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Recently, it was shown that the topological properties of 2D and 3D topological insulators are captured by
a Z2 chiral anomaly in the boundary field theory. It remained, however, unclear whether the anomaly survives
electron-electron interactions. We show that this is, indeed, the case, thereby providing an alternative formalism
for treating topological insulators in the interacting regime. We apply this formalism to fractional topological
insulators (FTI) via projective/parton constructions and use it to test the robustness of all fractional topological
insulators that can be described in this way. The stability criterion we develop is easy to check and based on the pair
switching behavior of the noninteracting partons. In particular, we find that FTIs based on bosonic Laughlin states
and the M = 0 bosonic Read-Rezayi states are fragile and may have a completely gapped and nondegenerate
edge spectrum in each topological sector. In contrast, FTIs based on fermionic Zk Read-Rezayi states with M = 1
and odd k and the bosonic 3D topological insulator with a π/4 fractional θ term are topologically stable.
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I. INTRODUCTION

Topological insulators (TIs) have attracted a large amount
of attention in recent years due to their novel bulk and surface
properties [1]. The bulk of these materials is insulating and
characterized by topological indices which measure certain
twists in the band structure. The topology of the bulk implies,
via the bulk-edge correspondence, that the surfaces of these
materials are necessarily metallic.

The theories that emerge on the boundaries of topological
phases can be understood as fractions of more standard
ones [2,3]. For example, the integer quantum Hall (IQHE)
edges can be thought of as half of a Luttinger liquid, the
quantum spin Hall effect (QSHE) as half of a spinfull wire,
and the strong topological insulator (STI) as half of the
Bernevig-Zhang model at the transition. Of particular interest
recently are the fractional topological insulators in 2D [4] and
3D [5] (FTIs), which can host anyonic and even non-Abelian
excitations [6].

The question of stability of the edge theories of topological
insulators in the nonintereacting case is, even in the presence
of disorder, well understood. As long as the time-reversal
(TRS) and charge conservation symmetries are not broken, the
edge is stable. When interactions are considered, an important
distinction arises. For the 2D and 3D topological insulators,
which can be adiabatically connected to noninteracting band
insulators, various approaches indicate that their edge states
are robust [4,7–9]. This means that their boundaries cannot
be completely gapped out—they will either have a gapless
boundary or a protected degeneracy associated with the
boundary.

Topological insulators which cannot be adiabatically con-
nected to band insulators present a more subtle challenge.
A prominent class of examples of such phases are the
FTIs, i.e. TRS analogs of fractional quantum Hall states.
For the two-dimensional fermionic FTIs supporting only
Abelian excitations, which admit a K-matrix description, the
Z2 classification has been shown to persist. References [4]
and [10–12] establish an elegant general formula for the
value of this index in terms of the ratio σsH /e∗ of quantum

spin Hall conductivity and the value of the smallest possible
electric charge, in appropriate units. The stability argument
of Ref. [4] extends also to non-Abelian fermionic phases
in two dimensions, however, only as a sufficient condition;
whether the condition is also necessary has not been shown.
As of yet the question of stability of edge modes of two-
dimensional non-Abelian FTIs has not been settled in full
generality [13,14], even less is known for the case of three
dimensions.

In a previous work [15], it was shown that the properties
of noninteracting TIs in 2D and 3D can be described in
a compact form using a field theory anomaly dubbed the
“Z2 chiral anomaly.” The basic topological properties of
TIs such as pair switching, time-reversal-parity pumping and
the Z2 topological index algebra [16] are manifested in the
properties of field-theoretical quantities such as the partition
and correlation functions.

In this work, we show that the Z2 chiral anomaly survives
interactions and is therefore a fully robust feature of the
field theory. We then use this anomaly as a diagnostic tool
to determine the stability of various parton constructions of
bosonic and fermionic fractional TIs in both 2D and 3D.
Analyzing the robustness of a candidate fractional TI amounts
to analyzing the anomaly content of the free parton theory
or equivalently their pair-switching behavior. We show that
provided the free parton theory is anomalous (or performs
pair switching) and time-reversal symmetry is not broken, the
phase is stable. We cannot prove the converse statement in
full generality, our method does however, in certain examples,
provide a way to explicitly construct perturbations, which gap
the edge if the theory is not anomalous. Stability here should be
understood in the following limited sense: a single low-lying
excited state is guaranteed to exist on each boundary and within
each topological sector. It is also worth noting that we do
not rely on translational symmetry of the problem, hence the
results are valid in the presence of disorder.

We apply the anomaly approach to various FTIs. In
particular, we consider two-dimensional FTIs made of a TRS
pair of bosonic or fermionic Laughlin wave functions. The
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former are shown to be unstable and the latter stable. Fractional
TIs made of Zk Read-Rezayi states are stable only when they
are fermionic (i.e., when M is odd) with k odd. The 3D bosonic
topological insulator with a π/4 fractional θ term [17] is shown
to be stable. We emphasize that the above statements concern
the edge theory and not the bulk—a topologically ordered state
is stable, even if the edge is gapped.

The formal results about the presence of anomaly are
valid even in the presence of spontaneous TRS breaking [18],
however, in that case, they lose their physical significance, i.e.,
one cannot conclude the existence of protected edge mode.
Alternatively said, in an idealised situation where TRS is
spontaneously broken but absolutely no infinitesimal ordering
field is introduced, the system will be in some superposition
of the two TRS-related ground states. Since the symmetric
and antisymmetric superpositions are exponentially close in
energy, there is always an (exponentially) low-lying excitation
above the ground state. If an infinitesimal TRS-breaking
ordering field is introduced, which is the realistic scenario,
our arguments no longer apply.

Our findings are also consistent with more exotic phase
transitions on the surface, for instance, to a gapped topological
surface phase [19–21]. In that case, our results imply that
there must be ground-state degeneracy on a torus. Indeed, for
the phases discussed in Refs. [19–21], such a degeneracy is
present.

This work is organized as follows. In Sec. II, we recall some
of the essential properties of the Z2 anomaly, its relation to pair
switching [16] and the existence of gapless edge excitations.
This builds the technical background required in Sec. III,
where we establish the stability of the anomaly to interactions.
Section IV shows how the bulk and edge theories of FTIs
can be described via parton or projective constructions and
also how the anomaly approach applies to these theories. In
Sec. V, we establish the robustness or fragility of a variety
of FTIs based on the anomalous/pair-switching properties of
their parton edge theory. We conclude with a discussion and
outlook section (Sec. VI).

II. THE Z2 CHIRAL ANOMALY

A. Introduction and properties

An anomaly in quantum field theory refers to the situation
where a symmetry of the Lagrangian, which is present at the
classical level, is lost in quantization. A prototypical example
is the chiral anomaly of the quantum electrodynamics in
3+1 dimensions or the chiral anomaly in 1+1 dimensions
describing the edge of a quantum Hall system [22,23]. The
presence of the anomaly implies, among others, that the
response of the system to the applied external field will also
not obey the symmetry of the Lagrangian. In the quantum Hall
case, where edge theory possesses a chiral anomaly [23], the
anomalous current can be understood as coming from the Hall
current in the bulk.

This interplay between the bulk and the boundary is a gen-
eral feature and the field theory formulations of boundaries of
topological phases are usually associated with anomalies [7].
A rough intuition based on the previous examples is that the
bulk allows conserved quantities to escape the surface thus
providing a physical means to the symmetry violation.

As shown in Ref. [15], topological insulators exhibit
an anomaly associated with TRS and charge conservation
symmetry. The relevant field theory is simply that of two TI
edges at the two ends of a long TI cylinder. The main-field
theory quantity associated with this anomaly is the partition
function itself, which vanishes following a flux insertion
through the cylinder. This behavior is topologically robust and
directly linked to the fact that the edge spectrum performs a
pair switching behavior as a function of the flux. Its physical
meaning is simply an orthogonality between the state before
and after the flux insertion. To show that this is an anomaly in
the more strict sense of a symmetry violation, one can show that
a symmetry forbidden two-point correlation function involving
creation and annihilation operators on two decoupled edges
diverges in the limit m −→ 0, where m is the strength of the
coupling between the edges [see also Eq. (9) below].

Let us now explain these results in more detail. The
Euclidean action describing the two edges of the topological
insulator on a cylinder considered in Ref. [15] is given by

S =
∫

dxdτψ̄σ [Ŝch]σσ ′ψσ ′ , (1)

Ŝch = (i�∂τ + iμ)σx + v0σyHedge[Ax] ≡
(

0 D

D† 0

)
, (2)

where Hedge[Ax] specifies the low-energy effective Hamil-
tonian of the edge of the topological insulator, which also in-
cludes the time-dependent electromagnetic field. The variables
ψ̄ and ψ are four-component spinors given by ψ̄ = (ψ̄d ,ψ̄u)
and ψ = (ψT

u ,ψT
d )T , where the components are themselves

spinors in the spin space, the indices u,d refer to upper/lower
edge of the cylinder, or in the chiral language: ψ̄ = (ψ̄+,ψ̄−)
and ψ = (ψT

+ ,ψT
− )T . The indices σ,σ ′ are in the edge/chirality

space. In this particular form, the action includes the rotation
of the ψ̄ spinor by iσx . The “chirality” in the above should not
be confused with the direction of propagation of electron on
the edge. The chiral symmetry is defined by {Ŝch,σz} = 0; it
implies, at least at the classical level, conservation of charge
difference between the edges. The chirality index refers to
subspaces corresponding to ±1 eigenvalue of σz.

Let us, for completeness, recall the definition of time
reversal symmetry (TRS) for spin- 1

2 fermions in our system:

T ŜchT −1 = (isyσx)[Ŝch]T (isyσx)T , (3)

where the Pauli matrices si act on the spin degree of freedom.
Equivalently, the action of time-reversal on the Grassmann-
valued spinor fields is given by

ψ̄(t) −→ ψT (−t)[syσx]T ,

ψ(t) −→ syσxψ̄
T (−t).

(4)

One can now envisage the following thought experiment:
let us put the topological insulator on an annulus and change
the flux threading the hole of the annulus adiabatically from
−�0/2 to �0/2. Denote by |gs〉 the ground state at −�0/2 and
by G|gs〉 the ground state at �0/2. Let U be the time-evolution
operator which carries out the flux insertion at a rate (	T )−1.
The flux insertion time 	T is taken to be larger than the inverse
bulk gap. We are interested in the overlap of the state obtained
by threading the flux with the ground state (gs), which is given
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by the following expression [15]:

〈gs|G†U |gs〉 = Z[m] ≡
∫

D[ψ̄ψ]e−S0(m)[ψ̄ψ], (5)

where the noninteracting action S0(m) contains additionally a
time dependent gauge-field capturing the flux insertion (Ax =

ht
	T eL

) and a source term mψ̄[σ0 ⊗ s0]ψ , which physically
corresponds to coupling of charges on both edges. For a trivial
band insulator, this overlap is equal to 1, up to a phase. In
contrast, it is 0 for the topological insulator. More precisely,
it vanishes as m2, as m goes to zero. Therefore threading a
flux will bring us to an orthogonal state in the case of the
topological insulator.

We note that the above equality is obtained for an action
with a mixed Euclidean and real time contour, as described
in Ref. [15]. The vanishing of the left-hand side also extends
to pure Euclidean time by taking Ax = hτ

βeL
, where β is the

inverse temperature. For concreteness we shall focus on such
Euclidean-time flux insertions, although this plays no essential
role in rest of the paper.

The vanishing of the partition function, and hence the
overlap, is intimately linked to the appearance of action zero
modes—if we formally compute the expression Eq. (5), we
obtain

〈gs|G†U |gs〉 = Det[Ŝ0(m)] =
∏
n

β(λn + m), (6)

whence it is easy to see that should some k action eigenvalues
λn of the action Eq. (2) be zero, the partition function will
vanish as mk . Crucially, the existence of a pair of action zero
modes for the topological insulator is guaranteed by the result
obtained in Ref. [15]. It can be stated in the following way:

ν2 = pair switching, (7)

where the new topological index ν2 is given by ν2 =
DimKer[D] mod 2. Intuitively, ν2 being equal to 0 or 1
corresponds to the presence or absence of a TRS protected
pair of zero modes. The “pair switching” refers to the states
changing their Kramers partner during a half-flux insertion.
This result is an extension of the Atiyah-Singer-Patodi theorem
to the case of noninteracting topological insulators.

Equivalently, one may consider a symmetry forbidden two-
point correlation function Ghop = 〈∫ dxdt ψ̄σ0s0ψ〉 involving
creation and annihilation operators on two decoupled edges.
Naive application of chiral symmetry suggests it should vanish,
as applying the chiral transformation changes the function
sign:

〈ψ̄+ψ+〉 −→ 〈ψ̄+eiπ/2eiπ/2ψ+〉 = −〈ψ̄+ψ+〉, (8)

however, a direct calculation produces the following re-
sult [15]:

Ghop = ∂m ln

(∫
dψ̄dψe− ∫

dxdtψ̄Ŝ0(m)ψ

)

= ∂m ln

(∏
n

β(λn + m)

)
= ν2

m
+ O(m0,m1, . . .). (9)

Thus the anomaly is also associated with the 1/m pole in the
Green’s function (we take the limit m −→ 0 while keeping the
system size and the temperature fixed).

Again, the 1/m pole has its origin in the action zero
modes, as is evident from the denominators in the energy
representation of the Green’s function:

Ĝ(m) =
∑

n

|n〉〈n|
λn + m

. (10)

Furthermore, considering the following expression involving
the “regular part,” i.e., the part that does not contain zero
modes:

〈+|
∑
n	=0

|n〉〈n|
λn

|+〉

= 〈+|
∑
n	=0

|n〉〈n|
λn

+
∑
n	=0

|σzn〉〈σzn|
−λn

|+〉 = 0, (11)

we conclude that it vanishes between the states of like
chirality, thus the “regular” Green’s function and hence also
the non-zero-modes play no part in the anomaly. In the above
calculation, we used the fact that for each action eigenstate
|n〉 with an eigenvalue λn 	= 0 there exists an action eigenstate
σz|n〉 with the eigenvalue −λn, which is due to the chiral action
Eq. (2) anticommuting with σz.

We would like to extend the above considerations by
including interactions. The action zero modes will be central
to the further discussion, let us therefore introduce some
notations. Let ϕ0 and ϕ0̄ denote the action zero modes with
σz = ±, respectively, i.e., the solutions to the equations Dϕ0 =
0 or D†ϕ0̄ = 0. We shall define the zero-mode components of
the field ψ in the following way:

ψ0 =
∫

dxdτϕ∗
0 (x,τ )ψ+(x,τ ),

(12)

ψ0̄ =
∫

dxdτϕ∗̄
0 (x,τ )ψ−(x,τ ).

B. Z2 chiral anomaly in 3D

The above introduction and discussion of the Z2 chiral
anomaly was—for pedagogical reasons—kept strictly in the
two-dimensional context. Here, we briefly comment on the
its extension to the 3D case. We consider a 3D system with
linear dimensions Lx = Ly = Lz ≡ L and we make two of
them periodic, keeping open boundary conditions in the third,
say the z coordinate. This is the so-called “Corbino doughnut”
geometry. The relevant field theory is the theory of the two
surfaces of the TI given by the tori specified by z = 0 and
z = L. The only formal change to Eqs. (1) and (2) in this
process is the replacement of the edge Hamiltonian Hedge by
an appropriate Hamiltonian Hsurface describing the 2D surface
of a 3D topological insulator (and a change in the integration
measure to include the additional spatial dimension). The
chiral structure of the action Ŝch is unchanged.

We shall pierce fluxes φx and φy through the two holes
of the tori. We fix one of the fluxes, say φx , to be either
0 or π , and we vary the other. For a topological insulator,
pair-switching behavior as a function of φy will occur in the
spectrum for exactly one of the two possible values of φx .
We include this time-dependent magnetic flux in the surface
Hamiltonian Hsurface[A]. The anomaly is now reflected in the
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vanishing of the partition function Eq. (5), exactly as in the 2D
case.

III. ROBUSTNESS OF THE Z2 CHIRAL ANOMALY
TO INTERACTIONS

In this section, we show that the Z2 anomaly is robust to
electron-electron interactions provided that (i) the bulk gap
remains open and (ii) there is no direct coupling between
the gapless boundaries. Specifically, the orthogonality relation
implied by Eqs. (6) and (7) holds also for interacting TIs.
Another way to phrase it is to say that the boundary of an
interacting TI always supports a low-lying state which can be
excited by a full-flux insertion. In the next sections, we will
generalize this results to fractional TIs.

In the adiabatic limit, defined here as the limit in which
the rate of the flux insertion is much smaller than the level
spacing on the boundary, this result can be understood by
arguments similar to those used in Refs. [4,16]. Consider
the many-body spectrum of a single, translation-invariant
edge of a noninteracting TI with a fixed particle number.
For simplicity, let us assume that prior to the flux insertion
there is no Kramer’s degeneracy and the occupation of each
single-particle momentum state is that appearing in Fig. 1(a),
where full circles denote occupied states. Upon inserting half
of a flux quantum, one electron is pumped to the edge resulting
in a Kramer’s degeneracy and a momentum state occupation
shown in Fig. 1(b). Completing the flux insertion, one arrives
at an orthogonal state with momentum-state occupation as
in Fig. 1(c). The low-lying spectrum of the noninteracting

0 π 2π

E

φ

(a) (b) (c)

(d)

FIG. 1. Spectral motions of the noninteracting low-energy many-
body spectrum and occupation of single-particle momentum states as
a function of the adiabatically threaded flux φ. Insertion of half of a
flux quantum results in one electron being pumped to the edge and a
Kramer’s degeneracy corresponding to momentum state occupation
shown in Fig. 1(b). Completing the flux insertion one arrives at an
orthogonal state with momentum-state occupation as in Fig. 1(c).
Alternatively, the many-body groundstate of a TI evolves into an
orthogonal state following a full-flux insertion and exhibits a level
crossing at π flux as shown in Fig. 1(d).

many-body system, depicted in Fig. 1(d) as a function of flux,
exhibits a level crossing at π flux.

The presence of a crossing in the spectrum as a function
of flux is a robust feature of the many-body spectrum, even
in the presence of interactions. Indeed, provided that TRS
is not explicitly broken and that edges remain decoupled,
the Karmer’s degeneracy point at π flux cannot be removed.
Thus, provided that the flux insertion is carried at a rate much
slower than the splitting at φ = 0, a level crossing occurs and
the ground state evolves into an excited state. Notably, this
argument holds also in the presence of a spontaneous TRS
breaking on the edge—in this case, the two states which cross
will be the two symmetry-related ground states. The splitting
between, and hence also the rate of flux insertion, will be
exponentially small in the system size. In fact, the only way
to remove this behavior without explicitly breaking TRS is to
couple the two boundaries, for example via a gapless excitation
in the bulk, thus allowing the spectral motions of the different
boundaries to unwind together.

Next, we re-establish this result using the anomaly ap-
proach. This is done by showing that the partition function
appearing in Eq. (5) remains zero also when the action is
non-Gaussian and contains interactions. This field theoretical
approach has some advantages over the above simpler consid-
erations. First, in the presence of fluctuating gauge fields, it
can be used to address the orthogonality relations in a gauge
invariant way. This will be useful when we turn to consider
projective/parton constructions of fractional TIs, where such
gauge fields naturally emerge. Furthermore, the anomaly
formalism will allow us to show that the above orthogonality
result persists even for nonadiabatic flux insertions.

To this end, we first choose a convenient regulator, which
is a sharp cutoff on the noninteracting action spectrum. This
cutoff has been used before to analyze the chiral anomaly [24].
Given a finite system in a finite temperature the path integral
representation of the partition function reduces to a finite
number of integrals. The interactions we consider are generic
density-density ψ̄σ±s0ψ or spin-spin ψ̄σ±sxψ type terms on
one or the other edge, which we add to the action:

Sint = g±
0 (ψ̄[σ± ⊗ s0]ψ)2 + g±

x (ψ̄[σ± ⊗ sx]ψ)2. (13)

It is easy to verify that a term like ψ̄σ+s0ψ acts on a single
edge but couples different chiralities.

We next use the idea of integrating out high-energy degrees
of freedom to derive an effective low-energy action. We take
this idea, however, to its absolute extreme, that is, we integrate
out everything but the zero-mode components:

Zint[m] =
∫

d[ψ]e−S0(m)+Sint

∫ ∏
α=0,0̄

d[ψα]

×
∫ ∏

n	=0

d[ψn]e−S0[ψ0]−S0[ψn]+Sint[ψ0,ψn]

=
∫

d[ψ0]d[ψ0̄] e−S0[ψ0]+Seff [ψ0], (14)

where S0[ψ0] ≡ S0[ψ0](m) = imψ̄0ψ0 + imψ̄0̄ψ0̄. The ef-
fective action obtained upon integrating out higher mode
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components is given by

Seff[ψ0] = ln〈e−Sint[ψ0,ψn]〉n	=0, (15)

where 〈·〉n	=0 denotes the average over non-zero-mode compo-
nents. We also used a compacted notation for the Grassmann
integration over components: d[ψ] ≡ dψ̄dψ .

The resulting effective theory is phrased in terms of the
remaining four Grassmann variables, which are the ψ0,ψ0̄ and
their conjugates. We wish to analyze what type of terms can be
generated in this effective action based on symmetry consider-
ations. An essential property of the integrating out procedure
is that it does not involve the zero-mode components, which
are the only modes that actually violate the symmetry [24,25].
Thus the terms generated by this procedure must respect the
classical properties of the action. Most notably, the fact that
the edges are classically decoupled. For example, notice that
the Green’s function in the limit m −→ 0 only breaks the
chiral symmetry due to the presence of the zero modes [see
discussion around Eq. (11)]. In the diagrammatic language,
this integrating out procedure amounts to connecting the
interaction vertices with regular Green’s functions, obtaining
a set of new effective vertices for the zero-mode components
only. In what follows, we work in the strict m = 0 limit.

We begin by rewriting the effective action as a cumulant
expansion, using the following identity:

ln〈e−Sint[ψ0,ψn]〉n	=0 =
∞∑

k=1

(−1)k

k!

〈
Sk

int

〉
c
[ψ0], (16)

where 〈·〉c denotes a cumulant. Thus we have

Seff[ψ0] = −〈Sint〉c[ψ0] + 1
2

〈
S2

int

〉
c
[ψ0] − . . .

= −〈Sint〉[ψ0] + 1
2

(〈
S2

int

〉
[ψ0] − 〈

Sint
〉2

[ψ0]
) − · · · ,

(17)

where the averages with respect to the nonzero mode compo-
nents are given by

〈Sint〉[ψ0] ≡ 〈Sint[ψ0,ψn]〉n	=0

= 1

Zn	=0

∫
d[ψn] Sint[ψ0,ψn]e−S0[ψn], (18)

with S0[ψn] quadratic in the non-zero-mode components.
Next, we want to show that all the averages, and hence

also the cumulants and the effective action vanish. To this
end, it is convenient to rewrite the term Sint[ψ0,ψn], which
originates from expansion of the bare interaction term Sint ∝
(ψ̄+ψ−)2 + (ψ̄−ψ+)2 in mode components, as a product of
zero-mode and non-zero-mode factors. The mode expansion of
the bare interaction contains quartic terms, however, its chiral
structure does not allow more than two zero-mode components
to appear in any term. This is because the ψ0,ψ0̄ modes have a
fixed chirality, hence expanding for instance (ψ−)2 in mode
components, the only double zero-mode contribution that
could appear is ψ0ψ0, which is clearly zero. In fact, the only
allowed bare terms containing two zero-mode components
are of the form ψ̄0̄ψ0ψ̄kψl or the Hermitian conjugate thereof.
There are no such restrictions on bare terms containing a single
zero mode.

Notice also that, due to the form of the interaction term Sint,
we can—as a bookkeeping device—unambiguously assign
edge labels u/d to single zero-mode components and the
corresponding non-zero-mode factors: for example, the ψ0

mode of positive chirality could only have originated from
the (ψ̄−ψ+)2 ∝ (ψ̄uψu)2 interaction term, hence we denote it
by ψu

0 . Since the bare interaction does not couple edges, the
corresponding nonzero-mode factors have to carry the same
edge label.

We can thus write the terms in Sint[ψ0,ψn] in the following
form:

Sint[ψ0,ψn] = Ôu
0 + Ôd

0 + ψu
0 · Ôu

ψ0
+ ψd

0̄ · Ôd
ψ0̄

ψ̄u
0̄ ψu

0 · Ôu
ψ̄0̄ψ0

+ H.c., (19)

where Ô contain only the non-zero-mode components. In
particular, the Ô

u/d

0 operator contains only non-zero-mode
components which act exclusively on the upper or lower edge
of the cylinder.

Since the averaging in 〈Sint〉 is done only over non-zero-
mode components, we have

〈Sint〉[ψ0] = ψu
0 · 〈

Ôu
ψ0

〉 + ψ̄d
0̄ · 〈

Ôd
ψ̄0̄

〉 + . . . , (20)

and the same factoring into zero-mode components and
averages of non-zero modes holds for higher cumulants of
Sint. Furthermore, the averages of higher powers of Sint factor
into products of averages on the upper and lower edges, since
the action S0[ψn] we average it with does not couple the edges.

Using the above, we now can show that the effective action
vanishes order by order in zero-mode components. The terms
in the new effective action cannot be of order higher than four
in zero-mode components, since there are only four Grassmann
variables left in the theory. Terms with an odd number of zero-
mode components cannot be generated, since their coefficients
are sums of averages of an odd number of nonzero modes,
which vanish due to charge conservation.

A priori it is possible to generate three distinct quadratic
terms:

ψ̄d
0 ψu

0 · 〈
Ôd

ψ̄0
Ôu

ψ0
Ô�

0

〉
, (21)

ψ̄u
0̄ ψd

0̄ · 〈
Ôu

ψ̄0̄
Ôd

ψ0̄
Ô�

0

〉
, (22)

ψ̄d
0 ψd

0̄ · 〈
Ôd

ψ̄0
Ôd

ψ0̄
Ô�

0

〉 + ψ̄d
0 ψd

0̄ · 〈
Ôd

ψ̄0ψ0̄
Ô�

0

〉 + H.c., (23)

where we have defined Ô�
0 as

Ô�
0 = ±

∑
α,β

(
Ôu

0

)α (
Ôd

0

)β
, (24)

and where the ±1 ambiguity results from commuting all the
Ô0 to the right.

Notice, however, that ψ̄d
0 ψu

0 and ψ̄u
0̄ ψd

0̄ explicitly break
chiral symmetry, hence in order for the effective action to
preserve the symmetry the averages in Eqs. (21) and (22)
multiplying them have to break it as well. This, of course,
cannot happen, since these are regular averages which preserve
classical symmetries of the action, as explained earlier. Thus
the coefficient multiplying ψ̄0ψ0 is necessarily zero. Analo-
gous reasoning can be applied to the term ψ̄0ψ0̄, since ψ̄0ψ0̄
breaks time-reversal symmetry (the zero-mode components 0
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and 0̄ come with opposite spin hence this term is equivalent
to a spin flip). Thus quadratic terms do not appear. The only
remaining possibility is a quartic term ψ̄d

0 ψ̄u
0̄ ψd

0̄ ψu
0 .

We argue that this quartic term cannot appear either. Since
it necessarily contains zero-mode components living on both
upper and lower edges, the same is true of its coefficient,
namely it has to contain averages of Ô operators from both
edges. Recall further that such averages factor into products
of averages on both edges separately. This, however, leads to a
contradiction, since the effective action is expressed in terms of
the cumulants of Sint, which by definition correspond to fully
connected diagrams or in other words, averages which do not
factor. Thus we arrive at the conclusion that in the effective
action a quartic term cannot be generated, as its coefficient
must factor. Hence its equal to zero. The same reasoning could
have been applied to the chiral-symmetry breaking quadratic
terms. We also note here that the diagrammatic approach offers
another natural way to arrive at this conclusion: it is simply
impossible to draw an effective quartic vertex starting from the
interaction vertices we considered and connecting them with
regular Green’s functions.

Thus far we have shown that in the strict m = 0 limit for
a finite system the partition function vanishes. We state here
without proof that our reasoning generalizes to the case of finite
m. Doing so we find that the partition function still vanishes
as m2.

We argue that these results are valid even if the edge
undergoes a phase transition [19–21], as long as TRS is
not broken. This is not unreasonable since our proof is
based on renormalization group reasoning rather than simple
perturbation theory. This is not obvious either since our proof
relies on an integrating-out procedure which is well defined
for a finite system, however, for an infinite system it could
perhaps generate infinite terms. To formally circumvent this
subtlety, we work with a finite system, calculate the anomaly
and take the thermodynamic limit at the very end. Since the
anomaly holds for every large but finite system size, it should
also hold, by continuity, for an infinite system.

Lastly, we note that the formal result concerning vanishing
of the partition function in Eq. (5) is valid in scenarios in
which TRS is broken spontaneously: as long as no infinitesimal
ordering field is added, the anomaly survives. It reflects the fact
that the symmetric combination of the two TRS-equivalent
ground states develops into the antisymmetric one following a
flux insertion, as was explained in the discussion of Kramer’s
degeneracy in the beginning of this section. If, however, an
ordering field is introduced, TRS is broken explicitly and our
proof is no longer valid, thus no conclusion can be made about
the presence of protected edge mode in the physical system.

IV. PARTON CONSTRUCTIONS OF FRACTIONAL
TOPOLOGICAL INSULATORS AND THE Z2

CHIRAL ANOMALY

Here we show how to extend the anomaly formalism to
fractional topological insulators (FTIs) in order to analyze
their stability. We do so using the parton [26,27] and projective
constructions [28,29]. Such constructions have been used to
describe a variety of FTIs in both two [30] and three [17,31,32]
dimensions. An FTI with an anomaly is guaranteed to have a

low-lying boundary excitation within each topological sector.
Conversely, for an FTI without an anomaly, at least in all
of the examples we have considered, such an excitation can
become gapped.

The projective constructions are an elegant way of de-
scribing certain fractional quantum Hall states. They build
upon a simple observation, that if one takes a product state
of three species of electrons in a ν = 1 QH state, whose
coordinates are given by the triple zi,wi,xi and imposes the
constraint zi = wi = xi , then the resulting wave function is
that of a ν = 1/3 Laughlin state [26]. Equivalently, in the
field theory language, one rewrites the electron operator as a
product of three fictitious partons and imposes the constraint
by introducing an auxiliary SU(3) gauge field to glue them.
Remarkably, this conceptually simple construction accounts
for a large number of non-Abelian states [27–29].

For example, the effective theory of a ν = 1/N Laughlin
state is described by the following bulk parton field theory [27]:

L =
∫

d2rdtψ̄α

(
i∂μ − 1

N
Aμ + aa

μτ a
αβ

)2

ψβ + 1

g
f a

μνf
a
μν,

(25)

f a
μν = ∂μaa

ν − ∂νa
a
μ + fabca

b
μac

ν, (26)

where μ,ν = {x,y,t}, Aμ is the external electromagnetic
gauge field, aa

μ is the SU(N ) gauge field, τ a’s are the generators
of SU(N ) in the fundamental representation, fabc is the
structure factor of the Lie group, g is the coupling strength and
summation over repeated indices is implicit. The physical limit
of the above theory is that of infinite coupling (g → ∞). In
this limit, the integration over the gauge field forces the SU(N )
currents to be locally zero thereby gluing the partons together
to form physical electrons. The long-wavelength properties
of the physical state can, however, be captured even in the
weak coupling limit. Indeed, taking into account only the
leading order fluctuations of the gauge field yields the right
quasiparticle statistics and ground-state degeneracy [27].

Since the gauge coupling can be considered small, it is
reasonable that the parton construction can be carried out
directly on the low-energy theory of the edge. Such an
approach was employed in Ref. [27] by dividing the free parton
edge currents into the physical ones and the ones associated
with SU(N ) gauge symmetry. The projection onto the physical
Hilbert space was performed by removing the gauge currents.
We are not aware of any parton construction in which this
low-energy approach fails.

In the field theory language, removing the unphysical
currents amounts to taking the infinite coupling limit. However,
the low-energy features of the edge should be captured
just as well with a strong yet finite coupling strength. This
will make fluctuations away from the physical Hilbert space
highly energetic thereby effectively excluding them from the
low-energy theory. Hence we write the low-energy theory of
the edge as

L =
∫

dtdxψ̄α

(
i∂μ + 1

N
Aμ + aa

μτ a
αβ

)
ψβ + 1

g
f a

μνf
a
μν,

(27)

with the coupling g large but finite.
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We now turn to FTIs by taking two TRS-conjugate copies of
the above parton edge theory. To analyze the anomaly content
of this theory we again place it on a cylinder and perform the
chiral transformation. The resulting theory for the edges of a
FTI constructed from two Laughlin 1/N states is given by

S =
∫

dxdτ ψ̄α
σ [Ŝch]αβ

σσ ′ψ
β

σ ′ + 1

g
f a

xtf
a
xt ,

Ŝch = (i�∂τ − ai
τ τ

i − e∗Aτ )σx + σysz(i∂x − ai
xτ

i − e∗Ax),

(28)

where σi,si are the Pauli matrices in the chirality and spin
space, τ i are generators of SU(N ), and α,β are indices in the
fundamental representation of the gauge group. The parton
electric charge measured in units of e is given by e∗ = 1/N .

The question we address here is whether or not the
above theory supports a low-lying excitation in the presence
of TRS-respecting spin-mixing perturbations. Repeating the
arguments given in the integer case, this can be analyzed by
studying the partition function of this theory (Zparton) in the
presence of flux insertions. A zero partition function will imply
an excited state, whereas a finite partition function will imply
that the ground state comes back to itself after an adiabatic
flux insertion.

Gauge fluctuations are clearly an important part of every
parton theory. While certain quantities, such as the Hall
conductance could be obtained correctly without including
these fluctuations, properties such as the central charge of the
edge conformal field theory do require fluctuations [28]. The
Z2 anomaly is closer in spirit to the Hall conductance than to
the central charge or the quasiparticle statistics. Indeed, it is a
generalization of the chiral anomaly, the latter being the edge
manifestation of the Hall conductance [23]. As we now argue,
it is insensitive to gauge fluctuations.

To establish this formally, we wish to transform the gauge
fluctuations into parton-parton interactions and then apply
the results of the previous section. To this end, we need to
integrate out the gauge field so as to generate these effective
interactions. Physically, this procedure bears no meaning, as
effective interactions will bind the partons together just as the
gauge field did, it is simply useful to us from a technical point
of view. The only obstacle here is gauge invariance, which
implies that any integration over the gauge field, even over
a local region, will formally be infinite. To remedy this, we
follow Ref. [22] and perform a gauge-fixing procedure using
the Faddeev-Popov ghost system. This results in an action that
contains extra massless fermionic ghost fields and a gauge
symmetry violating term for the gauge field (introduced by
the gauge-fixing procedure). Having removed the local gauge
freedom, we can formally integrate out the gauge and ghost
degrees of freedom to obtain an effective interaction for the
partons.

The resulting interacting parton system can be handled
using a similar procedure to that used in Sec. III. As argued
previously, phase transitions within the edge theory which do
not break TRS do not affect the Z2 anomaly. Consequently, the
fact that the free parton theory has a different central charge
from that of the interacting partons does not play any role
here. In essence, what matters is only the chiral structure, and
this is unchanged. Loosely speaking, this situation is akin to

QCD, where arguments based on the chiral anomaly of the
free quarks allow for an accurate prediction of the neutral pion
decay well below the confinement energy scale [33].

We thus turn to discuss the free parton theory and its
anomaly content. To this end we introduce a full-flux insertion
in the form of a time-depended background U(1) gauge
field. The definition of a full-flux insertion changes with the
parton theory. Without loss of generality we consider linearly
time-dependent gauge field and put Ax(τ ) = h

βLe∗ τ , where τ

runs from 0 to β and e∗ is the minimal charge in the system.
This definition is equivalent to the existence of an unitary
transformation G that maps Hedge(τ = β) back to Hedge(τ =
0). Note that the definition of a full-flux quantum depends on
e∗, so that for instance in the case of the ν = 1/3 Laughlin state
threading three elementary flux quanta amounts to a single
full-flux insertion. Technically speaking, the importance of
demanding a full-flux insertion lies in the ability to define the
boundary conditions for the action in a nonsingular way [15].
Physically speaking, this means that we are looking for an
excitation within the same topological sector of the bulk.

The parton theory is considered anomalous if a full-flux
insertion, as described above, generates an odd number of
action zero-mode pairs. Alternatively, one can check whether
the joint spectrum of all the partons performs a pair-switching
at half of a full-flux quantum. In contrast, the theory is
considered trivial if there exist symmetry-respecting operators
which remove all action zero modes. In the next section, we
analyze the nature of various parton theories. Interestingly,
for all the theories that we next analyze it holds that a
nonanomalous theory is also trivial in the above sense. This
seems to hint at the possibility that the Z2 anomaly might be
both a sufficient and a necessary criterion for the robustness
of a FTI.

V. EXAMPLES

Here, we analyze the stability of some candidate fractional
TI phases, for which a projective construction is known.

A. Fermionic SU(2N + 1)-based FTIs

The simplest example is that of a FTI based on two time-
reversal symmetric copies of a fermionic ν = 1/(2N + 1)
Laughlin state. We introduce 2N + 1 charge e/(2N + 1)
partons ψi per copy and write the electron operator � in the
following way:

� = εi1i2...i2N+1ψi1ψi2 ...ψi2N+1 , (29)

where εi1i2...i2N+1 is the Levi-Civita tensor. Since this tensor is
invariant under SU(2N + 1) action, we have a SU(2N + 1)
gauge symmetry with matrices in the fundamental representa-
tion acting on the space spanned by the vectors ψi .

This state is stable by the following argument: since the
partons carry a fractional electric charge of e∗ = e/(2N + 1),
the full-flux insertion amounts to threading 2N + 1 flux
quanta. The noninteracting action for a single spin species
appears thus as 2N + 1 copies of an IQHE action in the
presence of a single flux quantum insertion. As discussed
previously, 2N + 1 action zero modes will be generated per
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spin and therefore the Z2 topological index will be nontrivial:
ν2 = 1. Consequently, the system is topologically stable.

B. Bosonic SU(2N)-based FTIs

We further consider a construction of a FTI based on two
copies of a bosonic Laughlin state [34]. Here, the gauge field is
SU(2N ) and there are 2N spinfull partons carrying a fractional
electric charge of e∗ = 1/2N each. In this case the previous
argument involving a full-flux insertion of 2N flux quanta
suggests the system is unstable, as it creates an even number
of zero modes, which, a priori, can gap each other out.

This is, however, not enough, as one should also verify that
no other symmetry prevents pairs of zero modes from gapping
each other out. In the field theory language, this amounts to
showing that the effective action for the zero modes allows for
terms, which respect the gauge, chiral, and TRS symmetries.
Considering for simplicity the SU(2) case, we denote by
ψ1,ψ1̄,ψ2,ψ2̄ the zero-mode components associated with the
two copies of the parton system. We find that the following
two terms are fully consistent with all the symmetries of the
action:

ψ̄1ψ̄2ψ1̄ψ2̄ + ψ̄1̄ψ̄2̄ψ1ψ2, (30)

where the first term is associated with the top edge and the
second with the bottom edge of the cylinder. Given these
terms the partition function is nonzero, as can be verified
explicitly. To show this it suffices to notice that a term in
perturbation theory generated by dropping a single power of
either of the allowed terms in Eq. (30) will contain exactly one
instance of each zero-mode component and hence will survive
the Grassmann integration. Thus the system is not stable and
there is no protected excitation within the same topological
sector.

One can further ask what the microscopic term which gen-
erates the above zero-more interaction term is. The form of the
terms in Eq. (30) suggests that the appropriate perturbations,
each acting on a single edge, should be proportional to �

†
+1�−1

and �
†
−1�+1, where the spin-1 boson operator of each spin

species is given by �+1 = ψ↑,1ψ↑,2 and �−1 = ψ↓,1ψ↓,2 in
the SU(2) case. Thus in the parton language our perturbation
has the following form:

�
†
+1�−1 + H.c. = ψ

†
↑,1ψ

†
↑,2ψ↓,1ψ↓,2 + ψ

†
↓,1ψ

†
↓,2ψ↑,1ψ↑,2.

(31)

Considering the Grassmann-valued term in the action
corresponding to the above perturbation and applying the
time-reversal prescription (4) to each individual fermionic
parton it can be easily seen that the composite bosonic fields
transform under TRS in the following way:

�+1 = ψ↑,1ψ↑,2 −→ −ψ̄↓,1ψ̄↓,2 = �̄−1,
(32)

�−1 = ψ↓,1ψ↓,2 −→ −ψ̄↑,1ψ̄↑,2 = �̄+1,

and hence this term in the action is indeed TRS-symmetric.
Note that the bosonic operator Eq. (31) can also be written
as �†[s2

x − s2
y ]�, where si are the spin-1 generators and � =

(�+1,�0,�−1). In this notation it is evident that the operator
is quadratic in the spins and clearly respects TRS.

Let us provide an intuitive argument for why this perturba-
tion, indeed, removes the anomaly (the argument generalizes
to the case of FTIs based on bosonic Read-Rezayi states, which
we analyze next). To do that, we focus on the system in the
vicinity of the crossing point. We assume for simplicity that
the chemical potential is exactly at Dirac point. We then
study the level crossing at half of a flux quantum, where the
occupation of single-particle states looks like two copies of the
one shown in Fig. 1(b), since each boson is made out of two
equivalent partons. The Hilbert space of the degenerate states
at the crossing point can be described in terms of four fermionic
states, which can be either filled or empty, with the restriction
that exactly half of them are filled. For intuition, we again refer
the reader to Fig. 1(b). We label them by |n↑,1n↓,1n↑,2n↓,2〉
with the occupation numbers n↑/↓,1/2 = 0,1. We now examine
the action of the perturbation in Eq. (31) on this restricted
space (first-order degenerate perturbation theory). It is easy to
see that the perturbation annihilates all but two eigenstates,
which are given by |0101〉 ± |1010〉 and have eigenvalues ±1.
These states are gauge-invariant and time-reversal symmetric.
Depending on the sign of the perturbation, one of them is the
unique lowest energy state. The perturbation therefore gaps out
the crossing at half of a flux quantum. This implies that after an
adiabatic full-flux insertion the ground state of the free partons
with this perturbation returns to itself, rather than going to an
orthogonal state. Since the perturbation is gauge invariant, it
is reasonable that this result persists in the presence of gauge
fluctuations.

C. Bosonic M = 0, Zk Read-Rezayi-based FTIs

We also consider a parton construction based on two
copies of M = 0 Zk Read-Rezayi states. Following Ref. [29],
we introduce for each spin species a vector of 2k partons
ψ = (ψ1,ψ2,...,ψ2k) with charge e∗ = e/2 each, and write the
electron operator � as

� = ψT �ψ, �ij =
∑

n

(δ2n,2n+1 − δ2n+1,2n). (33)

This representation implies a Sp(2k) gauge symmetry, with
the Sp(2k) matrices in the fundamental representation acting
on the ψ vector.

Since e∗ = 1/2 or equivalently, since the Hall conductance
is half of an integer, a double flux insertion is the minimal
insertion which returns the system to the same topological
sector. There is an even number of zero modes per spin, which
implies ν2 = 0 and thus there appears to be no stability. To
verify this, we should again make sure that gauge symmetry
does not offer any extra protection. To this end, we note that
�k ∝ ψ1ψ2...ψ2k is a gauge invariant quantity. Consequently,
the following two terms can arise when integrating out the
nonzero modes:

ψ̄1ψ̄2...ψ̄2kψ1̄ψ2̄...ψ2̄k + ψ̄1̄ψ̄2̄...ψ̄2̄kψ1ψ2...ψ2k, (34)

where the first term is associated with the top edge and the
second with the bottom edge of the cylinder. Given these
terms the partition function is nonzero as can be verified
explicitly. A microscopic perturbation can be constructed in a
fashion analogous to the case of SU(2N )-based FTIs. Hence
the system is not stable and there is no protected excitation
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within the same topological sector. In particular, the bosonic
Moore-Read-based FTI state is shown to be unstable.

D. Fermionic M = 1, Zk Read-Rezayi-based FTIs

Let us as well analyze the parton construction of FTIs based
on the M = 1 Zk Read-Rezayi states. Following Ref. [29],
for each spin species we introduce a vector of 2k partons
ψ = (ψ1,ψ2,...,ψ2k) with charge e∗ = e/(k + 2) each and
additionally one charge e k/(2 + k) parton ψ0. The electron
operator is given by

� = ψ0ψ
T �ψ, (35)

with � ∈ Sp(2k) as in the M = 0 Read-Rezayi sequence.
This representation implies a Sp(2k) ⊗ U(1) gauge symmetry
where the U(1) piece “glues” the additional ψ0 parton to the
rest.

We consider the cases of k odd and even separately. For the
odd case, the minimal flux insertion that returns the system
to the same topological sector is that of k + 2 flux quanta.
Under the flux insertion, the 2k partons with charge e/(k + 2)
generate an even number of zero modes per spin species, while
the remaining ψ0 parton of charge e k/(k + 2) generates k of
them. Thus the total number of zero modes per spin species
is odd and hence the Z2 topological index will be nontrivial,
i.e., the system is stable. In particular, we conclude that the
FTI based on the Z3 Read-Rezayi state is stable, in agreement
with the result of Ref. [13].

For the k being even case, the ψ0 parton also generates k

zero modes per spin species, however, now this number is even
and thus the Z2 index is trivial and there is no protection. We
can also construct the following term in the effective action,
consistent with all symmetries:

ψ̄aψ̄bψ̄1 . . . ψ̄kψāψb̄ψ1̄ . . . ψk̄

+ ψ̄āψ̄b̄ψ̄1̄ . . . ψ̄k̄ψaψbψ1 . . . ψk, (36)

where ψa,b are the two zero-mode components associated with
the field ψ0. Hence the partition function is not zero and the k

even system is not topologically stable.

E. 3D Fractional topological insulator

Finally, we analyze the 3D fractional topological insulator,
whose parton construction was described in Ref. [17]. We
introduce a single spinfull parton dα of charge e/2 and take
the free parton theory to be that of a 3D strong topological
insulator [35]. The physical operator is a spinless boson � of
charge e given by

� = d↑d↓ − d↓d↑. (37)

The gluing is done by a local SU(2) gauge field, which forces
spin singlets at each point in space.

We make the assumption that the projection to spin
singlets—or equivalently the integration over the gauge field—
can be carried out at the level of the effective theory describing
the surfaces of this state. We imagine taking periodic boundary
conditions for the surfaces in two directions (“Corbino
doughnut” geometry) and pierce two fluxes φx and φy through
the holes of this thickened torus. The free parton theory of
this system is by construction equivalent to that of a strong

topological insulator [35], whose surface theory has a well
known pair-switching behavior. Namely, for either φx = 0 or
π , the spectrum performs pair switching [35] as a function of
φy and similarly so when the labels x and y are interchanged.
Consequently, a flux insertion along φy for either φx = 0 or π ,
will generate a single pair of action zero modes and therefore
the free parton theory is anomalous. Finally, the projection onto
singlets carried out using a fluctuating gauge field still leaves
the anomaly intact—thus this fractional topological insulator
is stable.

VI. DISCUSSION AND OUTLOOK

In this work, we have analyzed the robustness of the
edges of topological insulators (TIs) and fractional topolog-
ical insulators (FTIs) to interactions by using field-theoretic
tools, most notably anomalies and projective constructions.
Topological insulators in 2D and 3D were found to be stable
to the extent that they always support a low-lying excitation
on each boundary, as long as the bulk gap persists and time
reversal symmetry is not spontaneously broken. For fractional
topological insulators obtained from parton or projective
constructions, we have derived a stability criterion. It states
that if the free parton theory is anomalous then the FTI is
stable. Alternatively stated, the FTI is stable if the free parton
spectrum performs pair switching after the insertion of half of
a full flux quantum. Here, by full-flux insertion we mean the
minimal flux insertion, which returns the bulk to the same
topological sector. This simply means that the free parton
theory is in a topological insulator phase. The same criterion
applies to 3D fractional topological insulators. Notice that our
results also apply to the case of disordered systems, since
the argument does not rely on the presence of translation
invariance.

We have considered a variety of examples, in particular,
two-dimensional FTIs based on two copies of Laughlin ν =

1
2N+1 states were found to be stable as have been the ones
based on fermionic Z2k+1 Read-Rezayi states with M = 1. In
contrast, the fractional topological insulators based on ν = 1

2N

Laughlin states, fermionic Z2k Read-Rezayi states with M = 1
and bosonic Zk Read-Rezayi states with M = 0 were shown to
be unstable. We also find that the 3D bosonic FTI constructed
by projecting a regular strong topological insulator on a local
singlet basis [17] is stable. All of these results are consistent
with the previous analysis [10] and the very recent results of
Ref. [13].

While it is clear that our stability criterion is sufficient,
it is much less obvious that it is also necessary. In all the
examples we considered, whenever the stability criterion was
not fulfilled a symmetry-respecting term could be generated in
the effective zero-mode action, which gapped out the zero
modes. This fact has not been proven in a general case,
however. We have also not shown, in general, that a finite
partition function Eq. (5) necessarily implies gapped edges,
though this seems reasonable.

The approach we apply offers distinct advantages. The
stability criterion has a clear physical meaning, namely, the
presence of (at least) a single low-lying edge excitation in
each topological sector. It is also easy to check for the FTIs
described by parton constructions, as it can be performed at
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the level of a free-parton system. Conveniently, a detailed
treatment of the fluctuating gauge field gluing the partons
together is not necessary. Furthermore, being phrased in terms
of anomalies, it is essentially a nonperturbative treatment
which places TIs and FTIs within a unifying field-theoretical
framework.

It would be interesting to make refinements on these
stability results. One direction is to consider whether the
anomaly (or parton pair-switching) is indeed also a necessary
stability criterion. The FTI based on the Pfaffian ν = 5/2 state,
for instance, appears trivial according to our considerations
and also those of Ref. [13]. It is, however, unclear to
us what the microscopic perturbation which trivializes this
state is. More generally, one could ask about a procedure
to reconstruct the appropriate perturbation based on the

symmetry-respecting term in the low-energy effective action.
Also, it would be worthwhile to inquire in which cases one
can ensure a true critical theory on the edge, as opposed to
just a low-lying excitation. Along the same lines, it remains
unclear how the robustness discussed in this work affects
the bulk quasiparticles and their sensitivity to spin mixing
perturbations.
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