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We study the spin and energy dynamics in one-dimensional spin- 1
2 systems induced by local quantum quenches

at finite temperatures using a time-dependent density matrix renormalization group method. System sizes are
chosen large enough to ensure that the time-dependent data for the accessible time scales represent the behavior
in the thermodynamic limit. As a main result, we observe a ballistic spreading of perturbations of the energy
density in the integrable spin- 1

2 XXZ chain for all temperatures and exchange anisotropies, related to the divergent
thermal conductivity in this model and the exact conservation of the energy current. In contrast, the spin dynamics
is ballistic in the massless phase, but shows a diffusive behavior at high temperatures in the easy-axis phase in the
case of a vanishing background spin density. We extract a quantitative estimate for the spin-diffusion constant
from the time dependence of the spatial variance of the spin density, which agrees well with values obtained from
current-current correlation functions using an Einstein relation. Interestingly, the diffusion constant approaches
a constant value deep in the easy-axis regime. As an example for nonintegrable models, we consider two-leg
ladders, for which we observe indications of diffusive energy and spin dynamics. The relevance of our results for
recent experiments with quantum magnets and bosons in optical lattices is discussed.
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I. INTRODUCTION

The nonequilibrium dynamics of strongly interacting one-
dimensional systems is receiving considerable attention due
to, on the one hand, the possibility of carrying out controlled
experiments with ultracold quantum gases [1–8] as well
as condensed matter experiments that probe the real-time
domain [9,10] and, on the other hand, the substantial interest in
understanding the relaxation dynamics and thermalization in
quantum quenches [11,12], in which a parameter of the Hamil-
tonian is instantaneously or nonadiabatically fast changed to
induce a nonequilibrium situation. One-dimensional systems
that can be solved via Bethe ansatz methods possess an infinite
number of local conservation laws and are therefore candidate
systems for a lack of thermalization in the sense of standard
statistical ensembles [13] due to nonergodicity [14]. These
include continuum models such as the Lieb-Liniger gas and
the Yang-Gaudin model or lattice models such as hard-core
bosons, the Fermi-Hubbard model, and the spin- 1

2 XXZ chain.
The existence of nontrivial local conservation laws can also

lead to strictly ballistic finite-temperature transport in strongly
interacting one-dimensional (1D) systems [15–18] measured
through nonzero Drude weights within linear-response theory.
The most famous example is dissipationless energy transport
in the spin- 1

2 XXZ chain due to the exact conservation of the
energy-current operator [15,19]. Spin transport in the same
model at a vanishing average magnetization appears to be
ballistic in the gapless phase [16,17,20–26] and diffusive in
the massive phase [20,27–31]. Some studies also discussed
the large-spin case S > 1

2 and the classical limit [28,32].
Beyond integrable models, an important question pertains

to the role of integrability-breaking perturbations that, as a
consequence, also violate most nontrivial conservation laws,
thus affecting qualitatively transport properties [20,23,33–36].

Aside from the usual formulation in terms of Kubo formulas,
many studies have recently considered steady-state transport
in open quantum systems coupled to baths where similar
questions, namely, the conditions for the emergence of
ballistic, diffusive, or other forms of transport, are under active
investigation [31,37–40], including classical models [41].

A connection between quantum-quench dynamics and
transport properties can be made in local quantum quenches
that induce finite currents in the spin, particle, or energy
density. Examples include the spreading of density wave pack-
ets [42–44], few-magnon excitations [45,46], or the coupling
of subsystems that initially had different densities [47–51].
To decide whether such density perturbations spread out
ballistically or diffusively, one can resort to following the time
evolution of the spatial variance σ 2 of the density distribution
as a convenient measure, σ ∼ t corresponding to ballistic
and σ ∼ √

t implying diffusive dynamics. The prevailing
picture, based on mostly numerical simulations using the
time-dependent density matrix renormalization group method
(tDMRG) [52–54] at zero temperature [42,43], is that the
linear-response behavior carries over to the real-time and
real-space dynamics in these local quenches: Energy transport
is always ballistic in the spin- 1

2 XXZ chain Ref. [43],
whereas spin dynamics is ballistic in the massless regime [42].
Deviations from ballistic spin dynamics were observed in
the massive regime [42], namely, perturbations in the spin
density spread diffusively on attainable time scales. The
quantitative analysis of the numerical data in this regime
was, however, hampered by finite-size effects (see also the
discussion in Ref. [55]). In nonintegrable models, examples
for a nonballistic spreading of perturbations in the spin density
were found as well, most notably in Heisenberg ladders [42].

On the experimental side, there are exciting recent devel-
opments from both condensed matter physics and ultracold
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atomic gases that realize such local quenches focusing on
the spin, energy, or particle dynamics. Low-dimensional
quantum systems are known to feature a significant contri-
bution from magnetic excitations to the thermal conductiv-
ity [56,57], most notably in the spin-chain materials SrCuO2,
Sr2OCu3 (Refs. [58–60]), and in the spin-ladder system
(Sr,Ca,La)14Cu24O41 [61,62]. More recently, experimentalists
succeeded in studying the heat dynamics in these strongly
correlated materials in real time using two setups. First, the
spreading of heat in the surface of spin-ladder materials was
monitored [63,64] and, second, the propagation of a heat
pulse through the bulk of quasi-one-dimensional materials was
studied over macroscopically large distances [9]. The analysis
of the spatial variance for the first approach suggests diffusive
dynamics [64].

While it is tempting to relate the experimental observation
of large thermal conductivities in certain spin-chain mate-
rials [58–60] to conserved currents for the underlying spin
Hamiltonians, many other effects need to be taken into account
to obtain a full description, including phonons [65–68],
impurities [69–71], or spin-drag effects [68,72]. It is at present
still an open question as to whether anomalous transport due
to exact conservation laws of one-dimensional spin models
survives these perturbations in such a way that the proximity
of a realistic system to integrable models can be viewed as the
core reason for the large one-dimensional heat conductivities.

In experiments with ultracold atomic gases, pure Hubbard-
type models can be realized [1,73,74] without a coupling
to the lattice and, ideally, without impurities. As a trade-
off, one deals with typically inhomogeneous densities and
much smaller particle numbers than in condensed matter
physics [75]. Bosons in a single band with an onsite repulsion
realize, in the limit of infinitely strong interactions, the
spin- 1

2 XX model [76]. These hard-core bosons map exactly
to noninteracting fermions and, therefore, this system is
integrable and possesses a conserved particle current. As
a consequence, one expects ballistic dynamics. In cold-gas
experiments, this can, for instance, be probed by removing
the trapping potential, allowing the gas to expand in the
optical lattice in the so-called sudden expansion [5,7,77]. In
a recent experiment [7], ballistic dynamics of 1D hard-core
bosons was convincingly demonstrated, providing a clear
realization of anomalous transport due to the existence of
nontrivial conservation laws in an integrable quantum model.
Coupling one-dimensional systems of hard-core bosons to
either two-dimensional systems [7] or two-leg ladders [78]
results in deviations from ballistic dynamics, which in the
two-dimensional (2D) case has been argued to be related to
diffusion [5,7] (see also Refs. [79,80]).

In our work, we advance the study of the spreading of
perturbations in the spin or energy density in spin- 1

2 systems
to finite temperatures by exploiting recent progress with
finite-temperature, real-time density matrix renormalization
group simulations [25,49,81]. We consider two types of local
quenches: (i) In the T quench, we prepare initial states such that
in the center, there is a short region with T2 > T1 [see Fig. 1(a)]
embedded into a larger system with a constant background
temperature T1. The spin density is held at zero in this setup.
(ii) In the second case, the Sz quench, the system is at a
fixed temperature T , but the central region has a magnetization
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FIG. 1. (Color online) Sketch of the initial states. (a) T quench.
The system has a constant spin density 〈Sz

n〉 = 0 (dashed line). The
central N0 sites are prepared at a temperature T2 > T1, where T1 is
the temperature of the bulk of the system (T profile: solid line). (b)
Sz quench. The system is at a constant background density, but N0

sites in the center have a finite spin density Sz
2, while in the bulk,

Sz
1 = 〈Sz

n〉 = 0.

Sz
2 > 0 whereas the background density is kept at Sz

1 = 0 (if
not stated otherwise, Sz

2 = 1
2 ). We study the finite-temperature

dynamics induced through these quenches in the integrable
spin- 1

2 XXZ chain as well as nonintegrable XXZ two-leg
ladders. Our analysis is mainly based on the time dependence
of the spatial variance σ 2

ν of the spin and energy densities
(ν = s,e, respectively), following Refs. [42,43].

As a main result, we observe a ballistic spreading of energy,
i.e., σe ∝ t at all temperatures and for all exchange anisotropies
in the spin- 1

2 XXZ model in qualitative agreement with linear-
response theory, both for the T and the Sz quenches. Spin
dynamics is ballistic in the gapless regime of the 1D chain with
σs ∝ t , whereas in the massive regime our data are consistent
with diffusive behavior, i.e., σs ∝ √

t .
We further present quantitative results for the spin-diffusion

constant of the XXZ chain at infinite temperature and in the
massive regime, obtained from both Sz quenches and Einstein
relations, where we extract the dc spin conductivity from the
long-time limit of current correlation functions. Our results
from these two approaches, which are in good quantitative
agreement, indicate a saturation of Ds at large anisotropies
�, in contrast to the predictions from Refs. [29,31]. Field-
theoretical results [82–84] for the low-temperature regime
of gapped spin models suggest that the diffusion constant is
inversely proportional to the gap, which deep in the easy-axis
phase is given by the exchange anisotropy �.

In the case of nonintegrable systems, we focus our attention
on two-leg ladders. For both Sz and T quenches, we observe
noticeable deviations from ballistic dynamics, and we extract
the energy-diffusion constant at infinite temperatures. We
discuss these results in the context of recent experiments with
quantum magnets [9,63,64] and bosons in optical lattices [7].

The plan of this exposition is the following. Section II
introduces the model Hamiltonians and definition for the
spatial variance, and provides technical details on our tDMRG
simulations. In Sec. III, we present our results for Sz and
T quenches in the integrable XXZ model. We discuss the
emergent velocities for the spreading of energy and spin in
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the ballistic cases and present quantitative results for the
spin-diffusion constant in the easy-axis regime. Section IV
summarizes our results for the two-leg ladder geometry. We
conclude with a summary in Sec. V.

II. MODELS AND DEFINITIONS

The first model of interest is the spin- 1
2 XXZ chain:

H = J

N−1∑
n=1

[
Sx

nSx
n+1 + Sy

nS
y

n+1 + �Sz
nS

z
n+1

]
, (1)

where S
μ
n , μ = x,y,z, are the components of a spin- 1

2 operator
acting on site n of a chain of length N . � parametrizes the
exchange anisotropy, J sets the energy scale and will be set
to unity hereafter (� = 1). The model has a critical gapless
phase for |�| � 1 and gapped phases with antiferromagnetic
order and ferromagnetic order for � > 1 and � < −1,
respectively [85].

The second model studied here is a two-leg spin ladder
given by

H = J

N−1∑
n=1

λ=1,2

[
Sx

n,λS
x
n+1,λ + S

y

n,λS
y

n+1,λ + �Sz
n,λS

z
n+1,λ

]

+ J2

N∑
n=1

[
Sx

n,1S
x
n,2 + S

y

n,1S
y

n,2 + �Sz
n,1S

z
n,2

]
. (2)

In this equation, λ = 1,2 labels the upper and lower legs, J is
the longitudinal coupling along each leg, and J2 is the coupling
along rungs of the ladder. We use open boundary conditions
for both models.

Our analysis will primarily focus on the time dependence
of the spatial variance of the spin and energy densities ρν

n

(ν = s,e for spin and energy, respectively), ρs
n = 〈Sz

n〉, and
ρe

n = 〈hn〉, respectively. We define the energy density as

hn = J
[
Sx

nSx
n+1 + Sy

nS
y

n+1 + �Sz
nS

z
n+1

]
(3)

for the chain, whereas for the ladder we assign the term

hn = J
∑
λ=1,2

[
Sx

n,λS
x
n+1,λ + S

y

n,λS
y

n+1,λ + �Sz
n,λS

z
n+1,λ

]

+J2

2

[
Sx

n,1S
x
n,2 + S

y

n,1S
y

n,2 + �Sz
n,1S

z
n,2

]

+J2

2

[
Sx

n+1,1S
x
n+1,2 + S

y

n+1,1S
y

n+1,2 + �Sz
n+1,1S

z
n+1,2

]
(4)

The spatial variance of the density distribution is defined as

σ 2
ν (t) = 1

Nν

N−n0∑
n=n0

(
n − nν

c

)2 [
ρν

n (t) − ρν
bg

]
, (5)

where ρν
bg is the bulk background density, nν

c is the center of
the wave packet, n0 cuts off boundary effects from the left and
right ends, and the normalization constant reads as

Nν =
N−n0∑
n=n0

[
ρν

n (t) − ρν
bg

]
. (6)

We identify the dynamics as ballistic if

δσν =
√

σ 2
ν (t) − σ 2

ν (t = 0) = Vν t, (7)

where Vν has units of velocity. Diffusive dynamics in 1D
should show up via a much slower growth of the variance
given by

δσν =
√

2Dν t, (8)

where Dν is the diffusion constant.
For later comparison, we quote the usual definition of

ballistic transport within linear-response theory. The real part
of the conductivity σν(ω) can be decomposed into the divergent
zero-frequency contribution weighted with the Drude weight
Dν and a regular part:

Re σν(ω) = 2πDνδ(ω) + σreg,ν(ω). (9)

A nonzero Drude weight implies ballistic transport.
The expansion of a local perturbation in the spin or

energy density can be computed efficiently using the real-
time [52–54,86] finite-temperature [87,88] density matrix
renormalization group [89–92] (DMRG) algorithm introduced
in Ref. [25]. DMRG is essentially controlled by the so-called
discarded weight ε. We ensure that ε is chosen small enough
[an example for a DMRG error analysis is shown in Fig. 7(b)]
and that N is chosen large enough to obtain “numerically
exact” results in the thermodynamic limit. With N ∼ 200,
this is always ensured (see the finite-size analysis in, e.g.,
Refs. [25,26]), while smaller systems would also be sufficient.
We stop our simulation once the DMRG block Hilbert space
dimension (see Ref. [91]) has reached values of about 1000–
2000.

III. INTEGRABLE MODEL: THE SPIN- 1
2 XXZ CHAIN

We will now study the Sz and T quenches in the integrable
spin- 1

2 XXZ chain. We first discuss the time dependence of
spatial variances, which suggest ballistic energy dynamics
for all �, while spin dynamics is ballistic for 0 � � < 1.
Second, we discuss the dependence of the velocities Vν ,
ν = e,s, in the ballistic regimes on temperature and exchange
anisotropy. Third, we extract the spin-diffusion constant from
Sz quenches at infinite temperature and analyze its dependence
on �. Our findings for Ds are corroborated by computing the
diffusion constant from current correlation functions, yielding
quantitative agreement with the spreading of perturbations in
the spin density.

A. Time dependence of the variance in the T and Sz quenches

Figure 2 shows typical spin and energy density profiles
recorded in an Sz quench at infinite background temperature
for both the massless (� = 0.5) and massive regime (� =
1.5). In all cases, with the exception of spin dynamics at � =
1.5, we observe a fast expansion of the initial perturbation
and a splitting into two jets similar to the behavior at zero
temperature [42,43]. The behavior of the spin density at � =
1.5 indicates the formation of a diffusive core that expands
much slower than energy at the same �. In a T quench in the
XXZ model, the density profiles always exhibit a spreading
into two jets [see, e.g., Fig. 9(a) for the case of � = 0.5].
Figure 3 shows that the qualitative behavior is the same at
lower temperatures T < ∞. Note the structure in the density
profiles [see Figs. 3(b) and 3(d)], which are particularly evident
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FIG. 2. (Color online) Sz quench in the integrable model. Expansion of the spin and energy densities after preparing a local spin-wave
packet of size N0 = 4 at time t = 0 in the center of a (a), (b) gapless and (c), (d) gapped XXZ spin chain of total size N = 204 at infinite
background temperature. (a)–(c) and (d) exhibit ballistic and diffusive behavior, respectively.

in the spin density. These can be related to single excitations
split off the central block with full polarization in the initial
state (compare Refs. [47,93]).

Results for the spatial variances δσ 2
ν (t) are shown in

Fig. 4(a) for an Sz quench for three temperatures T = 0.2,1,∞
at � = 1.5. The inset shows the time dependence of the
logarithmic derivative

αν = d ln δσ 2
ν (t)

d(ln t)
. (10)

Energy always spreads ballistically with δσ 2
e ∝ t2, both for Sz

and T quenches [see the data shown in Figs. 4(a) and 4(b),
respectively]. For the spin density, we observe δσ 2

s ∝ t2 for
� = 0.5 (not shown in the figures), while clear deviations
from this ballistic behavior emerge for � = 1.5. In that case,
the logarithmic derivative decreases as a function of time,
indicating a crossover to diffusive dynamics. The cleanest
example is infinite temperature T = ∞. In that case, the
logarithmic derivative αs saturates close to αs � 1 at the
longest times reached, suggestive of diffusive spin dynamics at

FIG. 3. (Color online) The same as in Fig. 2 but for T = 0.2. Note the structure in the density plots for the spin.
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FIG. 4. (Color online) Time evolution of the spatial variance of the spin and energy densities shown in Figs. 2 and 9. Ballistic and diffusive
behavior is signaled by δσ 2

ν (t) ∼ t2 and δσ 2
ν (t) ∼ t , respectively, which can be easily identified by computing the logarithmic derivative. (a)

Sz quench. Expansion of a spin-wave packet in a gapped XXZ chain at � = 1.5 for T = ∞ [Figs. 2(c) and 2(d)] as well as for T = 1 and 0.2.
(b) T quench. Width of energy-wave packets of the XXZ chain with � = 0.5 for T1 = 5,1,0.25 and T2 = ∞ [compare Fig. 9(a) for T1 = 5].
Dashed lines are fits to a + bt2 for t > 5.

finite temperatures. This result is qualitatively consistent with
the conclusions of Refs. [27,29,31,37,55,83,84,94].

For the special case of � = 1 (results not shown here), the
qualitative behavior of spin dynamics is still debated [18,21–
26,31,95,96]. By studying the time dependence of the spatial
variance in finite-temperature Sz quenches, we make the
interesting observation that on the accessible time scales,
δσ 2

s (t) ∝ tαs (T ), i.e., αs depends on temperature. At low T ,
αs ≈ 2, while at infinite temperature, αs ≈ 1.5. This could be
consistent with several scenarios. Žnidarič [31,95] suggested
that the behavior at � = 1 corresponds to anomalous diffusion
at infinite temperature, implying 1 < αs < 2. His conclusions
are derived from analyzing the steady state of a spin chain
coupled to baths. The analysis of linear-response functions
has so far yielded no conclusive picture on the absence or
presence of a ballistic contribution, with some exact diago-
nalization studies [24] arguing for a vanishing Drude weight,
while other authors argue that a finite Ds can not be ruled
out [16,23].

Karrasch et al. (Ref. [26]) demonstrated that the relative
weight of the Drude weight compared to finite-frequency
contributions can at best be small at infinite temperature
at � = 1, using extrapolated exact diagonalization data.
This would imply that ballistic dynamics in this case can
only be seen on very long-time scales in the wave-packet
dynamics studied in our work (see also the discussion in
Ref. [18]).

B. Analysis of velocities in the ballistic regime

1. Spin-perturbation velocity Vs

In the ballistic regime (spin transport for 0 � � < 1 and
energy transport at all �), the prefactor Vν has the meaning
of velocity. For small perturbations spreading out at zero
temperature and in the Luttinger liquid phase, this velocity
equals the renormalized spinon velocity [42,43].

Our results for the finite-temperature case are shown in
Fig. 5(a). For the Sz quench, we observe that (i) Vs does not
depend on β = 1/T at � = 0, (ii) it increases monotonically

with β in the interacting case 0 < � < 1, and (iii) it only
weakly depends on N0. We will now try to understand Vs

qualitatively in the limits of high and low temperatures.
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FIG. 5. (Color online) (a) Sz quench. Velocity Vs for the ballistic
spreading of perturbations in the spin density in Sz quenches with
N0 = 4 as a function of inverse temperature β = 1/T . The stars at
β = 5 are the spinon velocity vs/

√
2 from Eq. (13) calculated for � =

0,0.2,0.5, cos(π/4), cos(π/5),1 (bottom to top). Inset: Vs(�)/Vs(0)
and spin-Drude weight Ds(�)/Ds(� = 0) at T = ∞ versus �. The
data for the Drude weight are taken from Ref. [26]. (b) Energy velocity
Ve extracted from Sz quenches (open symbols) and T quenches (solid
symbols) versus inverse temperature β = 1/T for various values of
�. For the T quench, T = T1 and T2 = ∞. Inset: Ve and Drude
weight D∞

e versus � at T = ∞. The result for De was derived from
the Bethe ansatz (BA) in Ref. [19] and D∞

e = limT →∞[T 2De(T )].
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For the noninteracting system � = 0, the velocity Vs is
given by

V 2
s = 1

2δSz

∑
k

v2
k δn(εk,β), (11)

where δSz = Sz for the initial state in Sz quenches and
δn(εk,β) is the change in the quasimomentum distribution
function of spinless fermions at inverse temperature β induced
by the quench [43]. εk = −J cos(k) is the dispersion at � = 0
with group velocity vk = J sin(k).

The fact that in the initial state the central region of width
N0 is fully polarized implies that the momentum distribution
changes across the whole Brillouin zone. For noninteracting
particles, we conclude from Eq. (11) that Vs is temperature
independent with

V 2
s = J 2/2. (12)

While this argument can not be strictly applied to the
interacting case since there Eq. (11) is not valid, we still
conjecture that at low temperatures and for small N0 or
sufficiently small Sz

2 < 1
2 ,

Vs(�) = vs(�)/
√

2,

where vs is the renormalized spinon velocity [97]

vs = J
π

2

sin γ

γ
, � = cos(γ ). (13)

This behavior, i.e., a decrease of Vs with increasing �, is
qualitatively consistent with our numerical results at low tem-
peratures β = 5 [see Fig. 5(a)]. Note that at low temperatures
and in the gapless regime where conformal field theory is valid,
we can relate Vs to the spin-Drude weight since the latter is [98]

Ds = π

8

sin γ

γ (π − γ )
; � = cos(γ ), (14)

i.e., Ds ∝ K vs , where K is the Luttinger parameter. Therefore,
in the low-temperature regime,

Ds ∝ K Vs. (15)

At infinite temperatures, Vs(T = ∞) decreases with in-
creasing �, opposite to the behavior at low temperatures: The
velocities follow a similar trend as the infinite-temperature
Drude weight, which decreases monotonously as a function of
� for � > 0, according to some studies [see Refs. [23,24,26];
other studies that computed only lower bounds to Ds(T = ∞)
suggest a fractal, nonmonotonic dependence of Ds(T = ∞)
on � [17,99]]. For comparison, we show both quantities
Vs(�) and T Ds(�) at T = ∞ in the inset of Fig. 5(a),
which, remarkably, exhibit a very similar dependence on �.
Therefore, the decrease of Vs as � approaches � = 1 is related
to the disappearance of the ballistic contribution, which is
believed to be fully absent for � > 1.

Because of these opposite trends of Vs = Vs(�) at T = 0,
where Vs(� > 0) is a decreasing function with Vs(� > 0) >

Vs(� = 0), versus T = ∞, where Vs(� > 0) < Vs(� = 0),
we qualitatively understand the overall temperature depen-
dence of Vs = Vs(β) for 0 � � < 1, while at present we can
not analytically predict the numbers beyond T ≈ 0.

2. Energy-perturbation velocity Ve

For the velocities associated with energy spreading and
for the T quench, we observe that these depend on T2 at
low-background temperatures T1. This behavior is similar to
the results of Ref. [43], where the spreading of energy at zero
temperature was studied, with initial states that contained a
central region with E2 > E0, where E0 is the ground-state
energy. The initial states in Ref. [43] also have a boxlike
structure and, therefore, in both cases, excitations all across
the Brillouin zone are excited, and not only those with a
linear dispersion. This can happen even for small δT =
T2 − T1 and δE = E2 − E0, respectively, such that effects
of a nonlinear dispersion and band structure always become
relevant, rendering the ballistic expansion velocities usually
δT or δE dependent. This is obvious from the expression for
the ballistic velocity for the noninteracting case [43]

V 2
e = 1

δE

∑
k

εkv
2
k δn(εk),

(16)
δn(εk) = ninit(εk) − n(εk,β1),

where ninit(εk) is measured in the initial state. Eq. (16) is in
agreement with our numerical results.

In the following, we restrict the analysis of Ve to those
temperatures T1 for which Ve is independent of T2. The results
for Ve extracted from either Sz or T quenches agree with each
other for � = 0, yet we observe deviations for finite � > 0.

Our results for Ve versus inverse temperature are shown
in Fig. 5(b) for various values of 0 � � < 1, unveiling a
weak dependence on β, with a slight decrease towards higher
temperatures. Moreover, at all T , Ve increases with � and
therefore follows the trend of the infinite-temperature thermal
Drude weight [19,100] [see the inset in Fig. 5(b)]. Note that
at � = 0 and at T = ∞, an Sz quench does not induce a
change in the energy density and, therefore, Ve = 0 in that
case. The low-temperature behavior is again controlled by the
renormalization of the spinon velocity vs .

C. Spin-diffusion constant in the easy-axis regime � > 1

We extract the infinite-temperature diffusion constant Ds in
two ways: (i) From the time dependence of the spatial variance
δσ 2

s in Sz quenches and (ii) from the time dependence of
current-current autocorrelations functions using an Einstein
relation.

In Sz quenches, Ds depends on N0 but saturates as we
decrease N0. We have also investigated initial states with
0 < Sz

2 < 1
2 , for which the diffusion constant agrees with our

standard Sz quench as N0 is decreased. To obtain Ds , we fit

δσ 2
s (t) = a0 + 2Ds t (17)

to the spatial variance at the longest times where it increases
linearly in time. We resolve a linear increase of δσ 2

s (t) for
high temperatures, whereas at lower temperatures, where
presumably the diffusion constant will increase from its
infinite-temperature value, we usually do not reach such a
saturation. Even at T = ∞, we underestimate Ds(t) because
of the finite times reached in our tDMRG simulations.

As an estimate for the diffusion constant at T = ∞
and � = 1.5, we obtain Ds ≈ 0.63J from the spreading of
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FIG. 6. (Color online) XXZ chain, � > 1, diffusion constant.
Infinite-temperature diffusion constant estimated from current-
current correlation functions (squares) compared to the results from
open systems coupled to baths (Ref. [31]), and exact diagonalization
(star, Refs. [27,31]). Star: Data from Refs. [27,29,31] for � = 1.5; the
dashed line Ds ∝ 1/� is the large-� prediction from Ref. [31]. We
further include our estimates from the expansion of local spin-density
perturbations in Sz quenches for N0 = 2 (circles), which follow the
same trend as the data obtained from current correlations.

wave packets. This value is comparable to, but larger than
results from the literature that were obtained with either
exact diagonalization [27–29] or simulations of steady-state
transport in open systems coupled to baths using tDMRG
methods [31,37].

To further elucidate the � dependence, we plot our results
for Ds versus 1/�, inspired by a prediction for the behavior
of the diffusion constant at large � 
 1 by Žnidarič [31] (see
also the discussion in Refs. [28,29]):

Ds ≈ 0.74/� (18)

(note that in Ref. [31], a different definition for the spin current
is used and hence the numbers are larger by a trivial factor of 4).
This functional form was motivated by perturbative arguments
and agrees with tDMRG simulations for steady-state transport
in open systems at sufficiently large � > 1 [31]. A similar
expression was derived from an analysis of moments of the
Fourier transform of spin-density correlation function [94]
(see also Refs. [101,102]), with a slightly larger prefactor
Ds ≈ 0.89/�. However, our results qualitatively disagree with
Eq. (18) for large �, as is evident from Fig. 6. Our data are
rather described by

Ds = D∞
s + a

�2
+ . . . , (19)

where a is a constant.
The diffusion constant Dν can also be extracted from

the long-time behavior of current correlation functions in
combination with an Einstein relation:

Dν = σdc,ν

χν

, (20)

where σdc,ν is the dc conductivity and χν is the associated static
susceptibility.

We follow this approach to test our results for Ds obtained
from Sz quenches. As an improvement of the estimate ofDs (T )

from exact diagonalization (see Refs. [27,29]), we use finite-
temperature DMRG to evaluate current-current correlation
functions (see Refs. [25,26,49])

Cν(t) = 〈jν(t)jν〉, (21)

where jν is the spin (ν = s) or energy (ν = e) current. We
exploit a recently introduced trick [81]

Cν(2t) = 〈jν(2t)jν(0)〉 = 〈jν(t)jν(−t)〉 , (22)

which allows us to access time scales twice as large within
DMRG.

Following Ref. [27], we introduce a time-dependent diffu-
sion constant Dν(t), now related to the time dependence of
Cν(t):

Dν(t) = 1

N χν

∫ t

0
dt ′ Cν(t ′). (23)

Here, χν is the static susceptibility

χν = 1

N

[〈
X2

ν

〉 − 〈Xν〉2
]
, (24)

where Xs = Sz and Xe = H . At infinite temperature, χs = 1
4

for sufficiently large N .
The time dependence of Cs(t) and Ds(t) for T = ∞ at

� = 1.5,3 is shown in Fig. 7. For � = 1.5, Ds(t) appears
to saturate at t ≈ 4/J , yet then starts to increase again. Our
results agree quantitatively with the exact diagonalization data
from Refs. [28,29] for t � 8/J , yet we are able to reach
t � 17/J and in this time window, there are no finite-size
dependencies. Therefore, the increase of Ds(t) beyond the
plateau at Ds(t) ≈ 0.6J (the value reported in Refs. [27–29])
is not related to a residual, finite-size Drude weight, which
would lead to an increase at large t with a slope that is larger
by a factor of 4 for the system sizes considered here (compare
Ref. [23]). Note that for small � > 1, our tDMRG simulations
forDs(t) do obviously not reach time scales at which saturation
is reached and therefore (see the example of � = 1.5 in Fig. 7),
the results for small � are only a lower bound to the true
diffusion constant. Entanglement also grows faster the larger �

is, but fortunately, the time-dependent diffusion constant also
saturates faster deeper in the Ising regime (compare Fig. 8).

The qualitative behavior ofDs(t) becomes more transparent
by inspecting the data for larger values of �: Cs(t) exhibits
an oscillatory behavior at large times, leading to maxima. In-
between those maxima, Ds(t) takes roughly constant values,
leading to a sequence of plateaus in time. Such a behavior was
anticipated in Ref. [29], where, however, the residual Drude
weight screened all this long-time dynamics for the smaller
system sizes N � 20 considered there.

Most strikingly, the results from our two approaches of
estimating Ds (i.e., from the time dependence of the spatial
variance in Sz quenches and Einstein relations), agree fairly
well with each other (see Fig. 6) but are inconsistent with
Eq. (18) at large �. Rather, Ds appears to saturate at large
�. We attribute the quantitative discrepancies at small � � 1
between our two ways of extracting of Ds to the different time
scales reached in computing time-evolving density profiles
versus current correlation functions.

To get a picture of the dynamics of the XXZ Hamiltonian
at large � 
 1 = Jxy [with Jxy = 1 being the prefactor of the
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FIG. 7. (Color online) XXZ chain, � > 1, Einstein relation.
(a) Spin-current correlation function (solid lines) at infinite tem-
perature for � = 1.5,3 and its integral (dashed lines, N = 200).
From this we conclude Ds > 0.6 in the case of � = 1.5 [compare
Eq. (23)] since Ds(t) keeps increasing for t > 8/J . Since on the time
scales reached, the data are converged with respect to system size,
the increase for large times is not due to a residual Drude weight
(which, based on the exact diagonalization (ED) data from Ref. [23],
would need to be a much faster increase for this N ). The thin lines
are the ED results for N = 18 (thin dashed line) and N = 20 (thin
solid line) for Ds from Ref. [29] by Steinigeweg and Brenig (STB).
(b) Dependence on the discarded weight ε and Trotter step size �t .
By rewriting 〈js(2t)js(0)〉 = 〈js(t)js(−t)〉, time scales twice as large
can be reached.
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FIG. 8. (Color online) Spin-current correlation function of the
XXZ model at large anisotropies � = 20 and various temperatures.

kinetic energy formed by the first two terms in Eq. (1)], let
us divide the states into “sectors” of constant Ising energies
(i.e., with the same value of the � term in the Hamiltonian).
Then, the action generated by the Jxy term is only within a
sector, up to terms of size (Jxy)2/�, which we ignore. At low
temperature, we need to analyze the low-lying sectors, while
at infinite temperature, all Ising sectors are weighted equally.
The numerical observation that the diffusion constant is finite
in the T 
 � 
 Jxy limit suggests that a finite fraction of
sectors have nonzero diffusion constant and that at most a set
of measure zero are ballistic. The fact that Ds does not depend
on � implies that scattering within each sector (controlled by
Jxy) dominates over intraband processes.

An interesting case of nearly ballistic transport, but
with zero Drude weight, appears as follows. The physics
at large antiferromagnetic � 
 T 
 Jxy can be analyzed
analytically. The dynamics in this limit breaks up into
decoupled sectors as above with the same Ising model energy,
and the ground states are the two antiferromagnetic Ising
states, which are static in this limit. The lowest excited states
have a single domain wall of the antiferromagnetism (i.e.,
a single point where two up spins or two down spins are
adjacent). This domain wall is hopped one site in either
direction by the Jxy term, so it will move ballistically if
there is a single such wall. However, the number of such
walls is exponentially small once �/T is large. This leads
to the following picture: As T → 0, the distance traveled by
a domain wall before it interacts with others and ceases to
be ballistic diverges. At the same time, the number of such
domain walls, or equivalently diffusing spins, goes to zero.

This increasingly ballistic behavior is consistent with our
numerical observations at low temperature, where we cease
to see the current decay (see Fig. 8), and with the idea that
the Drude weight is zero at any nonzero temperature (and
at T = 0 where only the two ground states are present). A
similar tradeoff between exponential factors in the density of
excitations and the distance between them occurs in the study
of transport in massive nonlinear sigma models by Damle and
Sachdev [83,84]. For gapped one-dimensional models with
triplet excitations, they predict a universal low-temperature
behavior for temperatures smaller than the spin gap �gap of
the form

Ds ∝ 1

�gap
e�gap/T . (25)

Finally, our results for the diffusion constant could be put
to a quantitative experimental test by measuring the diffusion
constant in quantum gas experiments that realize spin- 1

2 XXZ
Hamiltonians. For instance, the dynamics of few-magnon ex-
citations has recently been studied [8,103] in two-component
Bose gases, which for strong repulsive interactions map to
an XXZ-type Hamiltonian with anisotropies (� ≈ 1) and a
ferromagnetic exchange.

IV. NONINTEGRABLE MODELS: THE
TWO-LEG LADDER

We next consider a nonintegrable system that is relevant in
the context of recent experiments: Spin- 1

2 XXZ two-leg ladders
(J2 > 0). We focus on the cases � > 0 in Eq. (1) and the
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FIG. 9. (Color online) T quench. Expansion of a local energy wave packet defined by T1 = 5, T2 = ∞, N = 100, N0 = 4 within (a) the
XXZ chain (J2 = 0) at � = 0.5, (b) a two-leg ladder with � = 0.5, J2 = 1, (c) the XXZ chain (J2 = 0) at � = 0, and (d) a two-leg XX ladder
with � = 0, J2 = 1.

specific example of XX ladders [J2 > 0 and � = 0 in Eq. (1)].
The former system is interesting for the interpretation of
time-resolved heat transport measurement on
(La,Ca,Sr)14Cu24O41 (Refs. [9,63,64]), while the latter
can be realized with hard-core bosons in optical lattices (see
the discussion in Ref. [78]).

Unfortunately, the time scales for which we obtain reliable
data are shorter for the ladders than for chains. Moreover, the
numerical simulations get expensive in general. We therefore
mostly focus on the cases of � = 0 and 0.5, while we expect
the qualitative picture to carry over to Heisenberg ladders as
well (� = 1), which are relevant in the context of condensed
matter experiments.

Figure 9 shows contour plots of the energy density in a T

quench for a chain (J2 = 0) and a ladder with J2 = 1, both
with � = 0.5. The qualitative differences are evident: The
spreading of energy for J2 > 0 is much slower with a well-
defined high-density core. The corresponding variances (for
� = 0 and 0.5) are displayed in Fig. 10: The behavior of
both ladder systems is consistent with energy diffusion at the
longest times, i.e., a linear increase of δσ 2

e . The difference with
the integrable cases (� = 0.5 and 0 at J2 = 0) is evident.
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FIG. 10. (Color online) Variance of the energy density corre-
sponding to the data shown in Fig. 9.

By following the time dependence of the spatial variance
δσ 2

e (t) shown in Fig. 10, we obtain a lower bound for the
energy diffusion constant of ladders at infinite temperature,
namely, De ≈ 0.88J for � = 0.5 and De ≈ 0.29J for � = 0.

Qualitatively similar observations for the time dependence
of the spatial variance can be made for Sz quenches (results not
shown here): For a sufficiently large J2 we are able to resolve
clear deviations from ballistic dynamics. A more quantitative
analysis of spin- and energy-diffusion constants as a function
of temperature and J2 is left for future work.

The behavior of the energy spreading in ladders with
J2 = 1 is similar to the analysis of experimental results with
complex metal oxides [64], where a diffusive spreading of
heat was observed by measuring temperature profiles in the
surface of oxide materials (the initial spatially inhomogeneous
temperature profile was induced by laser light). However,
a direct and quantitative connection with these experiments
can at present not be made since the time scales reached in
tDMRG simulations are too short to estimate the temperature
dependence of De(T ). In the future, one would also be
interested in including phonons into numerical simulations.

The results for the XX ladder support the picture suggested
in Ref. [78], where the sudden expansion of hard-core bosons
on a ladder was analyzed, equivalent to spin transport in our
model. The sudden expansion is the release of particles from
a region with a finite density into an empty lattice, realized in
recent experiments with quantum gases in optical lattices [5,7].
In the limit of � = 0, a 1D system of either hard-core
bosons or spin- 1

2 moments maps to free spinless fermions and,
consequently, both the energy and spin current are conserved.
Turning on J2 renders these fermions interacting, breaking
the conservation laws of the free-fermion point, which are
the occupation of fermionic quasimomenta. DMRG simula-
tions [78] for the sudden expansion of hard-core bosons on
ladders find clear deviations from ballistic dynamics, however,
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the interpretation of the sudden expansion is more complicated
since the density overall decreases during the expansion in
the lattice. Therefore, the density dependence of the diffusion
constant (in the diffusive regime) becomes relevant, rendering
the diffusion equation nonlinear. In our present setup, we probe
directly the usual linear diffusion equation, clearly showing
diffusive high-temperature dynamics for hard-core bosons on
a ladder.

An interesting possible experiment would be the analysis
of the time-dependent spreading of a perturbation in the
particle density of hard-core bosons in optical lattices at
finite temperatures (or with nonequilibrium initial conditions),
which could be realized using so-called single-site resolution
and manipulation techniques [8,103–106]. For a 1D system,
the spreading must be ballistic (see also Ref. [7]), yet for two
ladders, our results suggest a slow and diffusive expansion.
For hard-core bosons 2D experimental results for sudden
expansions [7] are consistent with diffusive dynamics.

Finally, we mention that other nonintegrable spin models
that are obtained by perturbing the integrable XXZ chain show
a similar behavior in Sz and T quenches, including, e.g., chains
with a staggered field.

V. SUMMARY AND DISCUSSION

In this work, we studied the real-time and real-space
dynamics of spin and energy in one-dimensional quantum
spin systems at finite temperatures. The time evolution was
induced through local quenches in which initial states were
prepared that have either an inhomogeneous temperature
(T quench) or spin-density profile (Sz quench). Using the
purification trick [25,81,87], we applied the time-dependent
DMRG method to follow the time evolution of the spin and
energy densities. The background spin density is kept at zero,
equivalent to half-filling in the language of spinless fermions.
As a main qualitative result, we observe ballistic energy

dynamics in the spin- 1
2 XXZ for all exchange anisotropies

studied. Spin dynamics is ballistic in the gapless phase,
whereas at high temperatures and in the massive regime,
we clearly observe diffusive dynamics on the accessible time
scales. This allowed us to quantitatively estimate the infinite-
temperature diffusion constant Ds , which for large �/J < ∞
becomes independent of �, in contrast to earlier numerical
results for open systems [31]. The results obtained for the
diffusion constant from the Sz quenches are corroborated
by extracting the diffusion constant from current correlation
functions using an Einstein relation.

We further considered two-leg ladders as an example
of nonintegrable models, for which we find indications of
diffusive dynamics both for spin and energy, allowing us
to extract a lower bound to the infinite-temperature energy
diffusion constant. We discussed our results in view of recent
experiments with quantum magnets [9,64] and bosons in
optical lattices [7]. Future experiments with either quantum
gases or quantum magnets could provide a quantitative test of
our predictions for energy and spin-diffusion constants.

Note added. Recently, we became aware of related work by
Steinigeweg, Gemmer, and Brenig [107].
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Mech.: Theory Exp. (2004) P04005.

[54] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401
(2004).
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Meisner, W. Brenig, and A. Revcolevschi, Phys. Rev. B 64,
184305 (2001).

[63] M. Otter, V. Krasnikov, D. Fishman, M. Pshenichnikov,
R. Saint-Martin, A. Revcolevschi, and P. van Loodsrecht, J.
Magn. Magn. Mater. 321, 796 (2009).

[64] M. Otter, G. Athanasopoulos, N. Hlubek, M. Montagnese, M.
Labois, D. A. Fishman, F. de Haan, S. Singh, D. Lakehal,
J. Giapintzakis, C. Hess, A. Revcolevschi, and P. H. M. van
Loosdrecht, Int. J. Heat Mass Transfer 55, 2531 (2012).

[65] A. V. Rozhkov and A. L. Chernyshev, Phys. Rev. Lett. 94,
087201 (2005).

[66] A. L. Chernyshev and A. V. Rozhkov, Phys. Rev. B 72, 104423
(2005).

[67] E. Shimshoni, N. Andrei, and A. Rosch, Phys. Rev. B 68,
104401 (2003).

[68] E. Boulat, P. Mehta, N. Andrei, E. Shimshoni, and A. Rosch,
Phys. Rev. B 76, 214411 (2007).

[69] A. Metavitsiadis, X. Zotos, O. S. Barišić, and P. Prelovšek,
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