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Charge dynamics in molecular junctions: Nonequilibrium Green’s function approach made fast
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Real-time Green’s function simulations of molecular junctions (open quantum systems) are typically performed
by solving the Kadanoff-Baym equations (KBE). The KBE, however, impose a serious limitation on the maximum
propagation time due to the large memory storage needed. In this work we propose a simplified Green’s function
approach based on the generalized Kadanoff-Baym ansatz (GKBA) to overcome the KBE limitation on time,
significantly speed up the calculations, and yet stay close to the KBE results. This is achieved through a twofold
advance: First, we show how to make the GKBA work in open systems and then construct a suitable quasiparticle
propagator that includes correlation effects in a diagrammatic fashion. We also provide evidence that our GKBA
scheme, although already in good agreement with the KBE approach, can be further improved without increasing
the computational cost.
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I. INTRODUCTION

Charge transfer through nanoscale interfaces is a ubiquitous
dynamical process in molecular electronics, photovoltaics,
electroluminiscence, and transient spectroscopy, to mention
a few emerging fields of research [1,2]. The complexity of the
molecules (or molecular aggregate) and of the contacts to a
source/drain electrode, as well as the simultaneous interplay of
Coulomb repulsion and vibrational effects make these research
fields an interdisciplinary topic where physics, chemistry, and
engineering meet. Reliable theoretical predictions require an
accurate description of the nuclear degrees of freedom, a
careful selection of the electronic basis functions, and a proper
treatment of correlation effects.

Among the ab initio methods, density functional theory
[3,4] (DFT) and its time-dependent extension [5,6] (TDDFT)
stand out for the advantageous scaling of the computational
cost with increasing the system size and the propagation time.
However, as for any other method, a (TD)DFT implementation
is based on some approximation and, at present, the available
approximations are inadequate to capture correlation effects
like the Coulomb blockade [7–9] or the polarization-induced
renormalization of the molecular levels [10–14]. These effects
are particularly important in a donor-acceptor complex, in a
molecular junction in the weak-coupling regime and more
generally when the transition rate for an electron to move from
one atom to another is small. Many-body approaches based
on nonequilibrium Green’s functions [15–18] (NEGF) offer
a promising alternative as the relevant scattering processes to
describe the aforementioned effects can be incorporated either
through a proper selection of Feynman diagrams or through a
decoupling scheme for the higher order Green’s functions.
Real-time simulations within the NEGF are performed by
solving the Kadanoff-Baym equations [15,19–21] (KBE),
which are a set of coupled nonlinear integrodifferential
equations for the one-particle Green’s function. Unfortunately,
the price to pay in solving the KBE is that the computational
time scales cubically with the propagation time (given the
self-energy), whereas in TDDFT the scaling is linear (given
the exchange-correlation potential).

In the mid-1980s Lipavsky et al.[22] proposed an approx-
imation to scale down the computational time (from cubic
to quadratic) of the KBE. This approximation is known
as the generalized Kadanoff-Baym ansatz (GKBA) and has
been successfully applied to strongly interacting nuclear
matter [23]; electron plasma [24,25]; carrier dynamics of
semiconductors [8,26–31]; optical absorption spectra [32];
quasiparticle spectra [33]; and, more recently, excited Hubbard
clusters [34–36]. In all these cases the system is either a bulk
periodic system or a finite system. It is currently unknown how
the GKBA performs for nanostructures chemically bonded to
or adsorbed on a surface (open system). In fact, in open systems
a number of issues have to be addressed before a GKBA
calculation can be carried out. For instance the GKBA remains
an approximation even in a noninteracting (or mean-field)
treatment, whereas in closed systems it is exact. Furthermore
the performance of the GKBA strongly depends on the quality
of the quasiparticle propagator and, as we shall see, in open
systems the available approximations perform rather poorly.

This work contains a thorough study of the GKBA in
open systems. In Sec. II we derive the fundamental equations
and present a few exact properties. Here the discussion is
mainly focussed on noninteracting and mean-field electrons.
Important aspects of the GKBA like the construction of a
mean-field propagator as well as issues related to relaxation
and local thermalization are analyzed and addressed. This
preliminary investigation is particularly relevant since, as
previously mentioned, the GKBA is an approximation already
at the mean-field level. In the correlated case the GKBA
simulations using a mean-field propagator are far off the
KBE results. In Sec. III we propose a couple of correlated
propagators to remedy this deficiency. Our propagators have
the merit of scaling quadratically with the propagation time
and, hence, the computational gain of the GKBA is maintained.
The different GKBA schemes are compared with the full KBE
approach in Sec. IV. We consider two systems, a molecular
junction under applied bias and a donor-acceptor complex
under illumination, and calculate local currents and densities.
Both systems constitute a severe test for the GKBA as the
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inclusion of correlations changes dramatically the mean-field
picture. The important message emerging from this study
is that one of the proposed GKBA schemes is in fairly,
sometimes extremely, good agreement with the KBE approach.
We also provide numerical evidence that the GKBA scheme
can be further improved at the same computational cost.
In conclusion, time-dependent simulations of open systems
within the NEGF framework can be made much faster.

II. GKBA IN OPEN SYSTEMS

In this section we briefly review the KBE for open systems
and discuss in detail the simplifications brought about by
the GKBA. The most general Hamiltonian which describes
a molecular junction in contact with M electronic reservoirs
has the form

Ĥ =
M∑

α=1

Ĥα + ĤJ + ĤT . (1)

In Eq. (1) the Hamiltonian of the α reservoir reads

Ĥα =
∑
kασ

εkαd̂
†
kασ d̂kασ (2)

with d̂kασ the annihilation operator for electrons of spin σ

and energy εkα . The Hamiltonian of the molecular junction is
expressed in terms of the operators d̂iσ for electrons of spin σ

in the i-th localized molecular orbital,

ĤJ =
∑
ij

σ

hij d̂
†
iσ d̂jσ + 1

2

∑
ijmn

σσ ′

vijmnd̂
†
iσ d̂

†
jσ ′ d̂mσ ′ d̂nσ , (3)

where hij are the one-electron matrix elements of the one-
body part (kinetic plus potential energy) and vijmn are the
two-electron Coulomb integrals. The last term in Eq. (1) is the
tunneling Hamiltonian between the different subsystems and
reads

ĤT =
∑
kασ

∑
i

(Tkα,i d̂
†
kασ d̂iσ + H.c.) (4)

with Tkα,i the tunneling amplitude between the i-th state of the
molecular junction and the k state of the α reservoir.

Initially, say at time t = 0, the system is in equilibrium at
inverse temperature β and chemical potential μ. We assume
that this equilibrium state can be reached starting from the
uncontacted (Tkα,i = 0) and noninteracting (vijmn = 0) system
in the remote past, t = −∞, and then propagating forward
in time with the full interacting and contacted Hamiltonian
until t = 0. This amounts to assume that initial-correlation
and memory effects are washed out. In our experience this
assumption is always verified [37,38]. At time t = 0 the system
is driven out of equilibrium by external electromagnetic fields,
εkα → εkα + Vα(t) and hij → hij (t). We are interested in
monitoring the evolution of the electronic degrees of freedom
through the calculation of observable quantities like, e.g., the
local occupation and current.

A. Green’s function and KBE

The building block of any diagrammatic many-body ap-
proach is the Green’s function defined according to [15]

Gij (z,z′) = 1

i
〈T {d̂iσ,H (z)d̂†

jσ,H (z′)}〉. (5)

In this definition the symbol “〈· · · 〉” denotes a grand-canonical
average, and T is the contour ordering acting on operators in
the Heisenberg picture. The Green’s function has arguments z

and z′ on the contour γ going from −∞ to ∞ (forward branch)
and back from ∞ to −∞ (backward branch). On this contour
Gij satisfies the equations of motion [39] (in matrix form)[

i
d

dz
− hHF(z)

]
G(z,z′) = δ(z,z′) +

∫
γ

dz̄ �(z,z̄)G(z̄,z′)

(6)

and its adjoint. Let us describe the various quantities in this
equation. The Hartree-Fock (HF) single-particle Hamiltonian
is the sum of h and the HF potential

hHF,ij = hij +
∑
mn

(2vimnjρnm − vimjnρnm), (7)

where

ρnm(z) ≡ −iGnm(z,z+) (8)

is the time-dependent single-particle density matrix. The
kernel � = �em + �c is the sum of the so-called embedding
self-energy and the correlation self-energy. The former can be
calculated directly from the parameters of the Hamiltonian and
reads

�em,ij (z,z′) =
∑
kα

Ti,kαgkα(z,z′)Tkα,j , (9)

where

gkα(z,z′) = 1

i
[θ (z,z′)f̄ (εkα) − θ (z′,z)f (εkα)]e−iφkα (z,z′)

(10)

is the Green’s function of the disconnected α reservoir. In
Eq. (10) f (ε) = 1/(eβ(ε−μ) + 1) is the Fermi function, f̄ (ε) =
1 − f (ε), and the phase φkα(z,z′) = ∫ z

z′ dz̄(εkα + Vα(z̄)). The
expression of the correlation self-energy depends on the choice
of diagrams that we decide to include. In this work we consider
the second Born (2B) approximation, which has been shown
to produce results very close to those of the GW approx-
imation [37] and to those of numerically exact techniques
in model systems [40]. The 2B approximation has the merit
of capturing two important correlation effects in molecular
transport, namely the renormalization and broadening of the
quasiparticle levels. Of course, the 2B approximation is not
adequate to describe more strongly correlated effects like the
Coulomb blockade or the Kondo effect. In these cases one
could generate �c from, e.g., decoupling schemes like those
described in Ref. [41].

The 2B self-energy is given by the sum of the lowest-order
bubble diagram plus the second-order exchange diagram, see
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FIG. 1. Diagrams for the 2B correlation self-energy.

Fig. 1 [42],

�c,ij (z,z′) =
∑

nmpqrs

virpnvmqsj [2Gnm(z,z′)Gpq(z,z′)Gsr (z′,z)

−Gnq(z,z′)Gsr (z′,z)Gpm(z,z′)]. (11)

To solve Eq. (6) we convert it into a set of coupled equations,
known as the KBE, for real-time (as opposed to contour-time)
quantities. This is done by letting z vary on the forward
(backward) branch and z′ vary on the backward (forward)
branch of the contour γ . Using the Langreth rules [15,43] to
convert contour-time convolutions into real-time convolutions,
we find (in matrix form)[

i
d

dt
− hHF(t)

]
G<(t,t ′) = I<(t,t ′) (12)

G>(t,t ′)

[
−i

←−
d

dt ′
− hHF(t ′)

]
= I>(t,t ′) (13)

with collision integrals

I<(t,t ′) =
∫ ∞

−∞
dt̄[�<(t,t̄)GA(t̄ ,t ′) + �R(t,t̄)G<(t̄ ,t ′)],

(14)

I>(t,t ′) =
∫ ∞

−∞
dt̄[G>(t,t̄)�A(t̄ ,t ′) + GR(t,t̄)�>(t̄ ,t ′)].

(15)

Here the superscripts “> , < , R, A” refer to the lesser,
greater, retarded, and advanced Keldysh components. Equa-
tions (12) and (13) are solved by use of a time-stepping
technique, starting from a value G≶(tin,tin) at some initial
time tin < 0 and then evolving along the directions t and t ′
until a maximum propagation time tmax. The time tin is chosen
remotely enough in the past in order to have full relaxation at
t = 0, time at which the external fields are switched on [44].
As I≶(t,t ′) in Eqs. (14) and (15) involves integrals between
tin (the self-energy vanishes for times smaller than tin since the
system is initially uncontacted and noninteracting) and either
t or t ′, the numerical effort in solving the KBE scales like t3

max.

B. GKBA

The GKBA allows us to reduce drastically the computa-
tional time. The basic idea consists in obtaining a closed
equation for the equal time G< from which to calculate
the time-dependent averages of all one-body observables
like, e.g., density, current, dipole moment, and so on. The
GKBA is therefore an ansatz for the density matrix [45]

ρ(t) = −iG<(t,t), not for the spectral function which has to
be approximated separately (see below).

The exact equation for ρ(t) follows from the difference
between Eq. (12) and its adjoint and reads

d

dt
ρ(t) + i[hHF(t),ρ(t)] = −(I<(t,t) + H.c.). (16)

This is not a closed equation for ρ as the collision integral
contains the off-diagonal (in time) G≶. To close Eq. (16) we
make the GKBA [22]

G<(t,t ′) = iGR(t,t ′)G<(t ′,t ′) − iG<(t,t)GA(t,t ′)

= −GR(t,t ′)ρ(t ′) + ρ(t)GA(t,t ′) (17)

and, similarly,

G>(t,t ′) = GR(t,t ′)ρ̄(t ′) − ρ̄(t)GA(t,t ′), (18)

where ρ̄(t) = 1 − ρ(t) = iG>(t,t). However, the GKBA
alone is not enough to close Eq. (16) since the quasiparticle
propagator GR (and, hence, GA = [GR]†), or, equivalently, the
spectral function, remains unspecified. The possibility of using
the GKBA in open systems strongly relies on the choice of GR .
This is an important point which we thoroughly address in the
next section. For the time being we observe that the numerical
effort in solving Eq. (16) scales like t2

max provided that the
calculation of GR does not scale faster [46].

1. Exact properties

Among the properties of the GKBA we mention the ful-
fillment of the relation GR − GA = G> − G< for any choice
of GR and the fact that Eqs. (17) and (18) become an identity
in the limit t → t ′ since GR(t+,t) = −i. Another valuable
feature (in systems out of equilibrium) is that the GKBA
preserves the continuity equation. There is, however, an even
more important property from which the physical contents
of the GKBA become evident. In closed systems (�em = 0)
and for HF electrons (�c = 0) the collision integrals vanish
and Eqs. (17) and (18) are the solution of Eqs. (12) and (13)
provided that GR is the HF propagator [8,15],

GR(t,t ′) = −iθ (t − t ′) T e−i
∫ t

t ′ dt̄ hHF(t̄), (19)

where T is the time-ordering operator. Therefore, the more the
quasiparticle picture is valid the more the GKBA is accurate.
A more exhaustive discussion on the range of applicability of
the GKBA in closed systems can be found in Refs. [22,47,48].

In open systems the GKBA is not the solution of the HF
equations since �em 	= 0 and, hence, the collision integral is
nonvanishing. The reliability of the GKBA in open systems
needs to be investigated already at the HF level. In HF the
collision integrals are evaluated with � = �em and GR being
the solution of[

i
d

dt
− hHF(t)

]
GR(t,t ′) = δ(t,t ′) +

∫
dt̄ �R

em(t,t̄)GR(t̄ ,t ′).

(20)

In HF-GKBA the collision integrals are evaluated with
� = �em, G<(t̄ ,t ′) = ρ(t̄)GA(t̄ ,t ′), and GA = [GR]† some
suitable propagator. If we calculate GR from Eq. (20), then
the numerical advantage of the GKBA is lost since the
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computational cost of solving this equation scales like t3
max.

Thus the questions are as follows: Can a “computationally
cheap” propagator be constructed for open systems? If so,
how accurate is the solution of the HF-GKBA equation?

To answer these questions, we consider a wide-band-limit
(WBL) embedding self-energy �R

em(t,t ′) = −(i/2)�δ(t − t ′),
where � is a positive-semidefinite self-adjoint matrix. In this
case the solution of Eq. (20) is

GR(t,t ′) = −iθ (t − t ′) T e−i
∫ t

t ′ dt̄ (hHF(t̄)−i�/2), (21)

which has the same mathematical structure of Eq. (19). In
particular, it has the group property

GR(t + δ,t ′) = iGR(t + δ,t)GR(t,t ′) (22)

and, hence, the number of operations to calculate GR for all
t < tmax and t ′ < t scales like t2

max. The HF collision integral
reads

I<(t,t) =
∫ ∞

−∞
dt̄ �<

em(t,t̄)GA(t̄ ,t) − i

2
�G<(t,t), (23)

whereas the HF-GKBA collision integral reads

I<(t,t) =
∫ ∞

−∞
dt̄ �<

em(t,t̄)GA(t̄ ,t) − i

2
�ρ(t)GA(t−,t). (24)

If in Eq. (24) we use for GA = [GR]† the HF result in Eq. (21),
then the collision integrals are identical since GA(t−,t) = i and
iρ(t) = G<(t,t). We conclude that the G<(t,t) that solves the
HF and HF-GKBA equations is the same provided that we use
the same GR of Eq. (21). This observation contains useful
hints on how to approximate the quasiparticle propagator
of open systems without paying a too-high computational
price. We emphasize that the locality in time of the retarded
embedding self-energy and of the HF self-energy �HF(z,z′) =
δ(z,z′)[hHF(z) − h(z)] are distinct and should not be lumped
together. The former is purely imaginary and, hence, �<

em 	=
0, whereas the latter is purely real and, hence, �<

HF = 0.
Alternatively, we can say that �HF is local on the contour,
whereas �em is not. This is a crucial difference: In closed
systems the off-diagonal HF-GKBA G<(t,t ′) is the same
as the HF G<(t,t ′), whereas in open systems it remains an
approximation even for a WBL embedding self-energy. Only
the diagonal HF and HF-GKBA G<(t,t) are identical in this
case.

2. An approximate propagator for mean-field electrons

In most physical situations the removal and addition
energies relevant to describe the electron dynamics of the
molecular junction after the application of a voltage difference
or a laser pulse are well inside the continuum spectrum of the
reservoirs. It is therefore natural to study how well the GKBA
equation performs when GR is chosen as in Eq. (21) with

� = i
[
�R

em(μ) − �A
em(μ)

]
. (25)

In Eq. (25) the quantity �R
em(μ) is the Fourier transform of the

equilibrium embedding self-energy evaluated at the chemical
potential. This choice of � is expected to yield accurate
results whenever �R

em(ω) depends weakly on ω for frequencies
around μ. Let us address this issue numerically. We consider
a class of systems consisting of two reservoirs, α = L,R,

FIG. 2. Example of an open system as described in the main text
with Nτ = 9 transverse channels and a chain of four sites.

with Nτ transverse channels and a nanostructure with a chain
geometry; see Fig. 2. We use a tight-binding representation and
characterize the Hamiltonian of the reservoirs by a transverse
hopping Tτ and a longitudinal hopping Tλ between nearest-
neighboring sites and an onsite energy ε = μ (half-filled
reservoirs). The molecular chain has matrix elements hij = Tc

between nearest-neighboring sites i and j and hii = εc on the
diagonal. The left reservoir is contacted through its middle
terminal site to the leftmost site of the chain while the right
reservoir is contacted through its middle terminal site to the
rightmost site of the chain. We denote by T the corresponding
matrix elements of the Hamiltonian [49].

In Fig. 3 we compare GKBA versus full KBE results for
noninteracting and HF electrons. In all cases the Coulomb
integrals vijmn = δinδjmvij . The top panels refer to a system
with Nτ = 1 and a single-site chain driven out of equilibrium
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FIG. 3. (Color online) Top panels: Density n1 = ρ11 of a one-site
chain connected to leads with Nτ = 1 after the sudden switch-on of
a bias VL = 2 for different Tλ = −9, − 5, − 2. Bottom left panel:
HF density of site 1 of a two-site chain connected to leads with
Nτ = 1 after the sudden switch-on of a bias VL = −VR = 1. Bottom
right panel: HF current at the right interface of a four-site chain
connected to leads with Nτ = 9 after the sudden switch-on of a bias
VL = −VR = 0.8,1.2.
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by a bias VL = 2 and VR = 0. The parameters (in arbitrary
units) are μ = εc = 0, vij = 0, and T = √

γ |Tλ|/2 with
γ = 0.4. From Eq. (25) we find � = 2γ . The simulations
have been performed at zero temperature for three different
values of Tλ = −9, − 5, − 2, and are compared with exact
numerical results obtained using the algorithm of Ref. [50].
As expected the agreement deteriorates with decreasing the
bandwidth W = 4|Tλ| of the reservoirs since �R

em(ω) acquires
a strong dependence on ω for ω in the bias window. The
dashed lines indicate the steady-state value of n1 for one-
dimensional reservoirs and for WBL reservoirs. KBE correctly
approaches the one-dimensional steady state in all cases,
whereas GKBA approaches the WBL steady state only in the
limit |Tλ| → ∞. In the bottom left panel we consider a two-site
chain driven out of equilibrium by a bias VL = −VR = 1
and again connected to one-dimensional reservoirs [37]. In
this case, however, the system is interacting and treated in
the HF approximation. The chemical potential is chosen in
the middle of the highest occupied molecular orbital–lowest
unoccupied molecular orbital (HOMO-LUMO) gap of the
disconnected chain with two electrons. For Tc = −1, εc = 0,
and Coulomb integrals v11 = v22 = 2, v12 = v21 = 1 one finds
μ = 2. The rest of the parameters are Tλ = −1.5 and T =
−0.5 which, from Eq. (25), implies � � 0.67 for the GKBA
simulations. Even though the HOMO-LUMO gap �HL = 2
is not much smaller than the bandwidth W = 4|Tλ| = 6,
we still observe a satisfactory agreement for the density of
site 1 (a similar agreement is found for site 2, not shown).
The damping time as well as the amplitude and frequency
of the transient oscillations are well reproduced; furthermore,
the GKBA steady-state value differs by less than 1% from
the corresponding KBE value. The accuracy of the HF-GKBA
is not limited to the diagonal matrix elements of the density
matrix. This is exemplified in the bottom right panel, where we
show the current flowing at the right interface of the four-site
chain of Fig. 2 with Nτ = 9 transverse channels, bias VL =
−VR = 0.8,1.2, chemical potential μ = 2.26 (chosen in the
middle of the HOMO-LUMO gap of the disconnected chain
with 4 electrons), Tc = −1, Tλ = Tτ = −2, T = −0.5, εc = 0,
and Coulomb integrals vii = v = 1.5 and vij = (v/2)/|i − j |
for i 	= j [39]. The GKBA and KBE currents are in excellent
agreement except for a slight overestimation of the GKBA
steady-state value at small bias.

In conclusion, the GKBA equation with GR from Eq. (21)
and � from Eq. (25) is a good approximation to study the
HF dynamics of open systems provided that the embedding
self-energy of the reservoirs has a weak frequency dependence
around the chemical potential.

3. Relaxation and local thermalization

For the GKBA results of Fig. 3 we started the propagation
at time tin < 0 with the HF density matrix of the uncontacted
system and let ρ(t) thermalize in the absence of external fields
until t = 0 when a bias is switched on. For tin sufficiently
remote in the past the density matrix attains a steady value
ρeq before the system is biased. By definition ρeq is the static
solution of Eq. (16) with dρ/dt = 0; therefore if we start
with ρ(tin) = ρeq, then the density matrix remains constant
in the interval (tin,0). In the left panel of Fig. 4 we plot

-5 0 5

0.6

0.8

1

KBE
GKBA
WBLA

-6 -4 -2 00

0.2

0.4

0.6

0.8

t

n1

tin = 0

tin = -2

tin = -4

tin = -6

n1

t

FIG. 4. (Color online) Results for the density n1(t) of the one-site
chain with Tλ = −9 and same parameters as in Fig. 3. In the left
panel the system is unperturbed and n1(tin) is varied. In the right
panel n1(tin) = 1/2, a bias VL = 2 is switched on at t = 0 and tin is
varied. For clarity the curves with tin = −2n, n = 0,1,2,3 are shifted
upward by n/10.

the time-dependent density of the noninteracting one-site
chain of Fig. 3 for different initial values; we see that
n1(t) = ρ11(t) = 1/2 for all t < 0 if n1(tin = −6) = 1/2 is the
thermalized value. It is tempting to reduce the computational
time (provided that one finds a simpler way to determine
ρeq) by starting the propagation at t = 0 with ρ(0) = ρeq.
This initial condition guarantees the local thermalization of
all one-time observables. However, in a fully relaxed system
any two-time correlator depends on the time difference only,
and to achieve this relaxation a “memory buffer” is needed.
Suppose that we start the propagation with G<(tin,tin) = iρeq.
Then the equal-time G<(t,t) remains constant but the G<(t,t ′)
depends on t and t ′ separately. It is only for large-enough t,t ′
that G<(t,t ′) depends on t − t ′. This concept is explained in
the right panel of Fig. 4, where we display n1(t) when a bias
VL = 2 is switched on at t = 0. In all cases ρ(tin) = ρeq = 1/2
but the initial time tin is varied. The absence of relaxation
for too small |tin| is evident from the strong dependence of
the transient behavior on tin. The curves n1(t > 0) become
independent of tin only for tin � −4.

The concept of relaxation, and, hence, of the memory
buffer, has been illustrated in a simple model system but its
importance is completely general and is not limited to systems
in thermal equilibrium. Suppose that the physical system is in
some excited state ρex. If we start the propagation at time t = 0
with initial condition ρ(0) = ρex, then the transient behavior is
affected by spurious relaxation processes. The proper way of
performing GKBA simulations consists in driving the relaxed
system toward ρex with some suitable external fields.

4. Damping

For bulk systems like an electron gas the inclusion of
damping in the propagator worsens the agreement with the
KBE results [25]. In fact, the use of a non-Hermitian quasipar-
ticle Hamiltonian hHF − i�/2 in GR is a distinctive feature of
open systems. Here we address how sensitive the results are
to different values of �. We consider again the noninteracting
one-site chain of Fig. 3 with Tλ = −9, for which Eq. (25) yields
� = 0.8. In all cases we set the initial condition n1(tin) = 1. In
Fig. 5 (left panel) we show the relaxation dynamics, starting
from tin = −8, of the unperturbed system for three different
�; the curves are essentially on top of each other. This may
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FIG. 5. (Color online) Time-dependent occupation of the one-
site chain for different �. Left panel: tin = −8 and unperturbed
system. Middle panel: tin = −8 and bias VL = 2 switched on at t = 0.
Right panel: tin = −12 and bias VL = 2 switched on at t = 0.

suggest that the dependence on � is weak. However, if we
switch on a bias in the left lead VL = 2 at time t = 0 (middle
panel) we appreciate a strong � dependence. We may argue
that for small � the relaxation time is longer and, hence, that
the curves with � = 0.0, 0.4 approach the curve with � = 0.8
by reducing tin. This is not the case as clearly illustrated in
the right panel, where tin = −12. The curve with � = 0.4 is
already converged, whereas the one with � = 0 is not but the
trend is to separate further from the curve with � = 0.8. The
apparent weak � dependence in the left panel is simply due to
the alignment of the on-site energy to the chemical potential,
μ = εc = 0. In general a proper choice of the quasiparticle
damping is crucial for a correct description of the system
evolution. In HF theory the damping is only due to embedding
effects and the � of Eq. (25) is the most accurate. The
inclusion of correlation effects introduces an extra damping.
Is it possible to maintain the simple form in Eq. (21) for the
quasiparticle propagator and still have good agreement with
the KBE results? In the next section we discuss two different
correlated quasiparticle Hamiltonians to insert in Eq. (21).

III. CORRELATED APPROXIMATIONS
TO THE PROPAGATOR

In the interacting case the exact equation of motion for GR

reads[
i

d

dt
− hHF(t)

]
GR(t,t ′) = δ(t,t ′) +

∫
dt̄ �R(t,t̄)GR(t̄ ,t ′)

(26)

with �R = �R
em + �R

c . If we approximate

�R
em(t,t ′) � −(i/2)�δ(t − t ′), (27)

with � from Eq. (25), we find the approximate equation[
i

d

dt
− h(0)

qp (t)

]
GR(t,t ′) = δ(t,t ′) +

∫
dt̄ �R

c (t,t̄)GR(t̄ ,t ′),

(28)

where

h(0)
qp (t) ≡ hHF(t) − i�/2 (29)

is the HF quasiparticle Hamiltonian. Discarding the integral
on the right-hand side of Eq. (28), one finds the HF solution
of Eq. (21). We refer to the GKBA with HF propagators as the
GKBA0 scheme. Unfortunately the GKBA0 scheme performs
rather poorly, see Sec. IV, indicating that GR has to incorporate
correlation effects to some extent. Below we propose two
schemes to approximate the convolution �RGR and reduce
Eq. (28) to a quasiparticle equation of the form[

i
d

dt
− hqp(t)

]
GR(t,t ′) = δ(t,t ′). (30)

The solution of Eq. (30) is

GR(t,t ′) = −iθ (t − t ′) T e−i
∫ t

t ′ dt̄ hqp(t̄) (31)

and satisfies the group property of Eq. (22). Therefore, if we
are successful in this task the calculation of GR will scale like
t2
max.

A. Static correlation approximation

In open systems the correlation self-energy decays to zero
when the separation between its time arguments approaches
infinity. If GR(t̄ ,t ′) � GR(t,t ′) for t − t̄ smaller than the decay
time of �R

c we can approximately write∫
dt̄ �R

c (t,t̄)GR(t̄ ,t ′) �
[∫

dt̄ �R
c (t,t̄)

]
GR(t,t ′). (32)

To evaluate the integral in the square brackets we make an
adiabatic approximation on top of the GKBA, i.e., we replace
GR with the equilibrium propagator of a system described
by the Hamiltonian Ĥ (t). Let us consider, for simplicity, an
interaction vijmn = δinδjmvij . Then the Langreth rules [15,43]
provides us with the following expression of the retarded 2B
self-energy [see Eq. (11)]:

�R
c,ij (t,t ′)

= 2
∑
kl

vikvjl

[
GR

ij (t,t ′)G<
lk(t ′,t)G>

kl(t,t
′)

+G<
ij (t,t ′)GA

lk(t ′,t)G<
kl(t,t

′)+G<
ij (t,t ′)G<

lk(t ′,t)GR
kl(t,t

′)
]

−
∑
kl

vikvjl

[
GR

il (t,t
′)G<

lk(t ′,t)G>
kj (t,t ′)

+G<
il (t,t

′)GA
lk(t ′,t)G<

kj (t,t ′)+G<
il (t,t

′)G<
lk(t ′,t)GR

kj (t,t ′)
]
.

(33)

As �R
c (t,t ′) vanishes for t < t ′, the GKBA transforms this

quantity into a function of ρ(t) and GR(t,t ′) = [GA(t ′,t)]†.
The adiabatic approximation consists in evaluating the GKBA
form of Eq. (33) using an equilibrium propagator

G̃R(t,t − t ′) =
∫

dω

2π

e−iω(t−t ′)

ω − hqp(t) + iη
, (34)

where we use the matrix notation 1/A = A−1 for any matrix
A. The resulting expression, which we denote by �̃(t,t − t ′),
depends implicitly on t through the dependence on ρ(t) and
hqp(t) and explicitly on t − t ′. If we define

�̃(t) =
∫

dt̄ �̃(t,t − t̄), (35)
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then the right-hand side of Eq. (32) becomes �̃(t)GR(t,t ′) and
Eq. (28) is solved by Eq. (31) with

hqp(t) = hHF(t) − i�/2 + �̃(t). (36)

In this way we generate a self-consistent equation for
�̃(t) = �̃(ρ(t),hqp(t)). In practice, for a given �̃(tn) at
the n-th time step we determine ρ(tn+1) from Eq. (16),
then calculate hqp(tn+1) = hHF(tn+1) − i�/2 + �̃(tn), hence,
G̃R(tn+1,tn+1 − t ′), and, finally, �̃(tn+1). Each time step can be
repeated a few times to achieve convergence; in our experience
two predictor correctors are typically enough. It is worth
stressing that the propagator appearing in the collision integral
is GR and not G̃R . The latter is only an auxiliary quantity to
calculate �̃(t). In the following we refer to the combination
of GKBA with the described propagator as the GKBA+static
correlation (SC) scheme since Eq. (35) is the zero frequency
value of the Fourier transform of �̃(t,t − t̄). In this scheme
the calculation of �̃ for a given G̃R scales like N5, where N

is the number of basis functions in the molecular junction.

B. Quasiparticle approximation

An alternative way to introduce correlation effects in the
propagator is again based on the adiabatic approximation but
uses the concept of quasiparticles. Let us represent operators
in the one-particle Hilbert space with a hat, e.g., ĥqp or �̂R

c ,
and denote by |i〉 the basis ket of the molecular junction
so 〈i|�̂R

c |j 〉 = �̂R
c,ij , and so on. For an isolated molecule in

equilibrium the quasiparticle equation reads[
ĥHF + �̂R

c (ε)
]|ϕ〉 = ε|ϕ〉, (37)

where �̂R
c (ε) is the Fourier transform of the equilibrium self-

energy. To lowest order in �R
c this equation implies that the

correction to the HF energies εHF,n is

εqp,n = εHF,n + 〈ϕn|�̂R
c (εHF,n)|ϕn〉, (38)

where |ϕn〉 is the eigenket of ĥHF with eigenvalue εHF,n. Equa-
tion (38) suggests constructing a quasiparticle Hamiltonian in
the following manner. We evaluate again the GKBA form of
Eq. (33) with the propagator of Eq. (34) and then calculate

�̃(t,ω) =
∫

dt eiω(t−t ′)�̃(t,t − t ′). (39)

From this quantity we construct the one-particle operator
ˆ̃�(t,ω) = ∑

ij |i〉�̃ij (t,ω)〈j | and subsequently the diagonal
self-energy operator in the HF basis,

ˆ̃�(t) =
∑

n

|ϕn〉〈ϕn| ˆ̃�(t,εHF,n)|ϕn〉〈ϕn|. (40)

Imposing now that ĥqp(t) = ĥ(0)
qp (t) + ˆ̃�(t) we get a self-

consistent equation for �̃(t). We refer to this procedure as the
GKBA+quasiparticle (QP) scheme. As the Fourier transform
of �̃(t,t − t ′) has to be evaluated in N different energies, the
calculation of �̃(t) in the GKBA+QP scheme scales like N6.

IV. RESULTS

In this section we study the nonequilibrium correlated
dynamics of the chain junction of Fig. 2 and of a model

0 10 20 30 400.02

0.04

0.06

KBE
GKBA0
GKBA+QP
GKBA+SC

0 10 20 30 40

0.05

0.1

I I

t t

FIG. 6. Time-dependent current at the right interface of the four-
site junction with VL − VR = 1.6 (left panel) and 2.4 (right panel);
same parameters as in Fig. 4.

photovoltaic junction. We calculate local occupations, cur-
rents, and spectral functions using different GKBA schemes
and benchmark the results against full KBE simulations. A
clear-cut scenario will emerge in which GKBA + SC is the
most reliable scheme while all other schemes suffer from some
deficiencies.

A. Chain junction

Nonequilibrium correlation effects change drastically the
HF picture of quantum transport. The applied bias causes an
enhancement of quasiparticle scatterings and, consequently, a
substantial broadening of the spectral peaks [39,51]. The 2B
steady current is larger (smaller) than the HF steady current
at bias smaller (larger) than the HF HOMO-LUMO gap, see
bottom-right panel of Fig. 4. In Fig. 6 we compare the current
at small (left panel) and large (right panel) bias using KBE
and different GKBA schemes. Even though the correlation-
induced enhancement (at small bias VL − VR = 1.6 the HF
steady current is ∼0.023) and suppression (at large bias
VL − VR = 2.4 the HF steady current is ∼0.11) of the steady
current relative to the HF values is qualitatively captured by all
GKBA schemes, quantitative differences emerge. GKBA0 is
rather close to KBE during the initial transient but considerably
overestimates the steady state. GKBA+QP corrects this
deficiency too much and the steady current is appreciably
underestimated. Furthermore, the transient behavior worsens:
The first peak is absent and the current saturates too fast.
This is due to a general problem of the GKBA+QP scheme.
The equilibrium �̃ is too large or, equivalently, equilibrium
correlations are overestimated. GKBA + SC gives an overall
improvement. The transient current reproduces several KBE
features (oscillation frequency and relative hight of the peaks)
and the steady current is very close to the KBE value.

By construction the GKBA schemes guarantee the sat-
isfaction of the continuity equation. The rate of change of
the total number of electrons in the nanostructure, dN/dt , is
equal to the sum of the currents flowing through the left and
right interface, IL + IR . In Fig. 7 we show that this analytic
property is numerically confirmed with high accuracy in the
GKBA+QP and GKBA + SC schemes.
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FIG. 7. (Color online) Numerical evidence of the fulfillment of
the continuity equation in the GKBA+QP and GKBA + SC schemes.

B. Photovoltaic junction

We consider a more complicated open system with the
features of a photovoltaic molecular junction. Inspired by
a paper by Li et al. [52], we model the junction as a
donor-acceptor complex connected to left and right electrodes
(reservoirs); see Fig. 8. The donor is described by HOMO (h)
and LUMO (l) levels and the LUMO is connected to a chain
of four acceptor sites each described by a single localized
orbital. These orbitals are mixed by the acceptor Hamiltonian
and form two valence and two conduction levels. The junction
is connected to the left electrode throught the HOMO with
tunneling amplitude TL,h and to the right electrode through
the rightmost acceptor site with tunneling amplitude T4,R .
The explicit form of the Hamiltonian of the donor-acceptor
complex is

ĤJ = εhn̂h + εln̂l + εA

4∑
a=1

n̂a + TDA

∑
σ

(d̂†
lσ d̂1σ + d̂

†
1σ d̂lσ )

+ TA

3∑
a=1

∑
σ

(d̂†
aσ d̂a+1σ + d̂

†
a+1σ d̂aσ )

+UDA(n̂h + n̂l − 2)
4∑

a=1

n̂a − 1

a
, (41)

where n̂x = ∑
σ d̂

†
xσ d̂xσ is the occupation operator for x =

h,l,a. The interaction between the excess charges of the
donor and acceptor chain implicitly fixes the condition
of charge neutrality. For one-dimensional reservoirs with
longitudinal hopping integral Tλ = −9, tunneling amplitudes
TL,h = T4,R = −0.3, donor levels εh = −2.92, εl = −0.92,
acceptor levels εA = −2.08, donor-acceptor hopping TDA =
−0.1, intra-acceptor hopping TA = −0.2, and interaction
UDA = 0.5, the chemical potential μ = 0.04 is in the middle

FIG. 8. Schematic illustration of the photovoltaic junction de-
scribed in the main text.

of the HF gap between the valence and conduction acceptor
levels. The equilibrium system has HOMO and LUMO
occupations 2 and 0, respectively, and the two valence levels of
the acceptor chain completely filled. The photovoltaic junction
is driven out of equilibrium by irradiation with monochromatic
light. For simplicity we assume that the light couples only to
the donor dipole moment and, hence,

Ĥlight(t) = s(t)Thl

∑
σ

(eiω0t d̂
†
hσ d̂lσ + e−iω0t d̂

†
lσ d̂hσ ), (42)

where s(t) is a switching function. We consider Thl = 0.3,
ω0 = 2 = |εh − εl|, and study a pulse, s(t) = 1, for 0 < t <

π/Thl and zero otherwise, as well as continuous radiation,
s(t) = 1 for t > 0 and s(t) = 0 for t < 0.

In order to apply many body perturbation theory we need
to rewrite ĤJ in the form of Eq. (3). The last term of Eq. (41)
contains quadratic terms d̂†d̂ as well as quartic terms of the
form d̂†d̂ d̂†d̂ (density-density) instead of d̂†d̂†d̂d̂ , see Eq. (3).
To extract the Coulomb integrals vijmn to be used in the 2B
self-energy we simply use the anticommutation rules and then
group all the quadratic terms to construct the one-particle
Hamiltonian hij . The latter, with indices i,j = h,l,a, reads

h =

⎛
⎜⎜⎜⎜⎜⎝

ε̃h 0 0 0 0 0
0 ε̃l TDA 0 0 0
0 TDA ε̃A 1 TA 0 0
0 0 TA ε̃A 2 TA 0
0 0 0 TA ε̃A 3 TA

0 0 0 0 TA ε̃A 4

⎞
⎟⎟⎟⎟⎟⎠, (43)

with ε̃h = εh + 25
12UDA, ε̃l = εl + 25

12 UDA, and ε̃A a = εA +
25
6 UDA − 2 UDA/a. For the Coulomb integrals we find vijmn =
δinδjmvij with

v = UDA

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 1/2 1/3 1/4
0 0 1 1/2 1/3 1/4
1 1 0 0 0 0

1/2 1/2 0 0 0 0
1/3 1/3 0 0 0 0
1/4 1/4 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠. (44)

Let us start with the mean-field analysis of the light pulse.
The duration π/Thl has been chosen to get a population
inversion of the HOMO and LUMO levels. In Fig. 9 we show
the HF occupations of the donor (top panel) and acceptor
(bottom panel) levels in GKBA and KBE. The impressive
agreement is due to the fact that for Tλ = −9 the WBL
approximation is extremely good. The depletion of charge on
the first acceptor site (A1) is a consequence of the repulsive
interaction UDA. During the pulse the HOMO level is partially
refilled by the left reservoir and the total charge on the donor
overcomes 2. This excess charge is instantaneously felt by
A1 which starts expelling electrons at a rate larger than the
tunneling rate from LUMO to A1. We also observe that
the charge transfer between LUMO and A1 is not effective.
The inset shows the LUMO occupation on a longer time scale.
Electrons remain trapped and slosh around along the junction.
In fact, in HF no steady state is reached. The occurrence
of self-sustained charge oscillations in mean-field treatments
has been observed in similar contexts [14,53] and is most
likely an artifact of the approximation. As we shall see,
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FIG. 9. (Color online) Time-dependent occupations in the HF
approximation using GKBA (solid) and KBE (circles). The junction
is perturbed by a monochromatic pulse.

the correlated KBE results differ substantially. Therefore the
collision integral and the correlated propagator of the GKBA
approach have to correct the HF theory in a substantial manner.

With the inclusion of correlations a deficiency of the
GKBA+QP scheme emerges already during the thermaliza-
tion process. In Fig. 10 the donor and acceptor occupations
are propagated within different schemes in the absence
of external fields using the HF value of the uncontacted
system and �̃(tin) = 0 as initial conditions. Both GKBA0
and GKBA + SC thermalize, similarly to HF, to values very
close to the equilibrium values of the correlated (2B) KBE
approach (dotted horizontal line). In fact, in KBE the HF and
2B equilibrium occupations are essentially the same since the
correlation self-energy, except for a slight renormalization of
the quasiparticle energies (image charge effect), does not affect
the width of the spectral peaks. For the GKBA to reproduce
the KBE thermalized values the imaginary part of �̃ has
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FIG. 10. (Color online) Thermalization of the occupations in the
correlated case. The correlated KBE value is represented by a dotted
horizontal line.
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FIG. 11. (Color online) Time-dependent occupations after a
pulse in KBE and GKBA + SC. For nl and n1 we also show the
results of the GKBA0 scheme (dotted-dashed).

to be small, and this is not the case in GKBA+QP. Here
Im[�̃ll(t)] and Im[�̃hh(t)] tend to increase thus broadening the
HOMO and LUMO spectral peaks. Hence, the HOMO looses
charge, whereas the LUMO acquires charge and the donor
polarizability increases. This makes the first bubble diagram of
the 2B self-energy larger and therefore the HOMO and LUMO
spectral peaks more broadened. In a separate calculation
(not shown) we simulated the GKBA+QP thermalization
and found that the thermalization process is extremely slow,
tin � −1000, and that the thermalized value of, e.g., the LUMO
occupation is ∼0.7, well above the KBE result.

We are now ready to show the correlated results in the case
of a light pulse. The KBE occupations are shown in Fig. 11
and considerably differ from the HF occupations of Fig. 9.
The GKBA + SC scheme is in fairly good agreement with
KBE for all occupations. To illustrate the crucial role played
by our correlated propagator we also display the LUMO and
A1 occupations in the GKBA0 scheme (dotted-dashed line).
Even though the initial transient is acceptable the GKBA0
occupations soon become inaccurate. Therefore the evaluation
of the GKBA collision integral with HF propagator performs
rather poorly in open systems. The GKBA + SC scheme has
the merit of working both in and out of equilibrium.

Like the only goal of TDDFT is to reproduce the density
of an interacting system, so the only goal of the GKBA is
to reproduce the density matrix of an interacting system. The
TDDFT or GKBA spectral function A(t,t ′) = i[GR(t,t ′) −
GA(t,t ′)] can differ substantially from the true one. This is,
however, not always the case. In Fig. 12 we show the time
evolution of the KBE and GKBA + SC total spectral function
defined according to

A(T ,ω) = −2Im
∫

dτeiωτ Tr

[
GR

(
T + τ

2
,T − τ

2

)]
, (45)

where T = (t + t ′)/2 is the center-of-mass time and τ = t − t ′
is the relative time. Remarkably, the two spectral functions
have several common features. The most important one is the
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FIG. 12. (Color online) Time-dependent KBE (top panel) and
GKBA + SC (bottom panel) spectral functions for the photovoltaic
junction subject to a light pulse. The light pulse is switched on at time
t = 40 for the KBE and t = 75 for the GKBA + SC. The parameters
are the same as in Fig. 11.

broadening of the spectral peaks after the pulse and the long
elapsing time to relax back to the equilibrium state. Another
common feature is the drift of the acceptor peaks toward
higher energy and the merging of the two middle peaks of
the acceptor chain. In GKBA0 the spectral peaks are sharp
at all times, whereas in GKBA+QP they are broadened at
all times (not shown). The fact that the GKBA + SC spectral
function resembles the KBE spectral function is probably due
to the fact that the driving frequency is small enough. In fact,
the underlying SC framework is based on slow-enough time
variations on the electronic time scale.

To end our discussion on the performance of GKBA in
open systems we consider in Fig. 13 the occupations for the
continuous radiation. Here GKBA + SC is not as accurate as in
the case of the light pulse. However, the agreement with KBE
remains satisfactory. The HOMO and LUMO occupations are
essentially indistinguishable from the KBE values (top panel).
The occupations of the acceptor sites next to the right electrode
(A3 and A4) are slightly underestimated in GKBA + SC but
the overall trend (transient oscillations and steady-state value)
are correctly reproduced (middle panel). A more quantitative
agreement is observed for the acceptor sites next to the donor
(A1 and A2). For the A1 occupation we also show the GKBA0
occupation (bottom panel) and we note again that after a short
time the result deviates considerably from the KBE result.
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FIG. 13. (Color online) Time-dependent occupations in the pres-
ence of continuous radiation in KBE and GKBA + SC. For n1 we
also show the results of the GKBA0 scheme as well as of the hybrid
scheme (thermalization with GKBA + SC, positive-time propagation
with GKBA+QP).

Is there any possibility of improving the GKBA + SC
scheme using a different �̃ or is the only way to go beyond
the GKBA? In the bottom panel of Fig. 13 we display the
A1 occupations for a hybrid scheme in which �̃ is calculated
from GKBA + SC at negative times (thermalization) and from
GKBA+QP at positive times. The improvement up to times
t ∼ 200 is impressive and extend to all acceptor occupations
(not shown). Instead, for times t > 200 the KBE results are
closer to those of the GKBA + SC scheme. More generally,
for t � 200 we observed that the hybrid scheme performs
better than GKBA + SC for ω0 ∼ εh − εl (large current in
the junction) and worse otherwise (small current in the
junction). The purpose of this investigation is to provide
numerical evidence of the existence of a �̃ for accurate
GKBA simulations and, hence, the possibility of improving
the GKBA + SC scheme without increasing the computational
cost.

V. SUMMARY AND OUTLOOK

We demonstrated that time-dependent NEGF simulations of
molecular junctions (and, more generally, open quantum sys-
tems) can be considerably speeded up. Different GKBA-based
schemes have been proposed and subsequently benchmarked
against full KBE calculations. The GKBA + SC scheme turned
out to be the most accurate both in and out of equilibrium,
while still offering a significant computational gain (for the
longest propagation (tmax = 300) of the photovoltaic junction
the CPU time is ∼10 min in GKBA + SC and ∼20 h in KBE).
We also showed that the GKBA + SC scheme can, in principle,
be further improved without rising the computational price.

All calculations have been performed within the 2B approx-
imation for the correlation self-energy but the GKBA + SC
scheme is completely general and not limited to this special
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case. Clearly, in large nanostructures screening is important
and the interaction should be treated, at least, within the GW
approximation. Another urgent extension of the GKBA + SC
scheme is the inclusion of the interaction between electrons
and nuclei. This can be done either at the level of the
Ehrenfest approximation [54,55] or by adding diagrams with
electron-phonon vertices to the correlation self-energy [31].

The GKBA is an ansatz for the single-particle Green’s
function and it is designed to simplify the calculation of
the TD average of one-body operators. The generalization of
the scheme to two-body or higher-order operators would be
extremely valuable, and one could assess the validity of the
scheme by benchmarking the results against numerically exact
data in model systems [56,57].

An important aspect of the GKBA + SC scheme (including
its extensions and refinements) is that it can be implemented in
ab initio molecular codes [58] to perform first-principles time-
dependent simulations of open nanostructures. Foreseeable
applications are, e.g., in the field of molecular photovoltaics
and molecular electronics. Here there is much interest in de-
veloping efficient quantum simulation methods for an accurate
description of the electron-hole formation, recombination, and
separation as well as of charge transfer and possibly ionic
reorganization or isomerization. In molecular photovoltaics
ab initio studies have focused on the optical spectra using linear

response TDDFT [59] or the Bethe-Salpeter equation [60].
Real-time simulations remain, however, the most powerful
tool to resolve the different competing processes up to the
ps time scale. State-of-the-art simulations treat the contacts
as finite-size clusters while taking into account the full
atomistic structure either semiempirically [61] or fully ab
initio [62,63]. However, these studies suffer from spurious
boundary effects like the formation of artificial electric fields
and reflection of charge after a few tens of femtoseconds.
There are no such limitations in the GKBA for open systems
as the electrodes are described in a virtually exact way through
the embedding self-energy. Furthermore, the effects of the
Coulomb interaction can be systematically included through
the diagrammatic expansion of the correlation self-energy.
The encouraging results presented in this work should foster
advances in the development of a NEGF approach to ultrafast
processes at the nanoscale.
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