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First-principles DFT + GW study of oxygen vacancies in rutile TiO2
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We perform first-principles calculations of the quasiparticle defect states, charge transition levels, and formation
energies of oxygen vacancies in rutile titanium dioxide. The calculations are done within the recently developed
combined DFT + GW formalism, including the necessary electrostatic corrections for the supercells with charged
defects. We find the oxygen vacancy to be a negative U defect, where U is the defect electron addition energy.
For Fermi level values below ∼2.8 eV (relative to the valence-band maximum), we find the +2 charge state of
the vacancy to be the most stable, while above 2.8 eV we find that the neutral charge state is the most stable.
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I. INTRODUCTION

Titanium dioxide (TiO2) attracts a lot of attention of
researchers as a versatile functional material used in numerous
technological applications, including photocatalysis, hydrol-
ysis, solar cells, high-k dielectrics, optoelectronic devices,
sensors, etc. [1–9]. Lattice defects, such as vacancies, substi-
tution impurities, and interstitial impurities inevitably occur in
materials regardless of whether they are synthesized or created
naturally. These defects can greatly influence the mechanical,
electrical, thermal, and optical properties of solids.

Among the major three crystal polymorphs of TiO2, rutile
is the most common one, the other two being anatase and
brookite. Rutile TiO2 has a tetragonal primitive cell with two
formula units (see Fig. 1) and its symmetry is described by
the space group P 42/mnm. The lattice parameters are a =
4.594 Å and c = 2.959 Å at room temperature. The Ti and O
atoms reside at the 2a and 4f Wyckoff positions, the latter
characterized by the single internal parameter u = 0.305 [10].

Rutile TiO2 in its stoichiometric form is an insulator with an
optical band gap of 3.0 eV [11,12]. The optical gap, however,
is smaller than the electronic band gap due to electron-hole
interactions. The latter band gap is connected to a single-
particle (or quasiparticle) description and can be measured in
photoemission experiments. The values for the electronic gap
in the literature vary in the range of 3.3–4.0 eV [13–15]. For
more discussion on the relation between the electronic and
optical gaps of TiO2, as well as a comparison of experimental
and theoretical values, see, e.g., Ref. [16].

Heating rutile crystals in a reducing atmosphere results
in an increase of the (n-type) electrical conductivity, and
rutile composition changes to nonstoichiometric TiO2−x . This
change is attributed to various types of defects such as oxygen
vacancies, Ti3+ and Ti4+ interstitials, and planar defects [2].

In this work, we perform calculations of the charge
transition levels and defect formation energies of oxygen
vacancies in three charge states following a recently developed
DFT + GW approach [17,18]. There are several advantages of
this approach over the traditional DFT-only approaches [19]. In
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this method, the GW correction of DFT eigenvalues takes care
of the self-energy and self-interaction errors and resolves the
problem of band-gap underestimation. The latter problem is
often responsible for an incorrect DFT prediction of the defect
level position outside the bulk band gap. In addition, within
the DFT + GW approach, the formation energies can be
calculated without computing the differences in total energies
of systems with a different number of electrons. We note
that the need to go beyond the standard DFT approaches for
calculations of defect formation energies and charge transition
levels is now well recognized, as more studies of the electronic
structure of oxides based on hybrid functionals and GW

perturbation methods appear in the literature. Recently, Peng
and collaborators [20] proposed an alternative scheme to
calculate defect formation energies by using GW to correct
band-edge energies.

The rest of the paper is organized as follows. Section II
describes in detail the DFT + GW formalism used in our
calculations. Computational details are given in Sec. III. Then
the main results are presented in Sec. IV, followed by a
summary in Sec. V.

II. METHODS

A. DFT + GW formalism

The DFT + GW approach employed in this work was
developed in Refs. [17] and [18]. Here, we will introduce
the notations used in the subsequent sections.

We describe the atomic state of a system with a defect
in a charge state q (oxygen vacancy V

q

O in our case) by
a generalized coordinate R. In general, R corresponds to
an arbitrary configuration, not necessarily an equilibrium
configuration. The equilibrium configuration of the defect in
a charge state q will be denoted as Rq . One can define [18]
the defect formation energy Ef

q(R,μO,EF), which depends
on the chemical potential of oxygen μO (determined by the
experimental preparation conditions) and the Fermi level EF.
We reference EF to the valence-band maximum (VBM), so it
can take values between zero and the bulk band gap depending
on the specific sample.

The charge transition level εq/q−1 is defined as the Fermi
level at which the charge state of the defect changes from q to
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FIG. 1. (Color online) (a) Tetragonal primitive cell of TiO2 in the
rutile crystal structure. (b) The corresponding Brillouin zone.

q − 1 or, in other words, at which the formation energies of the
defect in charge states q and q − 1 are equal. One can show
that the value of the charge transition level can be separated
into two contributions as εq/q−1 = Erelax + EQP, where EQP

is a quasiparticle excitation energy (addition or removal of a
single electron) and Erelax is the (atomic) relaxation energy
of the defect in the new charge state. Since Erelax is given by
the difference in the total energies of the system whose total
number of electrons remains unchanged, it can be calculated
accurately using standard DFT methods, while EQP may be
evaluated using the ab initio GW method [21].

The combined DFT + GW approach avoids the typical
problems one encounters when using DFT for all terms, such
as the underestimation of the band gap and self-interaction
errors.

B. Electrostatic corrections

Ideally, when studying defects, one would like to consider a
single defect in an infinite bulk material. In practice, however,
one often uses a supercell approach [22], in which a finite
supercell with a defect is constructed, and periodic boundary
conditions are applied. If the supercell is not large enough, the
spurious interactions between the defect and its own images
should be taken into account. For charged defects, in particular,
the spurious long-range Coulomb potential from defect images
results in a shift of the defect state in the bulk band gap.
This effect has been shown to be quite significant for oxygen
vacancies in hafnia [18].

There are several ways to calculate the electrostatic cor-
rections, to be denoted as �Ee.s.

QP . All of them can be done
within the DFT-only formalism since the spurious potential
is electrostatic and affects only the Hartree potential in the
DFT calculation. Furthermore, the Hartree potential is not
affected by the self-energy operator within our GW approach.
The straightforward approach would be to increase the size
of the supercell with a defect and keep track of the shift
in the Kohn-Sham eigenvalue corresponding to the defect
state. Taking into account the fact that the strength of the
Coulomb interaction is inversely proportional to the distance,
one can extrapolate the change in the Kohn-Sham eigenvalue
to infinite supercell size [18]. This approach, however, requires
construction of supercells with a very large number of atoms
(often thousands of atoms are required).

In this work, we opted for a different approach proposed by
Freysoldt and collaborators [23], which does not require the

construction of extremely large supercells. The only require-
ment on the supercell size is that the charge density associated
with the defect state is well localized in a small volume inside
the supercell. In the following, we describe the main changes
to this method adapting it to DFT + GW framework. We shall
keep the original notations and definitions.

If a neutral defect state can be described by a local
wave function ψd, then one can calculate the unscreened
charge density qd(r) associated with the charged defect
(assuming the charge q goes entirely to the local defect state).
The charge q then becomes screened by the surrounding
electrons. The corresponding change in the electrostatic
potential relative to the neutral defect is denoted by Vq/0. Note
that in this discussion, as in the original formulation [23],
we do not consider the effects of lattice relaxations due to the
change of the charge state of the defect.

Now we consider a periodic system corresponding to an
array of charged defects and add a compensating homogeneous
background charge with density n = −q/�, where � is the
supercell volume. Assuming a linear-response behavior, the
change in the electrostatic potential for this system Ṽq/0(r) is
given by a superposition of the potentials Vq/0(r + R) up to
a constant, where R denotes lattice vectors. Thus, knowing
Vq/0(r) of an infinite system, one can reproduce the potential
Ṽq/0(r) of a periodic system (up to a constant). The spurious
electrostatic potential induced by the images of the defect in the
home supercell is, thus, given by [Ṽq/0(r) − Vq/0(r)]. Within
DFT, this corresponds to the undesired shift of the Kohn-Sham
defect state,

�εKS
d = −

∫
�

d3r |ψd(r)|2[Ṽq/0(r) − Vq/0(r)]. (1)

In practice, we can compute the periodic potential Ṽq/0(r),
but we do not know the original potential Vq/0(r) of the
infinite system. At large distances, this potential may be well
approximated by the long-range screened Coulomb potential
[23] V lr

q/0(r), which requires knowledge of the dielectric
constant ε (which, in turn, can be found, e.g., from density-
functional perturbation theory) for its evaluation. Thus, the
idea is to separate the potential Vq/0(r) into long-range and
short-range parts as Vq/0(r) = V lr

q/0(r) + V sr
q/0(r). Assuming

that the short-range potential decays rapidly with distance and
is essentially zero at the border of the supercell (with the defect
placed in the center of the supercell), we can write for r ∈ �

Ṽ sr
q/0(r) = V sr

q/0(r) + C, (2)

where the constant C absorbs the ambiguity in the absolute
position of Ṽq/0. This constant may be found by requiring that
Ṽq/0 and Ṽ lr

q/0 align far from the defect.
Hence, the shift of the defect state due to the spurious

electrostatic potential, Eq. (1), can be calculated from two
parts, each coming from the long-range and short-range
contributions to the potential. The first part is given by

�εKS
d,lr = −

∫
�

d3r |ψd(r)|2[Ṽ lr
q (r) − V lr

q (r)
]

(3)

and the second part is given by

�εKS
d,sr = −

∫
�

d3r |ψd(r)|2[Ṽ sr
q/0(r) − V sr

q/0(r)
] = −C. (4)
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Equations (3) and (4) give the spurious shift of the Kohn-Sham
level, while the electrostatic correction �Ee.s.

QP that needs to be
applied is

�Ee.s.
QP = −�εKS

d,lr − �εKS
d,sr. (5)

To see how the above-described method works, we per-
formed a calculation of the oxygen vacancy in rocksalt MgO
in its +1 charge state. For simplicity, we performed a spin
unpolarized calculation using a 2 × 2 × 2 cubic supercell (63
atoms). We found a Kohn-Sham eigenvalue in the bulk band
gap corresponding to a defect state located 1.07 eV above the
VBM. The electrostatic correction calculated with the above
method resulted in a shift of the defect eigenvalue of −0.65 eV,
where −0.45 eV comes from the first term in Eq. (5) and
−0.20 eV comes from the second term. Then, we performed
calculations using 3 × 3 × 3 (215 atoms) and 4 × 4 × 4 (511
atoms) supercells. We found the defect eigenvalue to be 0.83
and 0.64 eV above the VBM in 215-atom and 511-atom
supercells, respectively. We fit the defect eigenvalue to εd =
ε0
d + A/L, where L is the size of the supercell in arbitrary

units (e.g., L = 2,3,4 in our case), and ε0
d and A are fitting

parameters. In this way, in the limit of an infinite supercell, we
found the electrostatic correction to be −0.84 eV, which is in
reasonable agreement with the previous result.

Recently, a similar procedure for correcting the Kohn-
Sham eigenvalues due to electrostatic spurious potential was
suggested by Chen and Pasquarello [24].

III. COMPUTATIONAL DETAILS

In this work, all mean-field calculations were done within
the density functional theory framework. It has been shown
recently that structural relaxation in the case of rutile TiO2

depends strongly on the choice of exchange-correlation po-
tential [25]. An adequate description of the crystal structure
can be obtained using hybrid functionals, such as that of
Heyd, Scuseria, and Ernzerhof (HSE) [26]. If the crystal
structure of rutile TiO2 with oxygen vacancy is relaxed, e.g.,
using the Perdew, Burke, and Ernzerhof (PBE) exchange-
correlation potential [27], the defect level moves into the
conduction band regardless of its charge state [25]. For
this reason, in our work, all structural relaxations (both
for bulk TiO2 and supercells with defects) were performed
using the HSE06 hybrid functional [26], in which 25% of
the (short-range) Hartree-Fock (HF) exchange is mixed with
75% PBE exchange. We used the projector augmented-wave
(PAW) method [28,29] as implemented in the VASP code
package [30]. The standard PBE pseudopotentials for both
Ti and O supplied with the VASP package were employed.
For Ti, the 3s, 3p, 3d, and 4s states were treated as valence
orbitals. We used a plane-wave basis set with an energy cutoff
of 450 eV.

For bulk TiO2, the Brillouin zone was sampled by a uniform
4 × 4 × 6 k-point mesh. Oxygen vacancies were simulated by
constructing a 2 × 2 × 3 supercell of 72 atoms and removing
one O atom. Brillouin zone integrations for the supercells were
performed using an equivalent 2 × 2 × 2 mesh of k points.

Once the structural parameters for a system of interest
were determined, we performed a separate self-consistent-

field (SCF) calculation using the PBE exchange-correlation
potential in order to obtain a mean-field starting point
for our GW calculations. For this purpose, we used the
QUANTUM ESPRESSO code package [31]. Troullier-Martins
norm-conserving pseudopotentials [32] were generated for Ti
and O. For Ti, the 3s and 3p semicore states were treated as
valence states and the pseudopotential was generated in the
Ti4+ configuration. The cutoff radii for the 3s, 3p, and 3d

states were chosen to be 0.9, 0.9, and 1.0 a.u., respectively.
The energy cutoff for the plane-wave basis of 200 Ry was used
in this case.

The GW calculations were performed using the
BerkeleyGW code package [21,33]. We used a G0W0 approach
within the complex generalized plasmon-pole (GPP) model
[34]. For the dielectric matrix calculation, the frequency cutoff
was chosen to be 40 Ry and the number of valence and
conduction bands was chosen to be 2000 for bulk rutile
TiO2 and 4000 for the supercell calculations. In the case of
supercells, the convergence with respect to empty states is
not guaranteed despite the large number of states used in our
calculations. For this reason, the extrapolation to an infinite
number of states is required. We used the static-remainder
method for this purpose [35].

IV. RESULTS

A. Bulk rutile TiO2

The structural properties of bulk rutile TiO2 were calculated
using both PBE and HSE06 exchange-correlation potentials.
The results of these calculations are in very good agreement
with each other and with experiment, as can be seen from
Table I.

The electronic band structure was computed along high
symmetry lines [the labels for the high symmetry points in
the Brillouin zone are shown in Fig. 1(b)]. The band-structure
plots before and after the self-energy correction are shown
in Fig. 2. As one can see from the figure, the effect of the
G0W0 correction to a first approximation can be considered
as a scissor-shift operation, although the corrections to some
bands are larger than to the others.

Within PBE, the calculated band gap is a direct gap of only
1.86 eV at the � point. After applying the GW correction,
we found the fundamental gap to be the indirect �-R gap of
3.13 eV, although the direct gap at the � point of 3.18 eV is
very close to the �-R gap. A more detailed analysis of the
band structure of bulk rutile TiO2, including the calculation
of quasiparticle effective masses, is given in the Supplemental
Material [36].

TABLE I. Calculated and experimental structural parameters of
rutile TiO2.

a (Å) c/a u

PBE 4.64 0.639 0.305
HSE06 4.58 0.646 0.305
Expt.a 4.59 0.644 0.305

aReference [10].
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FIG. 2. (Color online) Theoretical band structure of rutile TiO2

calculated within DFT using the PBE exchange-correlation potential
(red dotted lines) and using the GW method (blue solid lines).

B. Oxygen vacancy

Qualitatively, the important defect state in the gap associ-
ated with the oxygen vacancy in rutile TiO2 can be understood
as follows. In bulk rutile TiO2, each O atom is surrounded by
three neighboring Ti atoms. When one O atom is removed,
the three Ti dangling bonds (mostly having d character)
form a low-energy state of a1 symmetry [25]. In the neutral
charge state of the oxygen vacancy (V 0

O), the defect state a1

is doubly occupied. In the +1 charge state (V +
O ), the a1 is

singly occupied. In both cases, the occupied a1 state bonds
the neighboring Ti atoms and keeps them from moving away
from the vacancy. In the +2 charge state (V 2+

O ), the a1 state
is unoccupied, which results in much larger displacements of
the Ti atoms outward from the vacancy site.

It is worth noting that if one simply relaxes the 0 or +1
charged systems within PBE, one may find a ground state
which does not necessarily correspond to the electrons bound
to the vacancy site. Recently, first-principles calculations
[37–39] have shown that polarons may form in TiO2. In
addition, experimental evidence of intrinsic polarons in rutile
TiO2 has been seen in electron paramagnetic resonance
measurements [40]. Indeed, in our calculations we find that
a naive relaxation of the +1 charged system leads to a ground
state with an electron away from the vacancy site. We find a
localized state with its eigenvalue in the gap, but the charge
density corresponding to this state is not localized at the
vacancy site but is localized at the next-nearest-neighbor Ti
atom. While in principle a polaron can be formed anywhere
in the supercell, its localization on the next-nearest Ti atom
can be attributed to the finite size of the supercell used in our
calculations. Figure 3(a) shows the calculated charge density
of the state in the gap for such a polaron ground state. However,
for the purpose of calculation of charge transition levels,
this particular state is not appropriate. To stabilize the +1
vacancy state of interest (i.e., the electron bound to the vacancy
site), we used the following procedure. First, we performed
a spin-unpolarized relaxation of the neutral vacancy. This
resulted in a state with two electrons bound to the vacancy
site. Second, we relaxed the +1 charged system starting from

FIG. 3. (Color online) Charge densities of the localized states in
the gap found in the HSE calculations with +1 charged supercells.
Panel (a) shows the ground state, corresponding to a +2 charged
oxygen vacancy and a polaron. Panel (b) shows the +1 charged
oxygen vacancy. The isosurfaces show 10% of the charge densities
of the localized states.

the atomic configuration found in the first step. This procedure
ensured that the defect state remained bound to the vacancy
site. Figure 3(b) shows the charge density of the obtained +1
vacancy defect state. We emphasize again that the state thus
found is not a ground state (i.e., lowest total energy) in our
calculations but rather a local minimum. We found that it is
above the ground state (we call it a polaron ground state) by
1.2 eV.

For the purpose of doing the GW calculation, we used a
PBE mean-field solution from a structure determined with
HSE. This was done because GW calculation requires a
large number of empty bands, and the computational cost of
using HSE as the mean field becomes prohibitive. This is a
reasonable procedure because GW is a perturbative correction
and does not depend sensitively on the starting mean field.
Because our GW calculation is a G0W0 calculation, we
ensured that the resulting PBE defect wave function is similar
to the one obtained from HSE. Figure 4 shows the charge
density from the defect wave function obtained within PBE.

FIG. 4. (Color online) Charge density of the localized defect state
of the +1 charged oxygen vacancy found in the PBE calculation. The
isosurface shows 10% of the charge density. The atomic positions are
the same as in Fig. 3(b).
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FIG. 5. (Color online) Schematic illustration of the calculation of
the charge transition levels ε2+/1+ and ε1+/0 within the DFT + GW

formalism. Arrows indicate the actual paths used in our calculations.

Comparing this figure to Fig. 3(b), we can see that the defect
state charge densities obtained using PBE and HSE for the
same structure are similar.

To calculate the charge transition levels, we started from +1
charged oxygen vacancy. Figure 5 schematically illustrates the
paths in formation energy versus generalized coordinate space
that we took. It has been shown that all paths in this space give
the same value of charge transition levels to within ±0.1 eV
provided that electrostatic corrections are taken into account
[18]. To reduce the computational cost, we performed GW

calculation on the +1 charged oxygen vacancy. This allows
us to calculate both ε1+/0 and ε2+/1+ as can be seen from
Fig. 5. For ε1+/0 we computed the quasiparticle (quasielectron)
energy of the lowest unoccupied localized state (which in our
case turned out to be slightly above the CBM). For ε2+/1+ we
computed the quasiparticle (quasihole) energy of the +1 defect
state. Both quasiparticle energies were evaluated relative to the
valence-band maximum Ev, since we defined εq/q−1 relative
to Ev in Sec. II A.

Table II shows the results of our computed quasiparticle
and relaxation energies as well as the corresponding charge
transition levels. From the table, it is clear that the oxygen
vacancies are negative U defects, where U is the defect
charging energy. Also from the table, one can see that
electrostatic corrections are not negligible and have to be
included in the calculation.

Furthermore, one can calculate the absolute formation
energies as a function of Fermi energy. For a given chemical
potential of oxygen, one needs to know the formation energy of
the neutral vacancy, which can be calculated within DFT, since

TABLE II. Contributions to the charge transition levels coming
from the quasiparticle energy EQP, relaxation energy Erelax, and
electrostatic correction �Ee.s.

QP (all values are given in eV).

ε2+/1+ ε1+/0

EQP 2.58 3.24
Erelax 0.86 −0.29
�Ee.s.

QP −0.44 −0.44
εq/q−1 3.00 2.51

FIG. 6. (Color online) Calculated formation energies of oxygen
vacancies in rutile TiO2 plotted as functions of Fermi level EF in the
(a) oxygen-rich and (b) titanium-rich growth conditions.

for q = 0 the absolute values of Kohn-Sham levels do not enter
in the definition of formation energy [18]. Note also that the
formation energy of the neutral vacancy does not depend on the
value of the Fermi level EF. Then using the definition of charge
transition levels, one can obtain the formation energy for all
the charge states for a given chemical potential of oxygen.
Namely, for a +1 oxygen vacancy V +

O , one can write

Ef
1+(EF) = Ef

0 − ε1+/0 + EF, (6)

while a corresponding relation for V 2+
O is

Ef
2+(EF) = Ef

0 − ε1+/0 − ε2+/1+ + 2EF. (7)

It is worth noting that calculating the formation energies of
the charged defects in this manner does not involve the value
of the valence-band maximum within mean field. This ensures
that the energy scale for the electrons is set only by the GW

calculation and not by DFT calculations.
Figure 6 shows our results for the formation energy of

various charged states of the oxygen vacancy plotted as a
function of Fermi energy EF in the oxygen-rich [Fig. 6(a)] and
oxygen-poor [Fig. 6(b)] growth conditions. For oxygen-rich
growth conditions, the oxygen chemical potential is μO = 0.
In the titanium-rich (oxygen-poor) limit, μO is determined
by the formation of Ti2O3, which implies the condition
2μTi + 3μO = �Hf (Ti2O3). Here �Hf(Ti2O3) is the forma-
tion enthalpy of Ti2O3, which we found to be −15.33 eV (per
formula unit). On the other hand, the stability condition for
TiO2 requires μTi + 2μO = �Hf (TiO2), where the formation
enthalpy �Hf(TiO2) = −9.66 eV (per formula unit). From
these two conditions we find the oxygen chemical potential to
be μO = −3.99 eV in the titanium-rich limit.

As can be seen from Fig. 6, the most stable defects in the
wide range of possible values for Fermi energy are +2 charged
oxygen vacancies. This finding is in qualitative agreement
with the previous HSE study by Janotti et al. (see Fig. 5 of
Ref. [25]). Similar to that work, we also find that the transition
from the +2 to the neutral state occurs at a higher value of
EF than the transition from the neutral to the +1 state (a
feature of the negative U defect). Quantitatively, however, our
values for charge transition levels are smaller than what was
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found in Ref. [25] by ∼0.5 eV. To be more precise, charge
transition levels in that work were found to be at or above
the conduction-band minimum, and, as a result, the V +2

O was
found to be the only stable oxygen vacancy for all values of EF.
In our case, we find that for EF > 2.8 eV the neutral vacancy
can become more stable.

We emphasize that the study of formation energies and the
relative stability of charged oxygen vacancies in rutile TiO2

cannot be done at the PBE level since in this case the defect
levels are not found in the bulk band gap. Therefore, it is
crucial to use more advanced methods, such as, e.g., the one
described above.

V. SUMMARY

In summary, we investigated the oxygen vacancies in rutile
TiO2 in three charge states from first principles using the
DFT + GW approach. The oxygen vacancies were emulated
in a 71-atom supercell. The structural relaxations around the
defects were performed using the hybrid functional (HSE)
method, and charge transition levels and defect formation
energies were calculated within the DFT + GW formalism.
According to our calculations, in a wide range of values for
Fermi energy, 0 < EF < 2.8 eV, the +2 charge state of the
vacancy is the most stable, while for Fermi energies above

2.8 eV the neutral vacancy is stabilized. This result also means
that the oxygen vacancy is found to be a negative U defect.
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