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Electric and magnetic field manipulation and storage of charge-tunable excitons
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The excitonic spectrum of radially polarized semiconductor rings has been analyzed theoretically, in the
presence of an in-plane electric field and a perpendicular magnetic field. Based on the numerically exact solution,
a regime has been found where the exciton behaves as a single carrier or quasiparticle, with an effective and
tunable electric charge determined by the ring geometry. A protocol is proposed for the storage of excitons
without destroying them, consisting in converting them from “bright” to “dark,” by performing a sequence of
well-defined steps. Accurate analytical approximations are provided for each of the exciton regimens found:
quasifree, locked, and broken.
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I. INTRODUCTION

Nanoscale semiconductor structures have been the subject
of numerous theoretical and experimental investigations in
the last few years. The effects of quantum confinement
in these nanosystems strongly modify their electronic and
optical properties, offering exciting possibilities for tech-
nological applications. Among these, a particular class of
structures with annular geometry called nanorings is being
intensively investigated after the experimental observation
of the Aharonov-Bohm effect [1] (ABE) in small metallic
rings [2–5]. With the developments in nanofabrication, the
formation of different types of semiconductor nanorings is
now possible [6]. Most of the experimental work is based
on self-assembled nanorings made of InAs quantum dots
capped with a thin GaAs layer subjected to a short (but
crucial) annealing, but also lithographic techniques have also
been used for the fabrication of InGaAs nanorings [7]. The
self-assembling of non-III-V semiconductor nanorings of SiGe
has been achieved too [8]. The tendency toward enlargement
of the semiconductor nanoring family in the nearest future is
quite clear by now.

This gives us the exciting opportunity to observe new
quantum interference phenomena in magneto-optical exper-
iments [7,9]. Several theoretical papers have reported studies
about the influence of the different geometric-confinement
parameters and of the presence of impurities on the spectrum
in a semiconductor quantum ring in a magnetic field [10–13].
The effects of an external electric field on the Bohm-Aharonov
oscillations in the energy spectrum of single carriers in
quantum rings have been also reported [14]. Most of the
experimental work has been performed on charged excitons
in nanorings [7,9,15,16] and a little on neutral excitons in
type-II quantum dots [17]. The possibility of observation of
the so-called “optical” ABE for neutral excitons has been an
interesting and controversial subject in recent years [18–21]. It
has been predicted that the polarization of a neutral exciton in
a quantum ring may give rise to a magnetic interference effect
such that the ground state of the exciton acquires a nonzero
angular momentum for increasing magnetic field [22–25]. The
finite polarization of an exciton can be realized by asymmetries

in the confinement potentials of the electrons and holes or by
means of a uniform electric field applied in the ring plane [26].

This work analyzes the effects induced by an in-plane
electric field on the excitonic spectrum of semiconductor
quantum rings. We adopt the effective-mass theory and
consider radial polarized quantum rings [27] in which the
excitonic Hamiltonian is written under the assumptions that
the electron and hole coordinates along the ring-axis direction
may be “frozen” at the same in-plane value, and that the radial
displacements of the electron and hole may be frozen at differ-
ent radial coordinates. The electron-hole Coulomb attraction
is treated rigorously, through numerical diagonalization of
the full exciton Hamiltonian in the basis of noninteracting
electron-hole pairs. The electric field breaks the azimuthal
symmetry and mixes the eigenfunctions with different angular
momenta. We write the two-dimensional excitonic wave
functions as linear combinations of the eigenfunctions of
the orbital total angular momentum operator. We have found
before [28] that Aharonov-Bohm oscillations are discernible
in the exciton ground-state energy of small rings; this is
the weak-interacting kinetic-energy-dominated regime (or
extended regime) [29]. In the limit of large rings, the system is
driven in the Coulomb-dominated strongly interacting regime
(or localized regime), where the exciton is basically a neutral
and compact object, with small sensitivity to the magnetic
field. In the presence of a radial (in-plane) electric field, which
is the case addressed in this work, a new energy scale appears,
and the large-size ring limit is dominated by the electric
field. This can be understood easily from the way in which
the relevant magnitudes scale with ring size (∼R): kinetic
energy scales as R−2, the Coulomb interaction as R−1, and
the electric field as R. In the localized regime, the electric
field destroys the Aharonov-Bohm oscillations of the ground
state. In addition to analytical results well inside each one of
the different regimens, we present numerical results, mainly
related to the electric-field-induced rupture of the exciton
bound state. Based on the numerically exact solution, we
have identified three different regimens for the exciton, for
increasing values of the electric field: (a) quasifree excitons;
(b) locked excitons; and (c) electron-hole-pair or broken
excitons. We also propose possible protocols for the dynamical
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storage of excitons without destroying them, consisting in
converting them from “bright” to “dark,” by a suitable
combination of electric and magnetic fields. This may have
some impact on the context of trapping light for later use.

II. THE MODEL AND METHOD OF SOLUTION

The effective-mass Hamiltonian for an electron-hole
double-nanoring structure, subject to both an external mag-
netic field perpendicular to the ring plane and an in-plane
electric field, can be simplified under some assumptions. In
the first place, the electron and hole coordinates along the z

direction may be frozen at the same in-plane value ze = zh =
0. This is consistent with the fact that for all the semiconductor
quantum rings produced by today’s semiconductor growth
techniques, the confinement along the z direction (usually
given by a compositional barrier between two different closely
lattice-matched semiconductors) is much stronger than the
in-plane confinement. This gives rise to a strong quantization
along z. In the second place, the radial displacements of
the electron and hole may also be frozen at different radial
coordinates Re and Rh respectively. This is related to the facts
that the effective self-consistent potentials, for the electron
and the hole, have in general different radial positions for their
respective minima [30,31], and that the quantization in the
radial direction is stronger than in the azimuthal direction for
both of them. Therefore, the excitonic Hamiltonian is (e > 0)
[23]

Hexc(θe,θh) = H (0)
exc(θe,θh) + Uc(�θ ) + HF (θe,θh), (1)

where

H (0)
exc(θe,θh) = �

2

2Ie

(
−i

∂

∂θe

+ φe

φ0

)2

+ �
2

2Ih

(
i

∂

∂θh

+ φh

φ0

)2

,

(2)

Uc(�θ ) = − e2

ε

√
R2

e + R2
h

1√
1 − r cos(�θ )

, (3)

and

HF (θe,θh) = −eF (Re cos θe − Rh cos θh). (4)

Also, the excitonic eigenfunctions of Hexc(θe,θh) are denoted
as ϕi(θe,θh), with i corresponding to the exciton quantum num-
bers; the corresponding eigenvalues are denoted by Ei(B,F ).
In addition, in the above equations, (Re,θe) and (Rh,θh) are
the radial and angular electron and hole polar coordinates,
respectively; �θ = θe − θh. m∗

e and m∗
h are the electron and

hole effective masses, and Ix = m∗
xR

2
x , with x = e,h, are

the moments of inertia. φx = πR2
xB are the magnetic fluxes

threading the electron and hole rings, and φ0 = ch/e is the flux
quantum. Uc(�θ ) describes the Coulomb attraction between
the electron and the hole, with ε the dielectric constant of the
semiconductor ring material, and r = 2ReRh/(R2

e + R2
h). This

parameter r determines the shape of the Coulomb interaction.
For r → 0 (Rh � Re) the Coulomb potential as a function of
�θ is nearly flat, while for r → 1 (Rh � Re), the potential
has a pronounced minimum at �θ = 0. For suitable values of
Re and Rh it generates a strong excitonic state [28]. Here we
study the effects of the in-plane electric field F on that exciton,

the effect of the electric field being represented by the term
HF (θe,θh).

Alternatively, and using the generalized angular “center
of mass” (c.m.) coordinate θ0 = (Ieθe + Ihθh)/I , I = Ie + Ih,
the exciton Hamiltonian of Eq. (1) may be conveniently
reexpressed as

Hexc(θ0,�θ ) = Hc.m.(θ0) + Hint(�θ ) + HF (θ0,�θ ), (5)

where

Hc.m.(θ0) = �
2

2I

(
−i

∂

∂θ0
+ φc.m.

φ0

)2

, (6)

Hint(�θ ) = �
2

2Iint

(
−i

∂

∂(�θ )
+ φint

φ0

)2

+ Uc(�θ ), (7)

and

HF (θ0,�θ )

= eF

{
cos θ0

[
Rh cos

(
Ie�θ

I

)
− Re cos

(
Ih�θ

I

)]

+ sin θ0

[
Re sin

(
Ih�θ

I

)
+ Rh sin

(
Ie�θ

I

)]}
. (8)

Here, φc.m. = πB(R2
e − R2

h), Iint = IeIh/I , and φint =
πIintB/μ, with μ = m∗

em
∗
h/(m∗

e + m∗
h). In the absence of

any electric field, the contribution HF (θ0,�θ ) vanishes, and
an exact decoupling of the translational (θ0) and relative
(�θ ) coordinates is achieved. In that case, the exciton wave
function may be rigorously expressed as the product of a
c.m. and relative coordinate wave function, eigenfunctions
of Hc.m.(θ0) and Hint(�θ ), respectively. Each eigenfunction
can be characterized with a single quantum number: the total
angular quantum number L = le + lh for the eigenfunctions of
Hc.m.(θ0), and an internal quantum number n for the eigenfunc-
tions of Hint(�θ ). Since the zero-electric-field Hamiltonian is
the sum of two uncoupled terms, the eigenvalues are given by

EL,n(B) = �
2

2I

(
L + φc.m.

φ0

)2

+ εL,n(B) , (9)

with εL,n(B) being the eigenvalues of Hint(�θ ). If the electric
field is not zero, HF (θ0,�θ ) couples the c.m. and relative
coordinates, and the (L,n) quantum numbers are replaced by a
single one “i”, which just distinguishes the different solutions
of Eq. (5). Even in that case, however, Eq. (5) is a useful
starting point for the analysis of the numerical results to be
show below, particularly in the weak electric-field limit.

We have used the following numerical strategies for obtain-
ing numerically exact results: [28] full diagonalization and/or
recursive Lanczos method, in the non-interacting electron-hole
pairs basis generated by the eigenstates of H (0)

exc(θe,θh),

ψ0
le,lh

(θe,θh) = 1

(2π )
eileθe eilhθh , (10)
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with θx = [0,2π ], and with energy

E0
le,lh

(B) = �
2

2Ie

(le + φe)2 + �
2

2Ih

(lh − φh)2. (11)

Here, le and lh(=0, ± 1, ± 2, . . .) are the electron and hole
angular momentum quantum numbers, respectively.

In brief, while the exciton Hamiltonian as given in Eq. (1) is
useful for introducing the model and is the form we use for the
numerical calculations, the form as given in Eq. (5) is more
suitable for the development of approximations to the exact
numerical results, as shown below.

III. RESULTS

All the numerical results to be discussed below are
presented in effective GaAs units, corresponding to the
following choice of material parameters: m∗

e = 0.067m0,
m∗

h = 0.268m0, and ε = 12.5, with m0 being the bare-electron
mass. The effective Bohr radius for the electron (a∗

0 ) is then
equal to 98.7 Å, and the associated effective Rydberg (Ry∗) is
equal to 5.83 meV. Values of eF are given in units of Ry∗/a∗

0 �
0.059 meV/Å. Regarding the geometrical parameters defining
the size of the double ring, we have chosen a configuration
with Re < Rh: Re = 300 Å, Rh = 330 Å. For this double-ring
size, the parameter r in Eq. (3) equals 0.995. We know from
Ref. [28] that in this case the F = 0 ground-state exciton
is a strongly bounded exciton, meaning essentially that the
eigenvalue εL,n(B) in Eq. (9) becomes L and magnetic field
independent.

We have identified three possible characteristic regimens
for a radially polarized exciton, depending on the intensity of
the applied in-plane electric field. They are shown schemati-
cally in Fig. 1, and termed the quasifree exciton (I), the locked
exciton (II), and the broken exciton or electron-hole pair (III),
for increasing electric field strength. The characteristic values
of the electron and hole angular coordinates in each of the three
configurations are also indicated in the bottom panel (right) of
Fig. 1, and as resulting from the numerical calculations in
Fig. 2. Figure 2(a), corresponding to a zero electric field and
trapped magnetic flux, shows the signatures of a quasifree
exciton: θe � θh [for optimizing the Coulomb attractive term
Uc(�θ ) with �θ � 0], but all values for θe � θh between 0
and 2π occur with equal probability. By increasing the electric
field, the probability associated with the locked configuration
θe � θh � π increases its value [Figs. 2(b) and 2(c)], since the
system tries now to optimize both the Coulomb attraction and
the electrostatic energy. On further increase of the electric
field, the system becomes partially quasifree and partially
broken [Fig. 2(d)], and finally in the high-electric-field limit
the system fully adopts the broken configuration, since in this
limit the physics is dominated by the electrostatic contribution
−eF (Re + Rh) to the total energy of the system. The three
regimens are displayed in Fig. 3, where the lowest-lying
exciton energy levels are plotted as functions of the electric
field, for φc.m. = 0, and for a particular realization of the
structured ring. The full lines correspond to the numerical
(exact) results, while the dotted and dashed lines correspond
to different approximations, to be explained below. Note that
except for the ground state, the levels are organized in doublets,
progressively split by increasing the electric field. At F = 0,

(I) quasi-free exciton

(III) broken exciton

(I)  θe ≈ θh : [ 0, 2π ]

(II)   θe ≈ θh ≈ π

(III)   θe ≈ 0 ,  θh ≈ π

B

F

ReRh

θe ≈ θh : [ 0, 2π ]

θe ≈ θh ≈ π

θe ≈ 0 ,  θh ≈ π

B

F

ReRh

(II) locked exciton

FIG. 1. Schematic view of the three possible regimens for the
charge-tunable exciton; empty (filled) small circle represents the hole
(electron). The strength of the applied electric field is such that FI <

FII < FIII, at fixed values of B, Re, and Rh. The electric field F is
along the positive direction of the x axis, the magnetic field B points
along the positive direction of the z axis, and Rh > Re.

the total angular quantum number L is well defined. In this way,
the ground state belongs to the exciton which has L = 0 at F =
0, the next doublet evolves from the L = ±1 zero-electric-field
exciton, and so on. Naturally, all doublets are degenerate at
F = 0. The dashed line with a large slope, proportional to
−eF (Re + Rh), essentially distinguishes the quasifree and
locked configurations (region at the left of the high-slope

(a) (b)

(d) (e)

(c)

FIG. 2. (Color online) Exciton ground-state probability distribu-
tion |ϕ0(θe,θh)|2 in the (θe,θh) domain. Values of eF are given
in Ry∗/a∗

0 effective units. (a) eF = 0, φc.m./φ0 = 0; (b) eF =
0.02, φc.m./φ0 = 0; (c) eF = 0.25, φc.m./φ0 = 0.42; (d) eF = 0.54,
φc.m./φ0 = 0.21; (e) eF = 0.60, φc.m./φ0 = 0.525. The three dis-
cussed regimens (a), (c), and (e) can be clearly seen, as well as
the transition points (b) and (d). For cases (d) and (e), note that the
configurations θe ≈ 0, θh ≈ π and θe ≈ 2π , θh ≈ π are equivalent,
due to the ring geometry.
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FIG. 3. (Color online) Lowest-lying exciton energy levels versus
applied electric field, at φc.m. = 0 (B = 0); Re = 300 Å, Rh = 330 Å.
Full lines correspond to the numerically exact results, dotted lines
are the solutions of the quasiparticle approximation [Eq. (13)], and
dashed lines correspond to the locked and broken approximations (see
the text). The flat-level region corresponds to the quasifree exciton
regime, the low-slope [∼−eF (Rh − Re)] levels to the locked exciton
states, and the high-slope [∼−eF (Re + Rh)] ones to the broken
exciton states. Note that the exact results (full lines) never cross
among them; see Fig. 5(d) for an enhanced view of the avoided
crossings.

dashed line) from the broken exciton regime (region at the
right of the high-slope dashed line). In other words, �θ ∼ 0 in
the left region, while �θ ∼ π in the right region. In addition,
in the left region, one can distinguish between excitonic levels
moving approximately linearly with the electric field [slope
∼−eF (Rh − Re)], and others showing a weak dependence
on F . As shown below, the former correspond to the locked
exciton regime, the latter to the quasifree regime. We will
discuss now the main physical features of each of them,
guided by numerically (exact) results and accurate analytical
approximations.

A. Regime I, quasifree exciton

This is the weak-electric-field limit, where the contribution
HF (θ0,�θ ) in Eq. (5) may be considered as a small perturba-
tion to the other two. In this regime, the c.m. coordinate runs
over all possible values between 0 and 2π , while the relative
coordinate �θ is restricted to taking small values (that is,
|�θ | 	 2π ), in order to optimize the electron-hole Coulomb
attraction Uc(�θ ) [32]. This suggest that in this regime one is
allowed to take the �θ → 0 limit of Eq. (8), obtaining

HF (θ0,�θ → 0) ≈ eF

[
(Rh − Re) cos θ0

+
(

ReIh + RhIe

I

)
(sin θ0) �θ + O(�θ2)

]
. (12)

At leading order in �θ (�θ0), an effective decoupling of the
c.m. and relative coordinates is achieved, which allow us to
approximate the full Hamiltonian in Eq. (5) by the following

quasiparticle (qp) one:

H qp
exc(θ0,�θ ) = H qp

c.m.(θ0) + Hint(�θ ), (13)

with

H qp
c.m.(θ0) = �

2

2I

(
− i

∂

∂θ0
+ φc.m.

φ0

)2

+ eF (Rh − Re) cos θ0,

(14)
and Hint(�θ ) defined in Eq. (7). In the limit of vanishing
or small electric field, Eq. (13) has the following analytical
estimate:

EI
L,n(B,F → 0) = �

2

2I

(
L + φc.m.

φ0

)2

+ εn, (15)

with

εn = − e2/ε

Re + Rh

− α2
�

2

8Iint

[
1 − 2n +

(
1 + 8IintV0

α2�2

)1/2]2

.

(16)
Here,

V0 = e2

ε

(
1

|Re − Rh| − 1

Re + Rh

)
> 0, (17)

and α = 5.458, n = 1,2, . . . . [28]. Equation (15) is an ap-
proximation to Eq. (9), valid in the limit where the exciton is
strongly bounded, meaning that the “binding energy” εL,n(B)
is essentially independent of L and B. The approximation
amounts to replacing εL,n(B) by εn, with the corresponding
expression for the latter in Eq. (16) being derived in the Ap-
pendix of Ref. [28] (see [33]). In this regime, the negative of the
binding energy in Eq. (15) is much greater than the first term,
related to the kinetic energy of the c.m. motion. Evaluating for
φc.m. = 0 and n = 1, we obtain EI

0,1 � − 3.21Ry∗, EI
±1,1 �

− 3.19Ry∗, EI
±2,1 � − 3.14Ry∗, and EI

±3,1 � − 3.043Ry∗, in
excellent agreement with the numerically exact values (full
lines) displayed in Fig. 3, in the limit of small electric field.

The effective c.m. Hamiltonian H
qp

c.m.(θ0) may in turn be
expressed in the following suggestive way:

H qp
c.m.(θ0) = �

2

2I

(
i

∂

∂θ0
+ φ∗

c.m.

φ∗
0

)2

+ e∗FR∗ cos θ0, (18)

where e∗ = e(Rh − Re)/(Rh + Re), R∗ = Rh + Re, φ∗
0 =

ch/e∗, and φ∗
c.m. = πBR∗2. Accordingly, H

qp
c.m.(θ0) can be

considered as corresponding to a quasiparticle of effective
electrical charge e∗, orbiting in a ring of effective radius R∗.
The size, and even the sign, of the charge e∗ may be changed
at will by changing the geometrical parameters Rh and Re.
The solutions of H

qp
exc(θ0,�θ ) are the dotted lines of Fig. 3.

As expected, they are a good approximation to the exact
results in the bounded exciton region, but fails in the broken or
electron-pair region, where the assumption of a bound exciton
with �θ ∼ 0 is not valid. Actually, the (approximate) point of
departure between the exact and approximate solutions signals
the qualitative breakdown of the small-oscillation assumption
for �θ .

B. Regime II, locked exciton

This regime is characterized by the fact that the bounded
exciton (�θ � 0) becomes essentially localized around
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θ0 � π . The electric field is strong enough to localize the c.m.
degree of freedom, losing some kinetic energy but gaining
the dipolar electrostatic energy of the bounded exciton, of
the order of −eF (Rh − Re) (see below). Expanding Eq. (14)
around θ0 � π we obtain

H II
c.m.(θ̄0) = −eF (Rh − Re) + �

2

2I

φ2
c.m.

φ2
0

− i�2φc.m.

Iφ0

∂

∂θ̄0

− �
2

2I

∂2

∂θ̄0
2 + eF (Rh − Re)

2
θ̄0

2
, (19)

with θ̄0 = θ0 − π . Considering that the first two terms on the
right-hand side (RHS) of the equation above are just constants
and that the last two in the second line define an effective
one-dimensional harmonic oscillator for the dynamics of the
c.m. motion, one obtains an approximate expression for the
eigenvalues for this regime as

EII
m,n(B,F ) � −eF (Rh − Re) + �

2

2I

φ2
c.m.

φ2
0

+ �ωeh

(
m + 1

2

)
+ εn (20)

with ωeh = √
eF (Rh − Re)/I , and εn(<0) is the same exciton

“binding energy” as in Eq. (15). The assumption behind this
analytical estimate is that in this regime the exciton, although
localized, still is strongly bounded. Within this harmonic
approximation for the c.m. motion, the contribution from
the third term in Eq. (19) (linear in φc.m.) is just zero if
evaluated in a perturbative way, since it corresponds to the
matrix element of different parity states. The low-slope dashed
line in Fig. 3 corresponds to the approximation in Eq. (20)
for the energy of the ground-state exciton (m = 0, n = 1) in
the locked regime. Excited exciton energies may be obtained
from Eq. (20) for increasing values of m, keeping n fixed at its
lowest value n = 1. This results in a set of low-slope lines (not
shown), that follows closely the quasiparticle dashed lines.
By taking the difference EII

m+1,n(B,F ) − EII
m,n(B,F ) = �ωeh,

one obtains that �ωeh/Ry∗ � 0.07 for eF/(Ry∗/a∗
0 ) = 0.4, in

good agreement with the spacing between two consecutive
exciton energy levels in Fig. 3, for this particular value of the
electric field.

For Re > Rh, the equilibrium position of the locked exciton
is around θe � θh � θ0 � 0; the same results are obtained by
expanding now about θ0 � 0, but with the e ↔ h change.

C. Regime III, broken exciton

In this regime, roughly expected for eF (Rh + Re) > − ε1,
the hole is locked around θh � π and the electron at θe � 0.
The electric field is strong enough to disrupt the bound exciton.
For the approximate analysis of this regime, it is convenient to
start from Eq. (1), rewritten as

Hexc(θe,θh) = He(θe) + Hh(θh) + Uc(�θ ), (21)

with

Hx(θx) = �
2

2Ix

(
−i

∂

∂θx

+ ηx

φx

φ0

)2

− qxFRx cos θx, (22)

with qe = e, qh = −e and ηe = +1, ηh = −1. In the broken
exciton regime, both Hamiltonians He(θe) and Hh(θh) may be
expanded around their respective equilibrium positions. For
instance,

H III
e (θe) = −eFRe + �

2

2Ie

φ2
e

φ2
0

− i�2φe

Ieφ0

∂

∂θe

− �
2

2Ie

∂2

∂θ2
e

+ eFRe

2
θ2
e . (23)

Since this Hamiltonian (and the one associated with the hole) is
quite similar to the one in Eq. (19), one can proceed in a similar
manner, obtaining the following approximate expression for
the energy of the broken exciton:

EIII
ne,nh

(B,F ) � −eFR∗ + �ωe

(
1

2
+ ne

)
+ �ωh

(
1

2
+ nh

)

+ �
2φ2

e

2Ieφ
2
0

+ �
2φ2

h

2Ihφ
2
0

+ Uc(π ), (24)

where ωx = √
eFRx/Ix , and Uc(π ) = −e2/(εR∗) is the resid-

ual e-h Coulomb interaction. The high-slope dashed line in
Fig. 3 corresponds to the approximation in Eq. (24) for the
energy of the ground-state exciton (ne = nh = 0) in the broken
regime. Clearly, excited energy states in this regime may
be obtained by allowing higher values for ne and nh; this
will result in a set of high-slope lines (not shown). For the
polarized ring considered here, ωe/ωh � 2, and accordingly
more “holelike” modes will be occupied than “electronlike”
modes (ne � nh). From the condition eF (Rh + Re) ∼ − ε1,
one obtains an estimate of the strength of the electric field
needed to disrupt the bounded exciton: taking ε1 � EI

0,1 �
−3.21Ry∗, one obtains that eF/(Ry∗/a∗

0 ) ∼ 0.5 for this
threshold electric field, once again in good agreement with
the results in Fig. 3.

D. Discussion

We show in Fig. 4 the excitonic energy levels as the trapped
flux φc.m. changes, for increasing values of the electric field.
Figure 4(a) corresponds to the zero-electric-field situation;
in this case, the exciton energy levels are given by Eq. (9).
All levels plotted in Fig. 4(a) belong to the n = 0 exciton,
and for L = 0,±1,±2,±3. Having different (well-defined)
quantum numbers, the energy levels cross at each intersection.
The optical activity of the L = 0 state is denoted by the
shadowed area about it [34]. To characterize the excitonic
states as bright (optically active) or dark (optically inert),
we evaluate the oscillator strength (OS), i.e., the angular
overlap of the electron and the hole in a given exciton
eigenstate [35],

Si ∝
∣∣∣∣
∫ 2π

0
dθ ϕi(θe = θ,θh = θ )

∣∣∣∣
2

. (25)

Note that, in our chosen zero-electric-field basis of Eq. (10),
only states with le + lh = 0 contribute to the OS. Thus, at zero
transverse electric field F , only the L = 0 exciton is bright.
At finite values of F the azimuthal symmetry of the system
is broken, and L is no longer a good quantum number. The
new exciton eigenfunctions can be considered as a mixing of
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(a)

(c)

(b)

FIG. 4. (Color online) Exciton energy levels vs trapped magnetic
flux, at fixed values of eF . The spectra are approximately periodic
in the trapped flux; this is not a property of the full system
but of the bounded excitonic states. (a) eF = 0; only the L = 0
exciton is optically active. (b) eF = 0.02Ry∗/a∗

0 ; the crossing levels
become anticrossings, and this property allows for the experimental
manipulation of the exciton state. (c) eF = 0.15Ry∗/a∗

0 ; the low-
energy flat (i.e., flux-independent) levels correspond to locked exciton
states, and optical activity appears in many of them, depending on the
precise value of φc.m., allowing also for resonant induced transitions
between them.

the old ones, and then the projection of them on the old L = 0
eigenfunction gives their OS [34]. A multiplicative factor must
be included (in principle) in the definition of the OS in Eq. (25),
to account for the finite radial overlap of the electron and hole
wave functions, which we have not considered explicitly in this
work. A detailed analysis of this issue for a possible realization
of e-h quantum rings in volcanolike InGaAs heterostructures
has been performed in Ref. [36].

Figures 4(b) and 4(c) correspond to increasing values of the
electric field: the system loses the azimuthal symmetry along
the z axis and the pair (L,n) is replaced by a single quantum
number. Levels now repel each other, and a gap appears at
each crossing of the F = 0 case. Gaps are barely discernible
in Fig. 4(b) (except for the lowest one at φc.m. = ±0.5φ0),
but they are quite prominent in Fig. 4(c). The reason why the
electric field is much less effective in opening gaps at crossing
points at higher energies is quite simple: considering that the
electric field acts as a perturbation on the zero-field eigenstates,
one finds that it mixes only zero-field eigenstates with L’s
differing by unity (that is, L with L ± 1). Then, for example,
the gap at φc.m. = +(−)0.5φ0 appears at the crossing of the
L = 0 and L = −1 (+1) parabolas, which are directly mixed
by the electric field, resulting in a gap linear in the electric field.
All other gaps in the displayed spectra are of higher order in

(a)

(c)

(d)

(b)

FIG. 5. (Color online) Exciton energy levels versus applied elec-
tric field, at fixed values of the center-of-mass trapped flux φc.m.:
(a) φc.m. = 0; (b) φc.m. � 0.21 φ0; (c) φc.m. = 0.5 φ0. Re = 300 Å,
Rh = 330 Å. Color scale for the strength factor as in Fig. 4.
(d), showing the avoided crossings, corresponds to an enhanced view
of the rectangular sector in (c) enclosed by straight dashed lines.

F , since they correspond to crossing of parabolas differing
by more than unity in their L values. Under the assumption
of weak electric fields, higher orders in F are equivalent to
smaller gaps. Note that the assumption of weak electric field
may be made always valid, by moving to higher energies in
the excitonic spectra.

Figure 5 displays how the excitonic energy levels depend
on the applied electric field, for different values of φc.m.. Fig-
ure 5(c), corresponding to φc.m. = 0.5φ0, exhibits a different
organization in doublets, as compared with the φc.m. = 0 case.
In particular, the ground-state doublet corresponds to the L =
0,−1 zero-electric-field states, which are directly mixed by it,
resulting in an anticrossing gap which opens linearly in eF . In
Fig. 5(d) we provide an enhanced view of a few anticrossing
points of the exciton energy spectrum, making clear the point
that as soon as F �= 0, all the degeneracies present at the
intersecting parabolas in Fig. 4(a) are strictly removed, and
then the energy levels in Fig. 5 (as in Fig. 3) never cross among
them, as stated above. Another interesting point to be addressed
here is the fact that if one follows adiabatically the first excited
exciton energy level, for increasing values of the electric field
it passes through the following sequence of configurations:
quasifree → locked (m = 1,n = 1) → broken (ne = nh = 0)
→ locked (m = 0,n = 1) → broken (ne = 0,nh = 1). For the
ground-state exciton, the only possible sequence is quasifree
→ locked (m = 0,n = 1) → broken (ne = nh = 0), but for
higher excited excitons several changes of configurations
are possible, starting always from the quasifree one, and
jumping then back and forth between the locked and broken
configurations. Noting that the locked m = 0,n = 1
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FIG. 6. (Color online) Schematic view in Ei,φc.m. space of the
suggested protocols for the dynamical storage of photoinduced
excitons. Dashed lines correspond to exciton energies for eF = 0,
EL,n(B), while full lines are for eF = 0.05Ry∗/a∗

0 , Ei(B,F ). The
labels L = 0, ±1, ±2, are associated with the zero-field exciton
levels. The shaded regions correspond to the bright states. Using
the electric field as a switch, i.e., converting crossing points to
anticrossing ones, the exciton can navigate the Hilbert space [38].
Possible storage protocols are described in the text.

ground-state configuration is always bright, this provides a
possible way to manipulate excitons, converting them from
dark to bright by application of suitable (strong) electric fields.
We suggest in what follows another manipulation strategy,
based on the application of smaller electric fields (i.e., without
breaking the exciton).

It seems quite possible that the main application of these
systems will be related to the feasibility of storing excitons,
in either isolated ring configurations or ring ensembles. This
storage is achieved by switching the ring ensemble from
an optically active state (bright) to an optically passive one
(dark). Simple mechanisms involving magnetic or electrical
fields have been previously proposed. One such mechanism
is suggested in Ref. [37]. It involves the use of an in-plane
electric field for a single-radius (Re = Rh) ring. Their dark
situation corresponds to the destruction of the exciton, with the
electron and the hole localized in opposite sides of the ring (our
broken exciton regimen III). In fact, as the authors of Ref. [37]
discuss, the critical electrical field strength is comparable to
the electron-hole interaction strength, i.e., our exciton rupture
field, given by the equation eF (Re + Rh) ∼ − ε1. The internal
structure of the rings analyzed in this article (variable Re

and Rh), which generates a non-neutral exciton, allows it to
be manipulated via both electric and magnetic fields without
destroying the exciton. In Fig. 6 we show the exciton spectra
both for zero electric field (broken lines) and with a small field
(eF = 0.05Ry∗/a∗

0 ). The shaded regions correspond to the
bright exciton states. A protocol to store the exciton without
breaking it can be easily designed, using the fact that the
electric field changes the crossing points of the spectra into
anticrossing ones. A tentative protocol might be as follows.
Step 1: at eF = 0, φc.m. is increased from 0 to above 0.5φ0,

i.e., the exciton is moved (see Fig. 6) from point 1 to point 2.
Step 2: the electric field is switched on, converting the crossing
point at φc.m. = 0.5φ0 into an anticrossing one. Step 3: φc.m.

is decreased towards zero, moving the exciton from point 2 to
point 3, a dark state. The protocol above assumes an adiabatic
movement of the exciton, i.e., a slow rate of variation of the
fields. It is also possible to maintain a fixed electric field,
and use a diabatic evolution to arrive at point 2, and then an
adiabatic one to move the system to point 3.

A cyclic protocol, suitable for an array of radially polarized
rings [27], is also possible, as follows. Step 1: φc.m. is increased
from −0.05φ0 to 0.55φ0, with a small electric field applied.
The ground-state exciton, if present (i.e., photoexcited), moves
from point 1 to point 2b in Fig. 6 following the full line.
Step 2: the electric field is turned off and φc.m. is reversed
to −0.05φ0. Repeat cyclically. If after step 1 the exciton
was at 2b, after step 2 it will move from 2b to 4, following
now the dashed line. Once there, in the first step of the next
cycle it will move from 4 to 5b, and so on. The net result is
that the exciton becomes trapped in the high-energy region
of the available spectra, and is essentially dark. If a ring of
the ensemble fails to catch an exciton, or if it decays before
arriving at point 2b, the ring is ready to catch one in the next
cycle. In this way, under photoexcitation, each ring of the
array will be filled with one exciton, albeit stored in different
levels of the spectra. In practice, the “climbing” movement
of the exciton along the energy spectra has a limit, since
the gaps at the anticrossing points become increasingly small
for ascending energies, and the switching strategy fails. For
example, in going from point 4 to point 5b, if the gap is
small, the exciton may follow with some probability a diabatic
trajectory and arrive instead at point 5. Once the exciton is on
the wrong track, the same cycles move it back to point 1, where
it is optically active again. Therefore, this cyclic protocol
can be used to introduce a tunable delay in the incoming
photons.

Some conditions must be fulfilled for this protocol to be
realized in practice. For example, the temperature should be
such that at least the two first gaps at φc.m. = 0,0.5φ0 should be
larger than kBT . Considering that the gap at φc.m. = 0 is about
10−3Ry∗ = 5.83 × 10−3 meV, this results in the constraint
T � 0.05 K [39] Since this temperature is much smaller than
the Debye temperature of GaAs (∼345 K) [40], one can expect
that exciton decay via interactions with the phonon bath will
be small. Also, the electric field strength in Fig. 6 is about
300 V/cm, much smaller than the fields formed at the depletion
layer of n-p semiconductor junctions (∼103–105 V/cm).

IV. CONCLUSIONS

We have studied theoretically the excitonic spectrum of
radially polarized semiconductor nanorings, in the presence
of an in-plane uniform electric field and a perpendicular
magnetic field. Based on the numerically exact solution, we
have identified three different regimens for the exciton, for
increasing values of the electric field: (a) quasifree excitons;
(b) locked excitons; and (c) electron-hole pairs or broken
excitons. Accurate analytical approximations are provided
for each one of the three regimens. In the first regime,
corresponding to weak electric fields, the exciton behaves
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as a single charged particle, with an effective electric charge
determined by the nanoring geometrical parameters. Protocols
are suggested for the dynamical storage of excitons without
destroying them, by a combination of magnetic and electric
fields, and by following a sequence of well-defined steps. This
may have some impact in the context of trapping light for later
use.
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Berlin, 1997).

[31] V. V. Arsoski, M. Z. Tadic, and F. M. Peeters, Phys. Rev. B 87,
085314 (2013).

[32] For a plot of Uc(�θ ) vs �θ for this particular type of ring, see
Fig. 4 in Ref. [28]. The limit |�θ | 	 2π was characterized as
the strongly interacting (SI) regime there. In the present context,
both regime I and regime II are in this SI regime.

[33] Equations (A1) and (A2) in the Appendix of Ref. [28] should be
corrected as follows. In Eq. (A1), in the first term on the RHS, the
denominator |Re − Rh| should be replaced by Re + Rh, while
in the second term cosh(α�θ ) must be replaced by cosh2(α�θ ).
Concerning Eq. (A2), it must be corrected as in Eq. (16).

[34] In order to plot the OS in the figures, we use the equation
S(E) = ∑

i Si δ(E − Ei) ≈ ∑
i Si η

2/[(E − Ei)2 + η2], with η

being a small number, and i running over the exciton eigenstates.
[35] M. D. Teodoro, V. L. Campo, V. Lopez-Richard, E. Marega, G.

E. Marques, Y. G. Gobato, F. Iikawa, M. J. S. P. Brasil, Z. Y.
AbuWaar, V. G. Dorogan, Y. I. Mazur, M. Benamara, and G. J.
Salamo, Phys. Rev. Lett. 104, 086401 (2010).

[36] B. Li and F. M. Peeters, Phys. Rev. B 83, 115448 (2011).
[37] A. M. Fischer, V. L. Campo, M. E. Portnoi, and R. A. Romer,

Phys. Rev. Lett. 102, 096405 (2009).
[38] G. E. Murgida, D. A. Wisniacki, and P. I. Tamborenea, Phys.

Rev. B 79, 035326 (2009).
[39] This constraint on the temperature can be relaxed easily by about

one order of magnitude, by the simple procedure of increasing
slightly the electric field strength. Note for example how the
barely discernible gap at φc.m. = 0 at eF/(Ry∗/a∗

0 ) = 0.02 in
Fig. 4(b) becomes a sizable gap (∼4 K) for eF/(Ry∗/a∗

0 ) = 0.15
in Fig. 4(c).

[40] J. C. Holste, Phys. Rev. B 6, 2495 (1972).

075304-8

http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRevLett.67.3578
http://dx.doi.org/10.1103/PhysRevLett.67.3578
http://dx.doi.org/10.1103/PhysRevLett.67.3578
http://dx.doi.org/10.1103/PhysRevLett.67.3578
http://dx.doi.org/10.1103/PhysRevLett.70.2020
http://dx.doi.org/10.1103/PhysRevLett.70.2020
http://dx.doi.org/10.1103/PhysRevLett.70.2020
http://dx.doi.org/10.1103/PhysRevLett.70.2020
http://dx.doi.org/10.1088/0268-1242/17/5/103
http://dx.doi.org/10.1088/0268-1242/17/5/103
http://dx.doi.org/10.1088/0268-1242/17/5/103
http://dx.doi.org/10.1088/0268-1242/17/5/103
http://dx.doi.org/10.1103/PhysRevLett.56.792
http://dx.doi.org/10.1103/PhysRevLett.56.792
http://dx.doi.org/10.1103/PhysRevLett.56.792
http://dx.doi.org/10.1103/PhysRevLett.56.792
http://dx.doi.org/10.1016/j.physe.2004.04.030
http://dx.doi.org/10.1016/j.physe.2004.04.030
http://dx.doi.org/10.1016/j.physe.2004.04.030
http://dx.doi.org/10.1016/j.physe.2004.04.030
http://dx.doi.org/10.1103/PhysRevLett.90.186801
http://dx.doi.org/10.1103/PhysRevLett.90.186801
http://dx.doi.org/10.1103/PhysRevLett.90.186801
http://dx.doi.org/10.1103/PhysRevLett.90.186801
http://dx.doi.org/10.1063/1.1616992
http://dx.doi.org/10.1063/1.1616992
http://dx.doi.org/10.1063/1.1616992
http://dx.doi.org/10.1063/1.1616992
http://dx.doi.org/10.1103/PhysRevLett.84.2223
http://dx.doi.org/10.1103/PhysRevLett.84.2223
http://dx.doi.org/10.1103/PhysRevLett.84.2223
http://dx.doi.org/10.1103/PhysRevLett.84.2223
http://dx.doi.org/10.1209/epl/i1996-00350-5
http://dx.doi.org/10.1209/epl/i1996-00350-5
http://dx.doi.org/10.1209/epl/i1996-00350-5
http://dx.doi.org/10.1209/epl/i1996-00350-5
http://dx.doi.org/10.1103/PhysRevB.62.6963
http://dx.doi.org/10.1103/PhysRevB.62.6963
http://dx.doi.org/10.1103/PhysRevB.62.6963
http://dx.doi.org/10.1103/PhysRevB.62.6963
http://dx.doi.org/10.1103/PhysRevB.61.15887
http://dx.doi.org/10.1103/PhysRevB.61.15887
http://dx.doi.org/10.1103/PhysRevB.61.15887
http://dx.doi.org/10.1103/PhysRevB.61.15887
http://dx.doi.org/10.1016/S0039-6028(03)00171-7
http://dx.doi.org/10.1016/S0039-6028(03)00171-7
http://dx.doi.org/10.1016/S0039-6028(03)00171-7
http://dx.doi.org/10.1016/S0039-6028(03)00171-7
http://dx.doi.org/10.1103/PhysRevB.65.193307
http://dx.doi.org/10.1103/PhysRevB.65.193307
http://dx.doi.org/10.1103/PhysRevB.65.193307
http://dx.doi.org/10.1103/PhysRevB.65.193307
http://dx.doi.org/10.1016/S1386-9477(00)00186-7
http://dx.doi.org/10.1016/S1386-9477(00)00186-7
http://dx.doi.org/10.1016/S1386-9477(00)00186-7
http://dx.doi.org/10.1016/S1386-9477(00)00186-7
http://dx.doi.org/10.1016/S1386-9477(01)00511-2
http://dx.doi.org/10.1016/S1386-9477(01)00511-2
http://dx.doi.org/10.1016/S1386-9477(01)00511-2
http://dx.doi.org/10.1016/S1386-9477(01)00511-2
http://dx.doi.org/10.1103/PhysRevLett.92.126402
http://dx.doi.org/10.1103/PhysRevLett.92.126402
http://dx.doi.org/10.1103/PhysRevLett.92.126402
http://dx.doi.org/10.1103/PhysRevLett.92.126402
http://dx.doi.org/10.1103/PhysRevB.63.195307
http://dx.doi.org/10.1103/PhysRevB.63.195307
http://dx.doi.org/10.1103/PhysRevB.63.195307
http://dx.doi.org/10.1103/PhysRevB.63.195307
http://dx.doi.org/10.1103/PhysRevB.63.125302
http://dx.doi.org/10.1103/PhysRevB.63.125302
http://dx.doi.org/10.1103/PhysRevB.63.125302
http://dx.doi.org/10.1103/PhysRevB.63.125302
http://dx.doi.org/10.1103/PhysRevB.68.075307
http://dx.doi.org/10.1103/PhysRevB.68.075307
http://dx.doi.org/10.1103/PhysRevB.68.075307
http://dx.doi.org/10.1103/PhysRevB.68.075307
http://dx.doi.org/10.1103/PhysRevB.62.7045
http://dx.doi.org/10.1103/PhysRevB.62.7045
http://dx.doi.org/10.1103/PhysRevB.62.7045
http://dx.doi.org/10.1103/PhysRevB.62.7045
http://dx.doi.org/10.1016/S1386-9477(01)00424-6
http://dx.doi.org/10.1016/S1386-9477(01)00424-6
http://dx.doi.org/10.1016/S1386-9477(01)00424-6
http://dx.doi.org/10.1016/S1386-9477(01)00424-6
http://dx.doi.org/10.1103/PhysRevB.66.081309
http://dx.doi.org/10.1103/PhysRevB.66.081309
http://dx.doi.org/10.1103/PhysRevB.66.081309
http://dx.doi.org/10.1103/PhysRevB.66.081309
http://dx.doi.org/10.1103/PhysRevB.70.155318
http://dx.doi.org/10.1103/PhysRevB.70.155318
http://dx.doi.org/10.1103/PhysRevB.70.155318
http://dx.doi.org/10.1103/PhysRevB.70.155318
http://dx.doi.org/10.1103/PhysRevB.72.125327
http://dx.doi.org/10.1103/PhysRevB.72.125327
http://dx.doi.org/10.1103/PhysRevB.72.125327
http://dx.doi.org/10.1103/PhysRevB.72.125327
http://dx.doi.org/10.1103/PhysRevB.67.121304
http://dx.doi.org/10.1103/PhysRevB.67.121304
http://dx.doi.org/10.1103/PhysRevB.67.121304
http://dx.doi.org/10.1103/PhysRevB.67.121304
http://dx.doi.org/10.1021/nl048192+
http://dx.doi.org/10.1021/nl048192+
http://dx.doi.org/10.1021/nl048192+
http://dx.doi.org/10.1021/nl048192+
http://dx.doi.org/10.1103/PhysRevB.73.165311
http://dx.doi.org/10.1103/PhysRevB.73.165311
http://dx.doi.org/10.1103/PhysRevB.73.165311
http://dx.doi.org/10.1103/PhysRevB.73.165311
http://dx.doi.org/10.1103/PhysRevB.87.085314
http://dx.doi.org/10.1103/PhysRevB.87.085314
http://dx.doi.org/10.1103/PhysRevB.87.085314
http://dx.doi.org/10.1103/PhysRevB.87.085314
http://dx.doi.org/10.1103/PhysRevLett.104.086401
http://dx.doi.org/10.1103/PhysRevLett.104.086401
http://dx.doi.org/10.1103/PhysRevLett.104.086401
http://dx.doi.org/10.1103/PhysRevLett.104.086401
http://dx.doi.org/10.1103/PhysRevB.83.115448
http://dx.doi.org/10.1103/PhysRevB.83.115448
http://dx.doi.org/10.1103/PhysRevB.83.115448
http://dx.doi.org/10.1103/PhysRevB.83.115448
http://dx.doi.org/10.1103/PhysRevLett.102.096405
http://dx.doi.org/10.1103/PhysRevLett.102.096405
http://dx.doi.org/10.1103/PhysRevLett.102.096405
http://dx.doi.org/10.1103/PhysRevLett.102.096405
http://dx.doi.org/10.1103/PhysRevB.79.035326
http://dx.doi.org/10.1103/PhysRevB.79.035326
http://dx.doi.org/10.1103/PhysRevB.79.035326
http://dx.doi.org/10.1103/PhysRevB.79.035326
http://dx.doi.org/10.1103/PhysRevB.6.2495
http://dx.doi.org/10.1103/PhysRevB.6.2495
http://dx.doi.org/10.1103/PhysRevB.6.2495
http://dx.doi.org/10.1103/PhysRevB.6.2495



