of the relax-
ation process dominated by electron-electron collisions and
neglect phonon and disorder effects. In Sec. II we study a single
cascade step for undoped as well as for doped graphene and cal-
culate the relaxation rates of high energy electrons in graphene
using the random phase approximation (RPA). The main result
of Sec. II is the distribution of the size of a single jump in the
random walk describing the relaxation cascade. In Sec. III we
infer the characteristics of the whole cascade on the basis of the
results presented in Sec. II, with emphasis on the fluctuations
on top of the particle’s drift in energy space. The cascade pro-
cess manifest the unique Dirac nature of carriers in graphene as
it is described by Lévy flights [47]. Finally, in Sec. IV we deter-
mine the transient differential transmission of a graphene sam-
ple after excitation with a laser pulse in the presence of EEI.

II. SINGLE CASCADE STEP

We are going to discuss the relaxation of carriers excited
by a laser pulse with central frequency ωpump. We focus
on the dynamics of the excited electrons rather than the
questions associated with the equilibration of the low energy
thermal electrons. We restrict our analysis to the earliest stage
dominated by EEI, in which the energy remains entirely in
the electronic system. For moderate pump fluence the phase
space density of the excited electrons is much lower then the
one of thermal electrons. Scattering and energy relaxation of
a high energy excited electron is therefore predominantly due
to interaction with thermal electrons. We neglect the mutual
scattering of high energy electrons and assume that the low
energy electrons remain thermal with temperature T . For small
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fluences we also neglect the change in T due to illumination.
In this sense the excited electrons with an energy of the order
ωpump/2 are relaxing in consecutive steps due to the interaction
with a thermal bath of low energy electrons at equilibrium.

In the following we label the eigenstates |λ,�k〉 of the
graphene Hamiltonian H0 = vF �σ · �k with energy ελk = λvF k

by the momentum �k and band index λ = ±1. In the following
we set vF = � = 1. We define the relaxation rate via the
semiclassical Boltzmann equation,

∂tfλ(�k) = St[fλ(�k)]. (1)

Here fλ(�k) is the occupation of the state |λ,�k〉. The collision
integral St[f ] describes the electron-electron scattering. Based
on the approximations mentioned above we follow the evolu-
tion of a single excited electron starting at momentum �p as
it relaxes due to scattering with the thermal electrons with
energies ε � εp. We make the ansatz,

fλ(�k) = fT (λk) + δfλ(�k) , δfλ(�k) = δλ,+1δ�k, �p. (2)

Here fT (ε) = 1/[1 + exp((ε − μ)/T )] is the Fermi-Dirac
distribution. With the ansatz (2), the relaxation rate of the
high energy electron is determined by the outscattering rate in
the collision integral,

St[f+1( �p)] = −
∑
2,3,4

W12,34f3(1 − f4)(1 − f2). (3)

In Eq. (3) we used the short-hand notation i = (εi,�ki). The
transition rate W12,34 is given in Appendix A. Here, we only
want to point out that in the case of Dirac particles it contains
the overlap of the eigenstates 〈λj ,�kj |λi,�ki〉 that leads to a
suppression of backscattering, in addition to the semiclassical
matrix element of Coulomb scattering. In terms of the
transferred energy ω and momentum q, ε2 = εp − ω, ε3 =
ε4 − ω and �k2 = �p − �q, �k3 = �k4 − �q, due to the conservation
of energy and momentum [see inset in Fig. 1(b)].

We can classify the possible scattering processes in terms of
interband, |ω| > q and intraband scattering, |ω| < q. Collinear
scattering occurs exactly at |ω| = q.

Combining Eqs. (1) and (3) we obtain an expression for the
relaxation rate �(p) of the photoexcited electron, defined by
the Boltzmann equation,

∂tf+1( �p) = −�(p) = St[f+1( �p)], (4)

which is written as

� =
∫ +∞

−∞
dω P (ω). (5)

Here P (ω) is the scattering rate per frequency interval
(ω,ω + dω). On the other hand it defines the distribution of
the transferred energy in a single scattering event or cascade
step. We thus refer to P (ω) as the jump-size distribution (JSD)
of the relaxation cascade.

As long as ω < εp the excited electron is scattered within
the conduction band, which implies q > |ω|. Since the particle
number in the conduction and valence band are separately
conserved in pair collisions, the thermal electron that scatters
with the high energy electron also performs an intraband
transition [48]. We find that the contribution for ω > εp

corresponding to interband transitions is negligible for the

100

50

0

75

25

125

(a)

(b)
100

60

0

80

40

20

1 25.15.00

0 1 2 3 4

interband intraband

interband                   intraband

FIG. 1. (Color online) The kernel K(ω,q), Eqs. (9) and (C1),
determining the phase space of scattering for thermal electrons for
different frequencies ω and (a) μ = 0, (b) μ/T = 10. The regions of
intraband (q > |ω|) and interband (q < |ω|) scattering are separated
by the dashed line.

relaxation rate �, Eqs. (4) and (5), as well as for the statistics
of the entire cascade (see Sec. III). Moreover, calculation
shows that the relevant transferred energies satisfy |ω| � εp.
Scattering in this case is predominantly in forward direction,
which simplifies the overlap functions,

|〈λ2,�k2| + 1, �p〉|2 = 1 + λ2( �p · �k2)/pk2

2
� 1. (6)

Taking into account that f2 � 0 for |εp − ω| � max(|μ|,T )
in Eq. (3), we obtain the compact expression for the JSD,

P (ω) =
∫ ∞

|ω|
dq q

N |V (ω,q)|2
|q2 − ω2| K(ω,q). (7)

Here we assumed εp � max(|μ|,T ) and as a consequence
P (ω) is independent of the particle energy εp. In Eq. (7) the
RPA-screened matrix element of Coulomb scattering,

V (ω,q) = V0(q)/ε(ω,q), (8)

where the dielectric function ε(ω,q) = 1 + V0(q)N	(ω,q).
The RPA polarization operator 	(ω,q) is given in
Appendix B and the bare Coulomb interaction V0(q) =
2παg/q. The number of flavors N = 4 and the coupling
constant in graphene αg = e2/ε�vF in our notations is
αg = e2/ε. Note that in the presence of a dielectric
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environment with dielectric constant ε � 1 the coupling
constant can be small, αg � 1, which we assume in the
following. The kernel,

K(ω,q) =
∫ +∞

−∞
dε4

√
(ω − 2ε4)2 − q2

× fT (ε4 − ω)[1 − fT (ε4)], (9)

expresses the phase space (for q > |ω|) of the thermal electrons
that scatter with the high energy photoexcited electron.

Let us briefly comment on the validity of the RPA. For small
frequencies, the RPA sums up the leading logarithmically
divergent diagrams [18]. For |ω| > max(T ,|μ|), however, the
RPA is justified by a large N expansion. By the same degree
of approximation we also neglected the exchange term in the
collision integral.

We observe that the denominator of the integrand in Eq. (7)
is singular in the case of collinear scattering |ω| = q, which
in the absence of screening would lead to the logarithmically
divergent Coulomb scattering integral [15,49,50]. However,
the polarization operator in RPA is also divergent in the case of
collinear scattering, thus the total scattering amplitude remains
finite. The singular nature of the scattering of Dirac particles
with linear dispersion also manifests itself in the phase space
kernel (9). Figure 1 shows K for intrinsic graphene (|μ| � T )
as well as for |μ| � T . In either case K exhibits a jump at
collinear scattering. One observes that for μ = 0 [Fig. 1(a)]
the phase space of intraband processes is strongly suppressed
and controlled by T . On the contrary, for |μ| � T [Fig. 1(b)]
K is dominated by intraband processes.

Below we discuss the JSD separately for T � |μ| and
|μ| � T .

A. The limit T � |μ|
For T � |μ|, there are two important scattering processes.

The first one is intraband scattering with small momentum
transfer q < 2T , which leads to a logarithmic divergence in
the JSD for frequencies |ω| < αgT , depicted as the dash-dotted
line in Fig. 2(b). The logarithm occurs due to the failure of

FIG. 2. (Color online) The jump-size distribution (7) for T �
|μ|. The inset (b) shows the contributions of q > 2T (dashed line)
and q < 2T (dash-dotted line) to P (ω) (solid line) for |ω| < 2T . Both
curves are calculated for αg = 0.75.

screening at small frequencies and momenta which enables
resonant forward scattering. It is the only surviving feature
of the logarithmic divergence of the unscreened Coulomb
scattering integral typical for 2D systems. The contribution
of scattering with q < 2T decreases monotonically with
increasing frequency and vanishes for |ω| � 2T since |ω| > q

forbids intraband scattering.
The second kind of process is intraband scattering with

large momentum transfer q > 2T . This contribution increases
with increasing frequency up to ω = 2T . It dominates over
scattering with small momentum transfer for ω ∼ 2T and
higher frequencies. For frequencies ω > 2T it decreases
monotonically. Specifically, we find that at large ω the JSD
falls as ω−5/2, shown in Fig. 2(a). There is a finite probability
for the excited electron to gain energy from the bath of thermal
electrons. However, negative frequencies are exponentially
suppressed as shown in Fig. 2(a). The slow decay of the
JSD for large frequencies has important implications for the
fluctuations of ω as discussed in Sec. III. In particular it is
different from the JSD of a FL which is flat in the range
0 < ω < εp. Thus an electron in a FL would lose most of its
energy by a single jump. The FL regime is realized under the
conditions |μ| � T and εp � |μ|.

It turns out that for the scattering rate (5) the region |ω| <

2T is most important and

� = καgT , |μ| � T , αg � 1, (10)

where κ = 4π2(1 + ln 2 + G/2) � 84.92 and G � 0.916 is
the Catalan constant. The linear dependence on T is a
characteristic feature of intrinsic graphene that distinguishes it
from the FL [14]. Furthermore, due to screening the rate (10)
is independent of the number of flavors N and linear in αg

contrary to the golden rule result � ∝ α2
gT [18]. The rate (10)

is also independent of the particle energy εp � max(|μ|,T ).

B. The limit |μ| � T

For |μ| � T the JSD is dominated by the region |ω| < 2|μ|
as can be seen in Fig. 3(a) while the weight of the tail is
strongly reduced. In particular the mean jump size will be
of the order |μ|. At the lowest frequencies |ω| < αgT , the
JSD P (ω) shows a logarithmic divergence due to unscreened
collinear scattering. Here the JSD recovers the FL form
P (ω) ∝ (T/|μ|) ln |μ/ω| (see Ref. [16]) in contrast to the
result for T � |μ|, where we obtain P (ω) ∝ ln(αgT /|ω|). In
the T = 0 limit the logarithmic divergence at small energies
vanishes [see Fig. 3(b)]. In this case P (ω) reproduces the result
of Ref. [46].

The dominant process for |ω| < 2|μ| is the intraband
scattering with small momentum transfer, q < 2|μ|. Similar
to the case T � |μ|, such small-momentum scattering is not
possible for ω > 2|μ| where scattering with q > 2|μ| leads to
the fat tail ∝ ω−5/2. The contribution of negative frequencies
P (ω < 0) ∝ exp(ω/2T ) is exponentially small.

In the case T � |μ|, the relaxation rate was determined
by |ω| < 2T . The total rate for |μ| � T , is dominated by
0 < ω < 2|μ| and is given by

� = 8αgπ
2|μ|, |μ| � T , αg � 1. (11)
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FIG. 3. (Color online) The JSD (7) for μ/T = 10. In the region
|ω| < 2|μ| processes with q < 2|μ| are dominant. For |ω| > 2|μ|
processes with q > 2|μ| determine the fat tail of the JSD. The inset
(b) illustrates the evolution of the forward scattering resonance with
lowering temperature. Both curves are calculated for αg = 0.75. For
details of the calculation, see Appendix A.

The rates (11) and (10) are calculated in the ballistic regime
T τdis � 1, where we neglect the influence of disorder with the
characteristic scattering time τdis. In the FL case it is known that
the presence of disorder has strong influence on the inelastic
relaxation of particles in the diffusive regime T τdis � 1
[51–53]. However, even in the diffusive regime the tails of the
JSD ∝ ω−5/2 are preserved for ωτdis � 1, since they emerge
due to scattering with large momentum transfer.

We finish this section with a short discussion of corrections
to the results above due to nonlinearity of the spectrum at
high energies ε∗ � �, where � is the cutoff energy. The
nonlinear correction to the dispersion relation reads ελ(p) −
λk ∝ k2 sin ϕk/�, where ϕk is the angle of the direction
of �k. The parameter that controls violations of the linear
dispersion relation is therefore ε∗/�. Here ε∗ ∼ ωpump is a
characteristic energy. A positive curvature of the spectrum
opens a phase space for Auger processes (see Appendix D).
Auger processes thus also contribute to the tail of the JSD.
From a simple estimate (see Appendix D) we obtain that
Auger processes dominate over intraband processes for ω �
T (T 1/3�2/3/ε∗)2. This region is irrelevant if ε∗ � �(T/�)5/9.
Under this condition the nonlinearity does not modify the tail
of P (ω). For room temperature and the cutoff � = 1 eV, even
near infrared to visible light is within the range of validity
of the results of this section. Since positive curvature only
occurs in certain directions, Auger processes should be even
weaker than in the simple estimate above. We want to stress
that a negative curvature prevents Auger processes. Negative
curvature appears due to intrinsic band curvature and due to
renormalization of the electron spectrum.

III. RELAXATION CASCADE: LÉVY FLIGHTS

We have seen that the JSD of a high energy electron with
energy εp � max(|μ|,T ) in graphene implies an average jump
size of the order of either temperature or chemical potential.
This is in contrast to the FL result where the JSD is flat up to
the particle’s energy. In graphene, the excited carriers relax in

FIG. 4. (Color online) (a) Sample of the JSD for T � |μ| (see
Fig. 2). (b) Sample of the cascade variable Sn = ω1 + · · · + ωn from
the JSD for n = 4 with a high energy cutoff for the JSD given by the
particle energy εp/T = 100. The solid line is the stable distribution
with α = 3/2 and β = 1. (c) The average number of steps sampled
from the JSD as a function of the cascade length �ε. The error
bars show the typical fluctuations σn of the number of cascade steps.
(d) The fluctuation σn as a function of the cascade length �ε. The
solid line is the �ε2/3 law (19). The dashed line illustrates Gaussian
fluctuations for comparison. The inset shows a typical distribution of
cascade steps for �ε/2T = 50.

a cascade, with on average 〈n〉 ∼ εp/〈ω〉 jumps, where 〈. . . 〉
is the average according to the JSD. The time scale of the
cascade is then t ∼ n/� [46].

The above conclusion concerns the mean number of steps
in the cascade as well as the average cascade time. We
now discuss the statistics of the random walk modeling the
relaxation cascade in more detail with an emphasis on the
fluctuations of the number of cascade steps.

Due to the fact that the JSD exhibits the fat tail P (ω) ∝
ω−5/2, it does not possess a second moment. Therefore, the
fluctuations of the number of cascade steps should show
an unusual behavior. The particle energy provides a natural
cutoff for the JSD, rendering its variance finite. But on
an intermediate scale, before the electron energy reaches
max(|μ|,T ), the distribution behaves as if it possessed no
finite variance. This is demonstrated in Figs. 4(a) and 4(b)
by numerical sampling the JSD [Fig. 4(a)] and the cascade
Sn = ω1 + · · · + ωn [Fig. 4(b)], where ωi are independent and
identically distributed. For not too large n, a finite cutoff in the
JSD does not change the distribution of Sn in Fig. 4(b).

As a consequence, the large-n limit of the distribution of the
cascade Sn does not approach the normal distribution. It rather
lies in the domain of attraction of an α-stable law Gn(Sn).
These are generalized limiting distributions for random pro-
cesses with stationary and independent jumps including fat-
tailed distributions as well as the normal distribution (α = 2)
[47]. Their characteristic function (excluding the case α = 1
irrelevant for us),

�n(α,δ,β,c; z) = eiznδ−nc|z|α (1−iβsign(z) tan(απ/2)), (12)

is fully parametrized by four parameters. The index of stability
α = 3/2 follows from the condition that Gn(Sn) lies in the
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domain of attraction of an α-stable law,

x∫
0

dωP (ω)ω2 ∝ x2−α, (13)

since the large-ω asymptotic of the JSD, P (ω), is given by

P (ω)T/� � c (ω/2T )−5/2. (14)

The scale parameter c is obtained from Eqs. (A15) and (A18).
It will be related to the anomalous diffusion constant in Sec. IV
[Eq. (23)]. The skewness β = 1 in the case of graphene,
rendering the distribution single sided, the electron loses
energy in the cascade. The location parameter δ = 〈ω〉. For
|μ| � T we have δ ∼ αg|μ| whereas δ ∼ αgT for T � |μ|.

The random variable Y = Sn − nδ, describing the fluc-
tuations of the cascade, obeys a strictly stable distribution.
The random motion on top of the drift during the relaxation
processes is thus not the standard Brownian motion but is
rather superdiffusive containing long jumps. The associated
statistics serves as a fingerprint of the EEI in graphene.

We discuss three important consequences:
(i) The relaxation rate γc of the entire cascade is given by

the rate � divided by the average number of steps. The latter
is given by εp/〈ω〉. Thus we obtain

γc ∼ α2
g

{
μ2/εp , |μ| � T

T 2/εp , T � |μ| . (15)

(ii) Second, the high energy tail of the JSD P (ω∗),
ω∗ � max(|μ|,T ), gives also the probability density for a
secondary electron or hole to be created in the energy interval
ω∗ � |ε| � ω∗ + max(|μ|,T ). More precisely, in the case
μ � T (−μ � T ) only hot electrons (holes) are created
with probability density P (ω∗), while in the case T � |μ|
electrons and holes are created with equal probability P (ω∗)/2.
Using P (ω∗) � P (〈ω〉), the probability to create a secondary
electron at energy ε ∼ ω∗ during the entire cascade is then
given (up to the factor 1/2) by P (ω∗)εp/〈ω〉. We conclude
that the energy scale,

ω0 ∼
{

T (εp/αg|μ|)2/5 , |μ| � T

T (εp/αgT )2/5 , T � |μ| , (16)

separates the regions where the density of downstream parti-
cles is smaller (ω∗ < ω0) and larger (ω∗ > ω0) than the density
of secondary particles [see Figs. 5(a) and 5(b)]. In the former
region the distribution function should show traces of the tail
of the JSD accordingly [Fig. 5(a)] [54].

(iii) The third consequence concerns the scaling behavior of
fluctuations of the cascade time—the first passage time of the
Lévy process on the finite distance �ε in the energy space—
which is directly related to the random variable Y . The distance
�ε can be, for instance, given by �ε = (ωpump − ωprobe)/2, the
difference between the excitation and probing frequency (see
Fig. 5). We use the scaling of Lévy stable distributions,

Gn(Sn) = n−1/αG1(Y/n1/α)|δ=0, (17)

that follows from Eq. (12) and obtain

〈Y 2〉 ∼ �ε2/αT 2(α−1)/α. (18)

FIG. 5. (Color online) Pump-probe setup for (a) ωprobe < ω0. The
probe measures mostly the secondary particles which are created
with the probability P (ω) ∝ ω−5/2. (b) ωprobe > ω0. The density of
secondary particles is negligible and the situation is suitable for
studying the cascade time and its fluctuations depending on the length
of the cascade �ε = (ωpump − ωprobe)/2. (c) The fluctuations (19)
determine the width of the rise time in the measured change of the
transmission [see also the inset of Fig. 4(d)].

The mean square fluctuation of the number of steps is then
given by σ 2

n = 〈n2〉 − 〈n〉2 = δ−2〈Y 2〉 while the fluctuation of
the cascade time,

σt = �−1σn = T (α−1)/α�ε1/α/�〈ω〉. (19)

Using Eqs. (10) and (11) in Eq. (19) we obtain

σt ∼
(

�ε

T

)1/α {
T/μ2, |μ| � T

T −1, T � |μ| . (20)

Both for |μ| � T and for T � |μ| we find a nontrivial
dependence on σt (T ) determined by the index of stability α.
Since α = 3/2 in our case, the fluctuations increase ∝ T 1/3 at
T � |μ| and decrease ∝ T −5/3 at T � |μ|.

The dependence of the fluctuations in the number of cascade
steps n on the length of the cascade �ε is demonstrated in
Figs. 4(c) and 4(d). Here the cascade is simulated by generating
a sequence of steps from the JSD until the cascade length �ε

is reached. The average number of steps 〈n〉 in Fig. 4(c) scales
linearly with the cascade length �ε. On the other hand, the
fluctuations of the number of steps σn in Fig. 4(d) obey the
relation (19).

The exponent of �ε in the fluctuations σt , Eq. (19), is
known as the Hurst exponent H = 1/α [55,56]. It is related
to the fractal dimension of the random walk Df = 2 − H =
4/3 [57]. The fractal nature of the relaxation cascade in
graphene can be understood in terms of a fast one-dimensional
backbone of forward scattering augmented by other less
efficient channels in the 2D momentum space, similar to the
emergence of fractal dimensions in networks.

IV. FRACTIONAL KINETICS AND TRANSIENT CHANGE
IN TRANSMISSION

In this section we will calculate the transient differential
transmission of a graphene sample after laser excitation. As
in the previous sections we assume that the density of high
energy electrons is much lower than the density of thermal
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electrons and we can neglect the mutual interaction of the
excited carriers. Second, we calculate the isotropic part of the
distribution function at high energies ε > ω0 [see Fig. 5(b)],
thus we can neglect secondary electrons. Furthermore we
neglect the exponential tail of the thermal electrons since
ε � max(|μ|,T ). Therefore the isotropic part of the transient
distribution function will be given by the distribution of
downstream electrons, denoted F (ε,t).

A. Fractional kinetics

In the previous section we showed that the statistics of
the relaxation dynamics is given by Lévy flights. In terms of
the distribution function the relaxation will be described by
the fractional Fokker-Planck equation (FFPE) [58],

∂tW (ε,t) = �〈ω〉 ∂εW (ε,t) + D∇α
(β)W (ε,t). (21)

Here W (ε,t) with W (ε,t = 0) = δ(ε) is the propagator of the
FFPE which will be given below. We also introduced the Riesz-
Feller fractional derivative [59], which is defined by its Fourier
transform,

∇α
(β)f (ε) =

∫
dz

2π
ln[�1(α,0,β,1; z)]f (z)eizε, (22)

where �1 is the characteristic function of the underlying
stochastic process. In our case it is a Lévy α-stable law
with α = 3/2 and β = 1 [see Eq. (12)]. In the FFPE (21)
we also introduced the average energy loss rate �〈ω〉 and the
anomalous diffusion constant D = �c, where c is the scale
parameter of the Lévy process [see Eqs. (12) and (14)]. From
these formulas we obtain

D = 2α128
√

2π

N/4
T α+1. (23)

The emergence of the fractional kinetics expressed by the
FFPE (21) can be understood on the basis of a Langevin-type
rate equation for the electron energy,

∂tε(t) = −�〈ω〉 + η(t) , (24)

where η(t) is a random variable which is distributed according
to an α-stable law and describes the interaction of the high
energy electron with the bath of thermal electrons.

The general solution F (ε,t) of the FFPE with initial
conditions F (ε,t = 0) = f (ε) is obtained with the propagator
according to

F (ε,t) =
∫

dε′ W (ε − ε′,t)f (ε′) . (25)

In our case we choose the initial probability density to be

f (ε) = n0δ(ε − ωpump/2) . (26)

Here n0 is the integrated flux density of the pump pulse [60].
We have F (ε,t) = n0W (εt ,t), where

εt = ε − ωpump/2 + �〈ω〉t , (27)

is the running energy. The propagator W (ε,t) and thus the
solution F (ε,t) in our case of α = 3/2 and β = 1 can be

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

FIG. 6. (Color online) The solution [see Eqs. (28)–(30)] of the
FFPE (21) (solid line) as a function of energy in comparison to
the result obtained for Gaussian diffusion (dashed line) for different
times.

calculated explicitely [61]. We obtain

W (ε,t) = πT

α
(Dt)−1/αK(s) (28)

for the propagator in terms of the dimensionless variable

s = εt/(Dt)1/α . (29)

In Eq. (28) the function K(s) is given by,

K(s) = −e
s3

27

[
3
√

2/3 sAi

(
s2

3
√

486

)
+ 3

√
12 Ai′

(
s2

3
√

486

)]
.

(30)

Here Ai(z) is the Airy function and Ai′(z) its derivative. In
particular, W has the following asymptotics for large times,

W (ε,t) � T Dt√
2πα

|ε − ε0 + �〈ω〉t |−(α+1) . (31)

Using Eq. (23) and the results from Sec. II we obtain,

W (ε,t) ∼ t−α

{
T (T/μ2)α+1 , |μ| � T

T −α , T � |μ| . (32)

We see that the tail of F for large times but fixed ε is
proportional to t−3/2 and scales as T −3/2 for T � |μ| and
as T (T/μ2)5/2 for |μ| � T .

The evolution of the probability distribution W (ε,t) due
to the fractional kinetics is illustrated in Fig. 6. The
solid line depicts the solution of the FFPE (21), given by
Eqs. (28)–(30), while the dashed lines show the Gaussian
solution of the usual Fokker-Planck equation. The fractional
kinetics leads to a strong asymmetry, compared to the Gaussian
drift diffusion, since the fluctuations in the underlying Lévy
process are single sided, i.e., β = 1 in Eqs. (12) and (21).

B. Transient change in transmission

We outline the consequences of the fractional kinetics for
the transient differential transmission of the sample. The latter
is determined by the change in the dynamic conductivity which
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FIG. 7. (Color online) The normalized differential transmission
�T/�Tmax as a function of the dimensionless time tT . Here �Tmax

denotes the maximum value of �T . (b) Shows the results on a
logarithmic scale. The solid curves are calculated according to
Eq. (34) and Eqs. (28) and (30), for �ε/T = (ωpump − ωprobe)/T =
25 and �〈ω〉/T 2 = 20 as well as D/T α+1 from Eq. (23). The
dashed lines in (a) and (b) illustrate the result for usual diffusion
in comparison to the fractional kinetics (solid line).

is given by

�σ (t)/σ0 = −[F (ωprobe/2,t) − F (−ωprobe/2,t)]. (33)

Given the particle hole symmetry of the correction to the dis-
tribution function at high energies, i.e., F (−ε,t) = −F (ε,t),
we finally have for the relative differential transmission,

�T (t)

T0
= 2n0W (ωprobe/2,t), (34)

where n0 is the integrated flux density.
The behavior of �T as a function of time, Eq. (34), is

illustrated in Fig. 7. The solid line depicts the result (28) due
to the fractional kinetics in graphene, while the dashed line is
the expected result for conventional Gaussian drift diffusion.
We see that the diffusion in the case of Lévy flights (solid
line) is stronger due to the fact that the α-stable law is single
sided, i.e., β = 1. Therefore fluctuations enhance the drift
in energy space (see also Fig. 6). Furthermore the transient
differential transmission shows power-law behavior with time
and temperature according to Eq. (32), instead of exponential
decay in the case of usual diffusion [see Fig. 7(b)].

V. CONCLUSION

We have provided an analysis of the relaxation cascade
of photoexcited electrons in graphene at finite temperature.
We calculated the relaxation rates of high energy electrons
in the case of doped as well as undoped graphene. We find
� ∼ αg max(|μ|,T ), which distinguishes graphene from the
FL. The αg dependence deviates distinctively from the golden
rule result ∝ α2

g and is due to the peculiar screening in graphene
[18]. Furthermore the rates are independent of the particle
energy εp. The entire relaxation cascade is determined by
the distribution of the transferred energy in a single jump.
This jump-size distribution exhibits logarithmic divergencies
at small energy transfer due to resonant forward scattering
which is very pronounced in graphene having truly linear
spectrum. Specifically, we find P (ω) ∼ ln αgT /|ω| for |μ| �
T and small frequencies |ω| � αgT which crosses over into
the usual FL result P (ω) ∼ (T/|μ|) ln αg|μ/ω| at |μ| � T .

Remarkably, the JSD exhibits fat tails that fall off as (ω/T )−5/2

at large frequencies ω > max(2|μ|,2T ) for both |μ| � T and
T � |μ|.

Owing to the fat-tailed JSD, the relaxation cascade is
described by an α-stable distribution with a mean drift
determined by either T or |μ|: The fluctuation on top of the drift
is described by Lévy flights with index of stability α = 3/2.
As a consequence, the fluctuations σt of the cascade time
t exhibit characteristic scaling relations with the frequency
ωpump � ωprobe of the pump pulse, σt ∼ ω

1/α
pump, as well as

temperature. Specifically, σt ∼ T 1/3 for |μ| � T and σt ∼
T −5/3 for T � |μ|. These scaling relations serve a clear
imprint of the forward scattering resonance and related fractal
nature of the relaxation cascade in graphene. The observed [34]
variation of the average cascade time with ωpump is consistent
with theoretical predictions for the energy drift made in
Ref. [46] for the regime |μ| � T . Using the experimental
setup similar to that used in Refs. [34,45], it should be possible
to detect the traces of the Levy flights as well. Specifically, the
width of the rise time in the measured change in transmission
as depicted in Fig. 5(c) provides a direct measure of the
fluctuation of the cascade time (20) [see also Fig. 4(d)].

Furthermore, the JSD is the distribution of the created
electron-hole pairs during the cascade. We find that within the
energy window max(|μ|,T ) � ε < ω0 a significant amount
of secondary electrons is created according to P (ω) �
ω−5/2. We find ω0 ∼ T (ωpump/T )2/5 for T � |μ| and ω0 ∼
T (ωpump/μ)2/5 for |μ| � T . Probes in the mentioned energy
interval should also reveal the tail of the JSD.

We predict the time evolution of the differential change
in transmission in the presence of electron electron in-
tercations. The transmission is directly measured in pump
probe experiments and we obtain an analytical expression for
the differential transmission from a fractional Fokker-Planck
equation. The latter is suited to capture the fractional kinetics
emerging from the Lévy flight statistics of the relaxation
process.

The results of this work extend the study of relaxation
dynamics of thermal electrons in graphene [18] to the case
of high energy electrons also at finite chemical potential and
should be relevant for future studies of the nonequilibrium
steady states in irradiated graphene. This prospect includes the
question of thermalization in driven graphene, the possibility
of a population inversion [10,62] as well as frequency
conversion [7]. It should also be interesting to extend it to the
nonlinear regime of pumping where saturation effects become
important. All these questions necessitate the full solution of
the kinetic equation. In this context the present work sheds new
light on the unique character of the interaction in graphene that
controls the formation of such nonequilibrium states that might
also be probed in future experiments.
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APPENDIX A: CALCULATION OF THE RELAXATION RATE AND THE JSD FROM THE BOLTZMANN EQUATION

In this section we derive Eq. (7) for the JSD and the relaxation rates from the main text. We start from a generic fermionic
collision integral,

St[f (λ, �p)] =
∑
λ3

∫
d2p3

(2π )2
{W (λ, �p|λ3, �p3)fλ3 ( �p3)[1 − fλ( �p)] − W (λ3, �p3|λ, �p)fλ( �p)[1 − fλ3 ( �p3)]}, (A1)

where the transition rates for the Coulomb interaction,

W ( �p2,λ2| �p1,λ1) = (2π )−1
∑
λ3,λ4

∫
d �p3,4

∫
d �qdωδ(λ2p2 + ω − λ1p1)δ(λ4p4 − ω − λ3p3)

× δ( �p2 + �q − �p1)δ( �p4 − �q − �p3)K(�q,ω,{λi},{�vi})f ( �p3,λ3)[1 − f ( �p4,λ4)]. (A2)

Here the interaction kernel,

K(q,ω,{λi},{vi}) = N |V (ω,q)|2�1,2�3,4, (A3)

contains the RPA screened Coulomb matrix element (see Appendix B),

|V (ω,q)|2 = 4π2α2
g

(q + 2παgNRe	)2 + (2παgN Im	)2
, (A4)

as well as the Dirac factors (�vi = λi
�ki/ki) �1,2 = (1 + �v1 · �v2)/2. Upon inserting the ansatz (2) into the collision integral (A1),

we obtain the explicit expression for the relaxation rate,

� =
∑
λ1

∫
d2k

(2π )2
W0(λ1,�k| + 1, �p)[1 − fλ1 (�k)] + W0(+1, �p|λ1,�k)fλ1 (�k). (A5)

For ω < εp, where interband processes are forbidden, the second term in Eq. (A6) can be dropped. Using Eqs. (A2) and (A3) we
then obtain

� = (2π )2
∑
λ1,3,4

∫
d2q

(2π )2

dω

2π

d2k4

(2π )2
δ(λ2| �p − �q| + ω − p)δ(λ4k4 − ω − λ3|�k4 − �q|)

×N |VRPA(ω,q)|2 �1,2

∣∣
1=(λ1, �p−�q) �3,4

∣∣
3=(λ3,�k4−�q) fT (λ4k4 − ω)[1 − fT (λ4k4)]. (A6)

Next we perform the angular integration in the integrals over �k4 and �q. The arising functional determinants are (λ = +1),∣∣∣∣ ∂

∂ϕq

λ2| �p − �q|
∣∣∣∣ = pq| sin(ϕq − ϕp)|

| �p + �q| =
√

q2 − ω2[(ω − 2λp)2 − q2]1/2

2|λp − ω| , (A7)

∣∣∣∣ ∂

∂ϕ4
λ3|�k4 − �q|

∣∣∣∣ = k4q| sin(ϕ4 − ϕq)|
|�k4 − �q| =

√
q2 − ω2[(ω − 2λ4k4)2 − q2]1/2

2|λ4k4 − ω| . (A8)

The corresponding Dirac factors are (λ1 = λ = +1)

�1,2 = 1

2

(
1 + λ1λ2�k1 · ( �p − �q)

k1| �p − �q|

)
= |(ω − 2λp)2 − q2|

4p|λp − ω| , (A9)

�3,4 = 1

2

(
1 + λ2λ3�k4 · (�k4 − �q)

k4|�k4 − �q|

)
= |(ω − 2λ4k4)2 − q2|

4k4|λ4k4 − ω| . (A10)

1. The JSD P(ω)

Putting together Eqs. (A6)–(A10) we finally obtain the JSD,

P (ω) =
∫ ∞

0
dq

q Re
√

sgn(q2 − ω2)[(ω − 2λp)2 − q2]

2p

N |V (ω,q)|2
|q2 − ω2| K(ω,q). (A11)

Here the kinetic kernel is given by Eq. (C1). If we assume p � ω,q we obtain the result (7) stated in the main text,

P (ω) =
∫ ∞

|ω|
dq q

N |V (ω,q)|2
|q2 − ω2| K(ω,q). (A12)
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TABLE I. The asymptotics of the polarization operator in graphene for |μ̃| � 1 in the different regimes from Eqs. (B2) and (B3). Here
Iη(z) denotes the modified Bessel function of the first kind.

|β| < 1 |β| > 1

Q � μ̃ Q � μ̃ Q � μ̃ Q � μ̃

Re	R |μ|
2π

T Q

16
√

1−β2
− T

8π

I1(Q)
β2

μ̃2

Q
− T

4πβ2Q

Im	R |μ|
2π

�√
Q2−�2

T

4
√

2πQ
e−(1−β)Q, for (1 − β)Q � 1 − T

16
Q2√

�2−Q2

sinh(�)
cosh(�)+cosh(μ̃) − T

16
Q2 tanh �√

�2−Q2

In the following we use the dimensionless variables � = ω/2T , Q = q/2T , β = ω/q, and μ̃ = μ/T . Using the asymptotics
from Appendixes B and C we obtain limiting expressions for the JSD P (�) presented below.

a. The limit T � |μ| for |�| < 1

The contribution for small momentum transfer (Q < 1) reads

P (�)
∣∣
Q<1 = 4 ln 2 α2

gπ
2Ne�

∫ 1

|�|
dQ

Q

|Q2 − �2|(Q + αgN ln 2)2 + (αgN ln 2�)2
= 4π2

N ln 2
ln

αgN ln 2

|�| . (A13)

Here the last equality is valid for |�| < αgN ln 2. The contribution to the JSD with large momentum transfer (Q > 1) for
frequencies |�| < 1 is

P (�)
∣∣
Q>1 = 2α2

gπ
2Ne�

∫ ∞

1
dQ

√
2πQ3/2e−Q

(
√

Q2 − �2Q + αgπNQ2/16)2 + (αgπNe−Q
√

Q/2π )2
. (A14)

The latter can be neglected for |�| < αg .

b. The limit T � |μ| for |�| > 1 ( Q > 1)

For |�| > 1, where only intraband transitions with Q > 1 are possible, the JSD reads

P (�) = 2α2
gπ

2Ne�

∫ ∞

|�|
dQ

√
2πQ3/2e−Q

(
√

Q2 − �2Q + αgπNQ2/16)2 + (αgπNe−Q
√

Q/2π )2
� 29

√
2π

N
|�|−5/2, (A15)

where the asymptotics is valid for |�| � 1.

c. The limit |μ| � T for |�| < |μ̃| ( Q < |μ̃|)

P (�) = 4α2
gπ

2N �|μ̃|(1 + coth(�))
∫ |μ̃|

|�|
dQ

Q

(Q2 − �2)(Q + αgN |μ̃|/2)2 + (αgNμ̃�/2)2
. (A16)

Equation (A16) can be integrated analytically, similar to Eq. (A13), yielding a lengthy expression. For brevity we give the limit
for |�| � αg|μ|,

P (�) � 1

32π

ln αgN |μ/2�|
|μ|2 . (A17)

d. The limit |μ| � T for |�| > |μ̃| ( Q > |μ̃|)
As in the case |μ̃| � 1, here for |�| > |μ̃| the JSD is determined by scattering with large momentum transfer,

P (�) = 2α2
gπ

2N e+�

∫ ∞

|�|
dQ

√
2πQ3/2e−Q

(
√

Q2 − �2Q + αgπNQ2/16)2
� 29

√
2π

N
|�|−5/2. (A18)

2. The relaxation rate �

a. The limit T � |μ|
We first calculate the relaxation rate for T � |μ|. We find that the contribution from the region with Q > 1 is of order α2

g ,
whereas |�| < 1 yields the leading contribution ∝ αg:

�/2T =
∫ αN ln 2

0
d� P (�)

∣∣
Q<1 +

∫ 1

αN ln 2
d� P (�)

∣∣
Q<1. (A19)
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TABLE II. The asymptotics of the kinetic kernel (C1) expressing the phase space for the thermal electrons participating at the scattering
event.

β < 1 β > 1

|μ̃| � 1 Q � μ̃ Q � μ̃ Q � μ̃ Q � μ̃

K 4T 2�|μ̃|(1 + coth �) 2T 2
√

2πQe−(1−β)Q T 2πQ2e−(1−sign(�))|�| T 2πQ2e−(1−sign(�))|�|

β < 1 β > 1

|μ̃| � 1 Q � 1 Q � 1 Q � 1 Q � 1
K 4T 2 ln 2eβQ 2T 2

√
2πQe−(1−β)Q T 2πQ2e−(1−sign(�))|�| T 2πQ2e−(1−sign(�))|�|

Here, P (�)
∣∣
Q<1 is given by Eq. (A13) and we anticipate that the integrand contains the scale αgN ln 2 that separates the

logarithmic divergence at small frequency from the rest. The first part in Eq. (A19) yields

∫ αgN ln 2

0
d� P (�)

∣∣
Q<1 = 4 ln 2 α2

gπ
2N

∫ αgN ln 2

0
d�

{
1

(αgN ln 2)2
ln

αgN ln 2

|�| +
∫ 1

αgN ln 2
dQ

1

Q(Q2 − �2)

}

= 4αgπ
2(1 + ln 2). (A20)

The second part in Eq. (A19) yields

∫ 1

αgN ln 2
d� P (�)

∣∣
Q<1 = 4 ln 2 α2

gπ
2N

∫ 1

αgN ln 2
d�

arccot(αgN ln 2�) − arctan(�/αgN ln 2)

2αgN ln 2�
= 4αgπ

2G/2 , (A21)

where G = 0.916 is the Catalan constant. Together, Eqs. (A20) and (A21) yield the result (10) from the main text.

b. The limit |μ| � T

In the case |μ| � T we find that the rate � is determined by small energy and momentum transfer, |�|,Q < αgN |μ̃|/2.

� = 2T

∫ αgN |μ̃|/2

0
d�

(
αgN |μ̃|

2

)−2 ∫ αgN |μ̃|/2

|�|

dQ

Q
= 8αgπ

2|μ|. (A22)

APPENDIX B: THE POLARIZATION OPERATOR IN GRAPHENE

We use the dimensionless variables introduced in the preceding sections. Starting from the definition of the polarization
operator in the Keldysh technique [18],

	R = i

2

∫
(dε)Tr

[
ĜR(ε)ĜK (ε + ω) + ĜK (ε)ĜA(ε + ω)

]
, (B1)

we obtain the following expressions for 	R for arbitrary chemical potential and temperature,

Im	R = T Q

8π

{
�(1 − |β|)√

1 − β2

∫ ∞

1
dξ

∑
s=±1

√
ξ 2 − 1

sinh(βQ)

cosh(βQ) + cosh(sξQ − μ̃)

− �(|β| − 1)√
β2 − 1

∫ 1

−1
dη

√
1 − η2

sinh(βQ)

cosh(βQ) + cosh(sign(β)ηQ + μ̃)

}
, (B2)

Re	R = −T Q

8π2
P

∫ 1

−1
dη

∫ ∞

1
dξ

∑
s=±1

{
1

β − sη

√
ξ 2 − 1

1 − η2

sinh(sηQ)

cosh(sηQ) + cosh(sξQ − μ̃)

− 1

β − sξ

√
1 − η2

ξ 2 − 1

sinh(sξQ)

cosh(ξQ) + cosh(sηQ + μ̃)

}
. (B3)

Here P
∫

. . . denotes the principal value. The asymptotics for |μ̃| � 1 in all relevant integration regions are given in Table I. For
|μ̃| � 1 they can be found in Ref. [18].
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FIG. 8. (a) Auger process and (b) phase space for low energy electrons in the px-py plane; (c) phase space for high energy electron.

APPENDIX C: PHASE SPACE OF TWO-PARTICLE SCATTERING—THE KINETIC KERNEL

Finally we give the asymptotics of the kinetic kernel,

K(�,Q) = 2T 2e�

∫ +∞

−∞
dξ

Re[sgn(1 − |β|)(ξ 2 − Q2)]1/2

4 cosh ξ−�−μ̃

2 cosh ξ+�−μ̃

2

, (C1)

for all integration regions in Table II.

APPENDIX D: ESTIMATE OF THE SCATTERING RATE FROM AUGER PROCESSES

The phase space for Auger processes is controlled by the parameter ε∗/�, which describes the curvature. To estimate the
contribution to the JSD from Auger processes, Fig. 8(a), we need the phase space for the high energy electron, which is given by
∼ω(ε∗)2/� [Fig. 8(c)], and the phase space for the thermal low energy electrons ∼ ω2ε∗/� [Fig. 8(b)]. Their product multiplied
by the matrix element of scattering gives the following estimate for the JSD due to Auger processes,

PAuger(ω) = ω3(ε∗)3

�2

[ |V (ω,q)|2
|ω2 − q2|

]
ω�q

∼ (ε∗)3

�2ω
. (D1)

Comparing PAuger with P due to intraband transitions we find that for ω � T (T 1/3�2/3/ε∗)2, Auger processes dominate. However,
if this threshold lies beyond the particle energy ε∗ we can neglect them, i.e., for ε∗ � �(T/�)5/9. This applies irrespective of the
relation between T and μ, provided ω � |μ|,T .
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[31] S. Winnerl, F. Göttfert, M. Mittendorff, H. Schneider, M. Helm,
T. Winzer, E. Malic, A. Knorr, M. Orlita, M. Potemski, M.
Sprinkle, C. Berger, and W. A. de Heer, J. Phys.: Condens.
Matter 25, 054202 (2013).

[32] M. Breusing, C. Ropers, and T. Elsaesser, Phys. Rev. Lett. 102,
086809 (2009).

[33] J. Shang, Z. Luo, C. Cong, J. Lin, T. Yu, and G. G. Gurzadyan,
Appl. Phys. Lett. 97, 163103 (2010).

[34] K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A.
Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, and F.
H. L. Koppens, Nature Physics 9, 248 (2013).

[35] E. H. Hwang, BenYu-Kuang Hu, and S. Das Sarma, Phys. Rev.
B 76, 115434 (2007).

[36] M. Polini, R. Asgari, Y. Barlas, T. Pereg-Barnea, and A.
MacDonald, Solid State Commun. 143, 58 (2007).

[37] M. Polini, R. Asgari, G. Borghi, Y. Barlas, T. Pereg-Barnea, and
A. H. MacDonald, Phys. Rev. B 77, 081411 (2008).

[38] M. R. Ramezanali, M. M. Vazifeh, R. Asgari, M. Polini, and A.
H. MacDonald, J. Phys. A: Math. Theor. 42, 214015 (2009).

[39] M. Breusing, S. Kuehn, T. Winzer, E. Malić, F. Milde, N.
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